

- FROM: Elvis Dhima, P.E., Town Engineer
- DATE: May 1, 2023
- RE: Marsh Road Pumps Station Equipment Already Purchase

Below are the shop drawing for the equipement already purchased, pumps, motors, VFD's and OLRs

PENTAIR FAIRBANKS NIJHUIS"

October 17, 2022

Hayes Pump Inc. 66 Old Power Mill Rd. West Concord, MA 01742

Attn: Craig Huff

Subject:	Purchase Order Number:	132657
-	Sales Order Number:	53113132
	Project:	0913483

To Whom It May Concern:

The submittal data for the above order is attached. This submittal is for your review and approval prior to release for manufacturing.

We require submittal return with your review comments and/or approval to release within 35 days for production scheduling purposes. At time of release, please advise firm "on-site" requirement dates for this equipment.

Very Truly Yours,

Specifications Department Pentair Flow Technologies

Return Submittal to: fmproduct@pentair.com

CC:

Enclosures: (1) pdf submittal

Pentair Flow Technologies General Clarifications

- 1. The supply and installation of the following items are by others unless otherwise identified in this submittal.
 - Anchor bolts, nuts and washers.
 - Gauges, valves and miscellaneous fittings and adapters.
 - Connecting piping and/or supports.
 - Maintenance lubrication, lubrication piping and related equipment.
 - System control apparatus.
 - Maintenance tools and/or storage boxes.
 - Equipment tags
 - Installation or field performance testing.
- 2. The following items are to be installed in the field:
 - Accessory items that are shipped separately.
- 3. Verification and/or confirmation of the following are requested at or prior to release of this equipment.
 - Overall lengths or elevations

	Fairbanks Nijhuis Submittal Data For Marsh Road Water Pump Station Hudson, NH
Supplier:	Hayes Pump Inc. 66 Old Power Mill Rd. West Concord, MA 01742
Manufacturer:	
Pump:	Fairbanks Nijhuis 3601 Fairbanks Ave. Kansas City, Kansas 66106-0906 (913) 371-5000
Project Number:	0913483
Sales Order Number:	53113132
Quantity:	2
Pump Size & Model:	10M 7000AW
Motor:	Nidec P. O. Box 3946 St. Louis, MO 63136 (314) 553-2878

1. **Comment:** Setting Plan to include the 6" height of the concrete slab. The total length from the centerline of the discharge to the centerline of the suction should be 8.0 FT with dimension from top of can to centerline of the suction 87.5"

Response: Confirmed, See Revised Submittal

 Comment: I'm missed this requirement during the order entry process, per but the contract drawing M001, the distance from the bottom of the pump station slab to the centerline of the suction can inlet needs to be 5'-6". (See below screenshot of section view.) This translates to distance of 81.5" from top of can to the suction centerline, and 8.0 FT from discharge connection centerline to suction inlet centerline. Please adjust overall can lengths for both project #'s 0913483 & 0913484 as needrd to accommodate this suction inlet location, and revise the setting plans and can dimensional drawings accordingly.

Response: Confirmed, See Revised Submittal

2. **Comment:** For the Project 0913483 10M- 50 HP pumps, please change the lineshaft diameter to 1-3/16".

Response: Confirmed, See Revised Submittal

3. **Comment:** Please advise if the type CT and/or type D discharge heads are provided with pressure gauge tap, either at the top of the flange or other location

Response: Confirmed, Pressure Gauge tap is Provided on the Discharge Head

Fairbanks Nijhuis Table Of Contents

Pump:	
Included Features	IF-7100
Technical Clarifications	CE-5000
Performance Curve	0913483C
Pump Setting Plan	0913483SP1
Suction Can Setting Plan	
Material Specifications	ML-7100
Assembly Drawings	
Bowl Assembly	0913483AB
Column & Shaft	
Discharge Head	0913483AH
Shaft Seal	0913483AS
Pump Technical Data	TD-7100
Critical Speed Calculations	
Mechanical Seal Data	5 Pages
Paint Specifications	PC-1000
Driver:	
Performance Data	FM013
Certification & Accessory Data	FM015
Dimensions	1 Page
Vertical Hollowshaft Coupling Dimensions	1 Page
Lubrication	4 Pages
Silicone Rubber Space Heaters	2 Pages
Heater Connection Diagram	
Klixon Miniature Protector	
Connection Diagram	
Paint Specifications	5 Pages
Wiring Diagram	1 Page

Fairbanks Nijhuis Included Features

- Potable Water Application None NSF Certified
- Variable Speed Operation
- 14" Suction Can
- Pump Shipped Assembled
- 10M, 6 Stage Flanged Bowl Assembly
- Suction Bell & Threaded Discharge Case
- Dynamically Balanced 316 Stainless Steel Impellers
- 416 Stainless Steel Collet Impeller Fasteners
- 316 Stainless Steel Impeller Wear Ring
- Stainless Steel Bowl Wear Ring
- 6" Threaded Column with 1-3/16" Open Line Shaft
- 416 Stainless Steel Line Shaft and Coupling
- 304 Stainless Steel Top Shaft Sleeve
- 16-1/2 x 6 Type "CT" Above Ground Discharge Head
- 175 Lb. Seal Box
- Mechanical Seal John Crane 5610
- 416 Stainless Steel Drive Shaft
- 416 Stainless Steel Pump Shaft
- Certified Non-Witness Performance Test
- Curve Approval Required Prior to Shipment
- Test Logs Required
- Critical Speed Calculations

Fairbanks Nijhuis Technical Clarifications & Exceptions 1. Refer also to clarifications that may be included on the vendor submittal.

0913483SR2.doc

CE-5000

Fairbanks Nijhuis				
		Material Specifications		
Item	Description	Material	Specification ¹	
1	Top Shaft Adjusting Nut	Steel	A108 Gr. 12114	
6	Water Slinger	Rubber	Neoprene	
7	Discharge Head	Cast Iron	A48 Class 30	
11	Gasket	Tag Board	F104	
13	Top Shaft Sleeve	Stainless Steel	AISI 304 SSTL.	
16	Column Flange Gasket	Tag Board	F104	
17	Seal Box	Cast Iron	A48 Class 30	
17A	Seal Box Bushing	Bismuth Bronze	C89835	
19A	Motor Shaft	Steel	AISI 1045	
19B	Top Shaft	Stainless Steel	A582 S41600 MOD	
21	Top Column	Steel	A53 & A361	
23	Line Shaft	Stainless Steel	A582 S41600 MOD	
24	Column Coupling	Steel	A53 Gr. B	
25	Bearing Retainer	SST or Bronze	Mfg. Option	
26	Bearing	Neoprene	Commercial	
29	Shaft Sleeve	Stainless Steel	AISI 304	
30	Column	Steel	A53 & A36 ¹	
31	Shaft Coupling	Steel ²	A108 Grade 12L14	
32	Pump Shaft	Stainless Steel	A582 S41600 MOD	
34	Top Bowl Bearing	Bronze	B505 Alloy 932	
35	Inter Bowl Bearing	Bronze	B505 Alloy 932	
36	Inter Bowl	Cast Iron ³	A48 Class 30	
36W	Bowl Wear Ring	Stainless Steel	A743 CA-40 MOD	
38	Impeller	Stainless Steel	A743 GR CF-8M	
38W	Impeller Wear Ring	Stainless Steel	A743 GR CF-8M	
39	Drive Collet	Stainless Steel	A582 S41600	
40	Suction Bell	Cast Iron	A48 Class 30	
41	Suction Bearing	Bronze	B505 Alloy 932	
50	Connector Bearing	Bronze	B505 Alloy 932	
54	Discharge Case	Cast Iron	A48 Class 30	
55	Top Inter Bowl	Cast Iron ³	A48 Class 30	
58	Sand Collar	Bronze	B505 C93200	
59	Suction Bowl Plug	Cast Iron	Commercial	
88	Set Screw	Stainless Steel	18-8 SSIL.	
456	Mechanical Seal		Commercial	
	Bowl Bolting	Steel	Commercial	
	Discharge Head Bolting	Steel	Commercial	

 ¹ All material specifications are ASTM unless otherwise noted and are for description of chemistry only.
² Pump Shaft Coupling is Stainless Steel, ASTM A582 S41600
³ Bowls are coated Cast Iron

MECHANICAL SEAL WITH SHAFT SLEEVE

Fairbanks Nijhuis Technical Data⁴

Bowl Assembly	
Bowl Size	10M
Pump Shaft Diameter	1-7/16
Bowl Weight, First Stage Lb.	180
Bowl Weight. Each Additional Stage, Lb	49
Allowable Shaft Stretch	0.63
Maximum Working Pressure, Standard Material, PSI	475
Maximum Hydro Pressure, Standard Material, PSI	712.50
Impeller	
Impeller Eye Area, Sq. In	11.19
Thrust Factor, K _T , Lb./Ft	3.8
Rotor Weight Per Stage, KA, Lb	15.75
Maximum Sphere Size	0.68
WK ² (Per Stage) LbFt. ²	
Running Position (Above Seat)	0.200
Maximum Clearances	
Bowl Bearings	
Wear Ring.	0.018
Column	
Nominal Size	6
Outside Diameter	6.625
Wall Thickness	0.280
Weight Per Foot (Lbs./Ft.)	18.97
Coupling O. d	7.31
Coupling Weight (Lbs.)	12.70
Line Shaft	
Size	1-3/16
Weight Per Foot (Lbs./Ft.)	4.18
Shaft Coupling Weight (Lbs.)	1.6
Shaft Sleeve Thickness	0.093
Sealing Box	
Inside Diameter of Box	2-3/16
Depth of Box	1-5/8
Outside Diameter of Sleeve	1-7/16
Max Bearing Clearances	
Lineshaft	0.025
Sealing Box	0.020
Discharge Head	
Size	16-1/2 X 6
Туре	CT
Maximum Discharge Pressure, PSI	
125 Lb. Flange	175
Weight, Including Packing Box, Lbs.	432

⁴ Values shown are in inches unless otherwise noted.

Project Name: Marsh Road Water Pump Station Sales Order Number: 53113132 Project Number: 0913483 Pump Model: 10M Revision: 0

Prepared By: Billy Faltas Engineer

Date Prepared: 7/29/2022

Ref: 0913483LC PG1 **Revision:** 0

Analysis Conclusion

All structural natural frequencies are outside of the required separation margin. There should be no excessive vibration due to structural resonance when the pump is operated within the specified operating region.

Summary of Results For Pump and Motor Assembly

The X direction natural frequency is outside of the required separation margin. The Y direction natural frequency is outside of the required separation margin.

$\omega_{1_X} = 316$	6 RPM
$\omega_{1y} = 324$	1 RPM
Min Speed = 108	D RPM
Max Speed = 178	D RPM
ω_{1x} Percentage of Min Speed = 293	%
ω_{1x} Percentage of Max Speed = 178	%
ω_{1y} Percentage of Min Speed = 300°	%
ω_{1y} Percentage of Max Speed = 1829	%

Required Margin = 20%

Summary of Results For Column Assembly

The natural frequency is outside of the required separation margin.

ω ₁ =	862	RPM
Minimum Speed =	1080	RPM
Maximum Speed =	1780	RPM
ω_1 Percentage of Min Speed =	80%	
ω_1 Percentage of Max Speed =	48%	

Required Margin = 20%

Ref: 0913483LC PG2 **Revision:** 0

Summary of Analysis Method For Pump and Motor Assembly

Analysis is performed in accordance with ANSI/HI 9.6.8-2014. The above floor portion of the pump was analyzed as a cantilever beam to find its first, or lowest, natural frequency. The foundation was assumed to be rigid. The discharge pipe was assumed to add no support to the pump. The beam was given a non-constant stiffness along its length to model the changing geometry. To reflect the non-symmetry of the problem, two axes were analyzed with each axis having a different stiffness. The Y-axis is parallel to the discharge pipe centerline. The X-axis is perpendicular to the Y-axis. A numerical method was used to find the deflection, D, at the free end of the beam.

The first natural frequency is given by the equation, $\omega_1 = \frac{187.7}{\sqrt{D}}$, where ω is the natural frequency in RPM.

In order to model the motor's effect on the system, the motor's equivalent moment of inertia was calculated using the data supplied by the motor manufacturer and the equation for deflection of a cantilever beam with a constant moment of inertia.

$$I = \frac{FL^3}{3Ey} \quad in^4$$

Where I is the equivalent moment of inertia of the motor, F (lb) is the weight of the motor, L (in) is the height of the motor's center of gravity relative to it's base, E (psi) is the modulus of elasticity of the pump material, and y (in) is the deflection of the motor at it's center of gravity.

Summary of Results For Pump and Motor Assembly

The X direction natural frequency is outside of the required separation margin. The Y direction natural frequency is outside of the required separation margin.

ω _{1x} = 3166	RPM
$\omega_{1y} = 3241$	RPM
Min Speed = 1080	RPM
Max Speed = 1780	RPM
ω_{1_X} Percentage of Min Speed = 293%	
ω_{1x} Percentage of Max Speed = 178%	
ω_{1y} Percentage of Min Speed = 300%	
ω_{1y} Percentage of Max Speed = 182%	

Required Margin = 20%

in Ibs psi **Ref:** 0913483LC PG3 **Revision:** 0

Inputs For Pump and Motor Assembly

Type of Discharge Head =	СТ
Discharge Head Size =	16-1/2 x 6
Variable Speed Application =	Yes
Discharge Head Height =	21.5
Discharge Head Weight =	432
Elastic Modulus =	15000000

Motor

Pump

Motor Weight = 675	lbs
Motor Center of Gravity = 13	in
Motor Deflection at Center of Gravity = 0.00301	in
Motor Reed Critical Frequency = 57	Hz

Operating Conditions

Minimum Operating Speed = 1080	RPM
Maximum Operating Speed = 1780	RPM
Required Separation Margin = 20%	

I

Calculations For Pump and Motor Assembly

Motor Moment of Inertia

=	10.95	in

in

in ⁴	$I = \frac{FL^3}{3Ey}$	in ⁴
-----------------	------------------------	-----------------

Height	
Discharge Head Height plus Motor CG = 34.5	

Ref: 0913483LC PG4 **Revision:** 0

Calculations Continued

A plot of the deflection of the pump and motor assembly obtained from the numerical results is shown below.

Deflection at 34.5in X

 $D_x = 0.003514$ in

Deflection at 34.5in Y

 $D_v = 0.00335$ in

RPM

Ref: 0913483LC PG5 Revision: 0

Calculations Continued

$\omega_{1x} = 32$	166 RPI	Μ
ω_{1x} Percentage of Min Speed = 29	93%	
ω_{1_X} Percentage of Max Speed = 12	78%	

$$\omega_1 = \frac{187.7}{\sqrt{D}}$$

 $\omega_{1_{y}} = 3241$ $\omega_{1_{y}}$ Percentage of Min Speed = 300% $\omega_{1_{y}}$ Percentage of Max Speed = 182%

Required Margin = 20%

Ref: 0913483LC PG6 **Revision:** 0

Summary of Analysis Method For Column Assembly

Analysis is performed in accordance with ANSI/HI 9.6.8-2014. The below floor portion of the pump was analyzed as a cantilever beam to find its first, or lowest, natural frequency. The foundation was assumed to be rigid. The beam was given a non-constant stiffness along its length to model the changing geometry. A numerical method was used to find the deflection, D, at the free end of the beam.

The first natural frequency is given by the equation, $\omega_1 = \frac{187.7}{\sqrt{D}}$, where ω is the natural frequency.

Summary of Results For Column Assembly

(

The natural frequency is outside of the required separation margin.

ω ₁ = 86	2 RPM
Minimum Speed = 10	80 RPM
Maximum Speed = 17	'80 RPM
ω ₁ Percentage of Min Speed = 80	1%
ω ₁ Percentage of Max Speed = 48	\$%

Required Margin = 20%

Ref: 0913483LC PG7 **Revision:** 0

Inputs For Column Assembly

Pump

Pump Model = 10M	
Number of Stages = 6	
Pump Length = 85.75	in
Bowl Assembly Length = 57.52	in
Bowl Assembly Weight = 425	lbs
Bowl Assembly Elastic Modulus = 14500000	psi
Column Size = 6	in
Column Elastic Modulus = 30000000	psi

Operating Conditions

Minimum Speed = 1080	RPM
Maximum Speed = 1780	RPM
Required Margin = 20%	

Calculations For Column Assembly

Column Length = 28.23	in	
Column Weight Per Foot = 18.97	lbs/ft	π
Column Moment of Inertia = 28.14	in⁴	$Inertia = \frac{\pi}{64}(0D^4 - ID^4)$

A plot of the deflection of the pump obtained from the numerical results is shown below.

Deflection at 85.75in

D = 0.0474 in

Ref: 0913483LC PG8 **Revision:** 0

Calculations Continued

Natural Frequency

RPM

$$\omega_1 = \frac{187.7}{\sqrt{D}}$$

 $ω_1$ Percentage of Min Speed = 80% $ω_1$ Percentage of Max Speed = 48%

Required Margin = 20%

ω1 = 862

Ref: 0913483LC PG9

Revision: 0

A Campbell diagram provides a visual method to verify no resonance conditions will occur when operating a pump over its operating speed range. The diagram is constructed by plotting frequency in Hz versus frequency in RPM. Common excitation frequencies are shown as diagonal lines. The natural frequencies of the pump are shown as horizontal lines. A resonance condition is likely to occur when a horizontal line crosses a diagonal line within the operating speed range.

Project Name: Marsh Road Water Pump Station Sales Order Number: 53113132 Project Number: 0913483 Pump Model: 10M Revision: 0

Prepared By: Billy Faltas Engineer

Date Prepared: 7/29/2022

Ref: 0913483TC PG1 **Revision:** 0

Summary of Analysis Method

Analysis is performed in accordance with ANSI/HI 9.6.8-2014. The torsional natural frequencies were calculated using Holzer's method. A diagram of the system is shown below.

Where J_1 and J_2 are the masses of the motor and coupling, respectively. K_1 is the motor shaft stiffness and K_2 is the line shaft stiffness above the top most impeller. J_3 is mass of the top most impeller. K_n is the stiffness of the pump shaft between each impeller stage and J_n is the mass of each impeller below the top impeller.

Summary of Results

A torsional natural frequency in the separation margin was found. A steady state torsional stress analysis will be performed to verify safe operation of the pump rotor.

The torsional natural frequency associated with the highest amount of torque is shown below.

ω = 1690	RPM	Required Margin = 20%	
Min Speed = 1080	RPM	Min Vane Pass = 60480	RPM
Max Speed = 1780	RPM	Max Vane Pass = 99680	RPM
ω Percentage of Min Speed = 157% ω Percentage of Max Speed = 95%		ω Percentage of Min Vane Pass = 3% ω Percentage of Max Vane Pass = 2%	

Although there is a torsional natural frequency in the operating range, the torsional stress analysis showed that there will be no adverse affect on the life of the pump.

Shaft Stress = 4065 psi Allowable Stress = 8125 psi Factor of Safety = 2.00

Ref: 0913483TC PG2 **Revision:** 0

Inputs			
Rotor Inertias			
WR ² 1=	8.69	lb-ft²	
WR ² ₂ =	0.00	lb-ft ²	
WR ² ₃ =	0.52	lb-ft ²	
WR ² n =	0.52	lb-ft²	
Shafting			
K ₁ =	8.42E+04	in-lb/rad	
К ₂ =	4.40E+04	in-lb/rad	
Kn =	5.84E+05	in-lb/rad	
Rump			
Fullip Model -	1014		
Number of Stages =	6		
Number of Impeller Vanes =	7		
Number of Bowl Vanes =	8		
	0		
Operating Conditions			
Minimum Speed =	1080	RPM	
Maximum Speed =	1780	RPM	
Separation Margin =	20%		
Calculations			
Rotor Masses			
J ₁ =	3.24	in-lb-sec ²	in ²
J ₂ =	0.00	in-lb-sec ²	$144 \frac{1}{ft^2}$
J ₃ =	0.19	in-lb-sec ²	$J = \frac{1}{386.4 \text{ in}}$
Jn =	0.19	in-lb-sec ²	$\frac{500.4}{\text{sec}^2}$
Vane Pass			
Min Vane Pass =	60480	RPM	
Max Vane Pass =	99680	RPM	
Torsional Natural Frequencies			
The lowest torsional natural frequencies cal	culated are	reported below.	
$\omega_1 = 1690$	RPM		
$\omega_2 = 8829$	RPM		
$\omega_3 = 16685$	RPM		
$\omega_4 = 23498$	RPM		
ω ₅ = 28740	RPM		

RPM

RPM

 $\omega_6 = 32039$ $\omega_7 = 89899$

Ref: 0913483TC PG3 **Revision:** 0

Calculations Continued

ω_1 % of Min Speed =	157%
ω_1 % of Max Speed =	95%
ω_1 % of Min Vane Pass =	3%
ω_1 % of Max Vane Pass =	2%
ω_2 % of Min Speed =	818%
ω_2 % of Max Speed =	496%
ω_2 % of Min Vane Pass =	15%
ω_2 % of Max Vane Pass =	9%
ω₃ % of Min Speed =	1545%
ω_3 % of Max Speed =	937%
ω_3 % of Min Vane Pass =	28%
ω_3 % of Max Vane Pass =	17%
ω_4 % of Min Speed =	2176%
ω_4 % of Max Speed =	1320%
ω_4 % of Min Vane Pass =	39%
ω_4 % of Max Vane Pass =	24%
ω_5 % of Min Speed =	2661%
ω₅ % of Max Speed =	1615%
ω_{5} % of Min Vane Pass =	48%
ω_{5} % of Max Vane Pass =	29%
ω_6 % of Min Speed =	2967%
ω_6 % of Max Speed =	1800%
ω_6 % of Min Vane Pass =	53%
ω_6 % of Max Vane Pass =	32%
ω_7 % of Min Speed =	8324%
ω_7 % of Max Speed =	5050%
ω_7 % of Min Vane Pass =	149%
ω_7 % of Max Vane Pass =	90%

Ref: 0913483TC PG4

Revision: 0

A Campbell diagram provides a visual method to verify no resonance conditions will occur when operating a pump over its operating speed range. The diagram is constructed by plotting frequency in Hz versus frequency in RPM. Common excitation frequencies are shown as diagonal lines. The torsional natural frequencies of the pump are shown as horizontal lines. A resonance condition is likely to occur when a horizontal line crosses a diagonal line within the operating speed range. For clarity two different Hz frequency scales are shown below.

Ref: 0913483TC PG5

Revision: 0

In order to verify that the torsional natural frequency will have no adverse effects on the life of the pump a torsional stress analysis of the shafting was performed.

Inputs		
Natural Frequency	= 1690	RPM
Running Speed	= 1690	RPM
Motor HP	= 50	HP
Motor Speed	= 1800	RPM
Shaft Minimum Diameter	= 1.25	in
Shaft Ultimate Tensile Strength	= 100000	psi
Fatigue Stress Failure Criter	ia ASME Sec	tion III
Torque Amplification Factor	= 1	%
Calculations Torque = 1558.841	L in-lb	$Torque(in - lb) = \frac{63000HP}{RPM} \cdot (1 + TAF)$
Polar Moment of Inertia = 0.24	in⁴	Polar Moment of Inertia = $\frac{\pi Shaft Diameter^4}{32}$
Shaft Stress = 4065	psi	$Stress = rac{Torque \cdot Shaft Radius}{Polar Moment of Inertia}$
Allowable Stress = 8125	psi	
Factor of Safety = 2.00		$Factor of Safety = \frac{Allowable Stress}{Shaft Stress}$

Conclusion

Although there is a torsional natural frequency in the operating range, the torsional stress analysis showed that there will be no adverse affect on the life of the pump.

TYPE 5610/56100 SINGLE O-RING SEALS

Technical Specification

- A Face/Primary Ring
- B Seat/Mating Ring
- \boldsymbol{C} Secondary O-ring
- **D** Nonclogging
- Wave Spring
- E Sleeve
- F Gland

Product Description

The 5600 Series is a modular cartridge seal family that includes interchangeable elastomer bellows, metal bellows, and elastomer O-ring pusher seal designs.

- Type 5610 and 5610Q single seal arrangements incorporate an elastomer O-ring as the secondary sealing member
- A common seal head/mating ring set, utilized throughout all versions, is reversible to allow rotating seat/mating ring or rotating seal head operation, and is interchangeable with metal bellows seal heads
- Seal has an optional quench gland (5610Q) with carbon ring throttle bushing

Performance Capabilities

- Temperature: -20°F to 400°F/-30°C to 205°C
- Pressure: up to 3.000"/75mm: 300 psi(g)/21 bar(g) max. 75mm/3.000" and over: 200 psi(g)/13 bar(g) max.
- Speed:up to 5000 fpm/25 m/s
- End play/axial float allowance: 0.005"/0.13mm
- Runout/out of squareness: 0.002"/0.05mm

Design Features

- · Reversible seal head
- Fits ANSI B73.1M, ISO 3069 and DIN 24960 seal chambers
- Optimized primary ring design for greater reliability
- Nonclogging wave spring outside the product
john crane

TYPE 5610/56100 SINGLE O-RING SEALS

Technical Specification

Type 5610 Typical Arrangement

Type 5610 Dimensional Data (inches)

Seal Size/D1		D	4										
(inches)	D2	Min.	Max.	D26	L12	L23	L39	L56	L90	L91	L92	М	Ν
1.000	1.375	1.445	1.889	4.000	1.989	1.353	1.954	0.531	2.000	0.160	0.035	0.525	2.805
1.125	1.500	*	2.015	4.125	2.062	1.446	2.062	0.531	2.125	0.125	*	0.525	2.933
1.250	1.625	*	2.294	4.250	2.062	1.446	2.062	0.531	2.125	0.125	*	0.525	3.213
1.375	1.750	*	2.421	4.375	2.062	1.446	2.062	0.531	2.125	0.125	*	0.525	3.338
1.500	1.937	2.007	2.680	4.875	2.156	1.487	2.125	0.593	2.187	0.156	0.031	0.525	3.599
1.625	2.062	2.132	2.812	5.000	2.156	1.487	2.125	0.593	2.187	0.156	0.031	0.562	3.766
1.750	2.170	2.240	2.918	5.250	2.156	1.487	2.125	0.593	2.187	0.156	0.031	0.562	3.875
1.875	2.312	2.382	2.918	5.250	2.156	1.487	2.125	0.593	2.187	0.156	0.031	0.562	3.875
2.000	2.437	2.507	3.015	5.500	2.375	1.601	2.312	1.063	2.375	0.187	0.062	0.562	4.000
2.125	2.562	2.632	3.360	5.859	2.375	1.601	2.312	0.593	2.375	0.187	0.062	0.687	4.469
2.250	2.687	2.757	3.485	6.500	2.375	1.601	2.312	0.593	2.375	0.187	0.062	0.687	4.566
2.375	2.812	2.882	3.610	6.500	2.484	1.717	2.466	0.625	2.528	0.143	0.018	0.687	4.719
2.500	3.062	*	3.891	6.750	2.484	1.717	2.562	0.625	2.625	0.125	*	0.687	5.000
2.625	3.312	*	4.062	6.750	2.500	1.625	2.500	0.625	2.562	0.125	*	0.687	5.170
2.750	3.312	*	4.062	6.750	2.500	1.625	2.500	0.625	2.562	0.125	*	0.687	5.170
2.875	3.375	*	4.186	7.000	2.500	1.725	2.500	0.625	2.562	0.125	*	0.687	5.312
3.000	3.625	*	4.469	7.750	2.500	1.787	2.562	0.685	2.625	0.125	*	0.812	5.720
3.125	3.750	3.853	4.600	7.875	2.562	1.593	2.562	**	2.687	0.125	*	0.812	5.845
3.250	3.750	3.853	4.600	7.437	2.562	1.593	2.510	* *	2.635	0.177	0.052	0.812	5.845
3.375	4.000	4.125	4.850	8.125	2.562	1.593	2.562	* *	2.687	0.125	*	0.812	6.095
3.500	4.125	4.250	4.975	8.250	2.562	1.593	2.562	**	2.687	0.125	*	0.812	6.220
3.625	4.218	4.343	5.100	8.375	2.562	1.593	2.562	* *	2.687	0.125	*	0.687	6.250
3.750	4.343	4.468	5.199	8.750	2.562	1.593	2.562	* *	2.687	0.125	*	0.687	6.770
3.875	4.468	4.593	5.375	8.750	2.562	1.593	2.562	* *	2.687	0.125	*	0.812	6.636
4.000	4.593	4.718	5.500	9.000	2.562	1.593	2.562	**	2.687	0.125	*	0.812	6.761
4.125	4.718	4.843	5.625	9.000	2.562	1.593	2.562	* *	2.687	0.125	*	0.812	6.886
4.250	4.843	4.968	5.750	9.250	2.562	1.593	2.562	**	2.687	0.125	*	0.812	7.011
4.500	5.093	5.218	6.000	9.500	2.562	1.593	2.562	**	2.687	0.125	*	0.812	7.261
4.750	5.343	5.468	6.313	10.375	2.562	1.593	2.562	**	2.687	0.125	*	0.812	7.574
5.000	5.843	5.968	7.260	12.000	2.953	1.749	3.043	**	3.168	0.125	*	0.812	10.000
5.250	6.093	6.218	7.510	12.250	2.953	1.749	3.043	**	3.168	0.125	*	0.812	10.250
5.500	6.343	6.468	8.000	12.687	2.953	1.749	3.043	**	3.168	0.125	*	0.937	10.500

*Not applicable. Completely outside mounted.

**L56 not applicable. Refer to L23 for sizes over 3".

TYPE 5610/56100 SINGLE O-RING SEALS

Technical Specification

Basic Pressure Rating

John cra

The basic pressure rating is for a standard seal, as shown in the typical arrangement, when installed according to the criteria given in this data sheet and generally accepted industrial practices.

The basic pressure rating assumes stable operation at the speeds indicated on the above chart in a clean, cool, lubricating, nonvolatile liquid with an adequate flush rate. When used with the multiplier factors, the basic pressure rating can be adjusted to provide a conservative estimate of the dynamic pressure rating. For process services outside this range or a more accurate assessment of the dynamic pressure rating, contact John Crane for more information.

Multiplier Factors

	Selection Considerations	Multiplier Factor
Sealed Fluid Lubricity (applies to Silicon Carbide vs. Silicon Carbide only)	Petrol/Gasoline, Kerosene, or Better Water and Aqueous Solutions (<176°F/80°C) Flashing Hydrocarbons*	x 1.00 x 0.75 x 0.60
Sealed Fluid Temperature (applies to Carbon vs. Silicon Carbide)	Up to 175°F/80°C From 175°F to 250°F/80°C to 120°C From 250°F to 355°F/120°C to 180°C Above 350°F/180°C	x 1.00 x 0.90 x 0.80 x 0.65

*The ratio of sealed pressure to vapor pressure must be greater than 1.5, otherwise consult John Crane. If the specific gravity is less than 0.60, consult John Crane.

Example for Determining Pressure Rating Limits:

Seal: 2"/50.8mm diameter Type 5610 Product: aqueous solution Face materials: silicon carbide vs. silicon carbide Operating temperature: 175°F/80°C Operating speed: 2950 rpm

Using the pressure rating limits graph, the maximum pressure would be 268 psi(g)/18.5 bar(g).

From the multiplier factors chart, apply the multipliers for the specific service requirements to determine the maximum operating pressure for the application:

 $268 \text{ psi}(g)/18.5 \text{ bar}(g) \times 0.75 \times 1 = 201 \text{ psi}(g)/13.9 \text{ bar}(g)$

The maximum operating pressure for this 2"/50.8mm Type 5610 is 201 psi(g)/13.9 bar(g).

TYPE 5610/56100 SINGLE 0-RING SEALS

Technical Specification

Materials of Construction

SEAL COMPONENTS	MATEF	RIALS					
Description	Standard	Options					
Face/Primary Ring	Resin-Impregnated Carbon	Sintered Silicon Carbide Nickel Binder Tungsten Carbide					
Seat/Mating Ring	Sintered Silicon Carbide	Nickel Binder Tungsten Carbide					
Sleeve Gland Plate Collar Retainer Drive Ring Anti-Extrusion Ring	316 Stainless Steel	Alloy 20CB3 SS (UNS N8020) Alloy C-276 (UNS N10276) Titanium					
O-ring	Fluoroelastomer Ethylene Propylene	Perfluoroelastomer Buna-N Neoprene					
Gland Gasket	Glass-Filled PTFE	_					
Spring	Alloy C-276 (UNS N10276)	_					
Quench Bushing (5610Q)	Resin-Impregnated Carbon	_					

Application Criteria

The Type 5610 and 5610Q cartridge seals may be customized for specific installations after review and evaluation by John Crane. The following data is needed to evaluate the proposed service:

- Make and model of equipment
- Shaft or sleeve OD
- Seal cavity dimensions
- Speed
- Quench fluid (if applicable)

- Process fluid
 - Specific gravity
 - Box pressure
 - Vapor pressure
 - Temperature
 - Viscosity

TYPE 5610/56100 SINGLE O-RING SEALS

Technical Specification

North America	Europe	Latin America	Middle East & Africa	Asia Pacific		
United States of America	United Kingdom	Brazil	United Arab Emirates	Singapore		
Tel: 1-847-967-2400	Tel: 44-1753-224000	Tel: 55-11-3371-2500	Tel: 971-481-27800	Tel: 65-6518-1800		
Fax: 1-847-967-3915	Fax: 44-1753-224224	Fax: 55-11-3371-2599	Fax: 971-488-62830	Fax: 65-6518-1803		

If the products featured will be used in a potentially dangerous and/or hazardous process, your John Crane representative should be consulted prior to their selection and use. In the interest of continuous development, John Crane Companies reserve the right to alter designs and specifications without prior notice. It is dangerous to smoke while handling products made from PTFE. Old and new PTFE products must not be incinerated. ISO 9001 and ISO14001 Certified, details available on request.

Fairbanks Nijhuis Paint Specifications

SSPC-SP6, Commercial Blast Cleaning

Exposed portions of the Packing Box

Above Ground Coating

- Coating Manufacturer Davis Industrial Coatings
- Surface Preparation SSPC-SP6, Commercial Blast Cleaning.

Tnemec

 Prime Coat Number of Coats Dry Film Thickness Color Surfaces to be coated
 Modified Alkyd Enamel Two (2) 3 to 5 mils Pentair Blue Exterior of Discharge Head Exposed portions of the Packing Box

Below Ground Coating

- Coating Manufacturer
- Surface Preparation
- Prime Coat Number of Coats Dry Film Thickness Color
 Surfaces to be coated
 Surfaces

Suction Can Coating

- Coating Manufacturer Tnemec
- Surface Preparation SSPC-SP6, Commercial Blast Cleaning
- Prime Coat Series N140 Pota-Pox
 Number of Coats Two (2)
 Dry Film Thickness 4 to 6 mils
 Color 35GR Black
 Surfaces to be coated Interior & Exterior of Suction Can

Davis Paint Company

1311 IRON STREET • N. KANSAS CITY, MISSOURI 64116 P.O. BOX 7589 • (816) 471-4447 www.davispaint.com

HIGH SOLIDS FAST DRY ENAMEL PENTAIR BLUE 4-5725

PHYSICAL PROPERTIES:

Weight Gallon: 9.88 ± 0.2 lbs/gal

Weight Solids: 64.7 ± 2%

Volume Solids: 48.4 ± 2%

Coverage: @ 1 Dry Mil:

VOC:

418 g/l; 3.49 lb/gal

Viscosity: 35-45" #4 Ford Cup @ 77°F

Gloss @ 60: - 85+

Cure T	ime (Base	ed on	70°	F. (£ 508	R.H.):							
То	Touch:			6	0 mi:	nutes								
То	Recoat:			0	-1 h	ours,	or	afte	er 96	hou	ırs			
												1		
Recomm	ended Thi	nner:		В	utvl	aceta	ate	for	clear	lup	and	reduction	to	spray

776 sq. ft./gallon

Temperature Resistance: Continuous 150° F., Intermittent 200° F.

WARNING! FLAMMABLE! FOR INDUSTRIAL USE ONLY! Keep away from heat and open flame. Avoid prolonged contact with skin and breathing of vapor or spray mist. Do not take internally. Close container after each use. Use only with adequate ventilation. Use respiratory devices and other personal protective equipment required by OSHA 29CFR 1910. KEEP OUT OF REACH OF CHILDREN. For specific safety requirements, refer to the Material Safety Data Sheet.

to the Material Safety Data Sheet. LIMITATION OF LIABILITY: To the best of our knowledge, the technical data contained herein is true and accurate at the date of issuance, but is subject to change without prior notice. We make no guarantee of any kind, express or implied, including merchantability and fitness for particular purposes. Liability, if any, is limited to replacement of the product or refund of the purchase price. Labor, or cost of labor, and other consequential damages are hereby excluded. 02-15

Davis Paint Company

1311 IRON STREET • N. KANSAS CITY, MISSOURI 64116 P.O. BOX 7589 • (816) 471-4447 www.davispaint.com

HIGH SOLIDS FAST DRY ENAMEL

DESCRIPTION:

High Solids Fast Dry Enamel is an alkyd enamel for general industrial finishing of farm machinery, tanks, electrical equipment, heavy duty equipment and a variety of other products that require a high performance coating. Fast Dry Enamel exhibits excellent color and gloss retention, flexibility, hardness and corrosion resistance.

SPECIAL CAUTIONS:

Do not apply Fast Dry Enamel when surface, air or material temperature is below 40° F. Surface must be dry and at least 5° F above the dew point.

SURFACE PREPARATION:

GENERAL - Surfaces to be finished must be clean, dry and free of dirt, oil or any contamination that would adversely affect adhesion, protective properties or appearance of the coating. Abrasive blasting is an effective method of cleaning steel surfaces and removing mill scale, rust and previous coatings.

IRON, STEEL AND FERROUS METAL - For optimum adhesion and corrosion resistance, metal should be cleaned and phosphate treated or primed with Davis Fast Dry Metal Primer.

ALUMINUM & GALVANIZED METAL - For optimum adhesion chemically etch or prime with Vinyl Wash Primer.

PREVIOUSLY FINISHED SURFACES - Scaling and peeling paint must be removed by wirebrushing, sanding or scraping. Rusting metal should be cleaned and spot primed with Fast Dry Primer.

MIXING & THINNING:

Stir each container thoroughly prior to use. Material is packaged at a viscosity requiring little or no reduction for application by airless spray equipment. Conventional air spray, air-assist airless, dip or turbo may require up to a 25% reduction (4 parts paint to 1 part solvent by volume) with aromatic solvent.

Aromatic solvents include toluene, xylene, and SC-100. For cool weather conditions (below 65°F) use toluene or xylene. For normal temperatures (65-80°F) use xylene. For temperatures above 80°F use xylene or SC-100. Never use solvents such as VM&P naphtha, mineral spirits or reclaimed thinner. This product may also be thinned with ketone (MEK) or ester solvents (i.e. n-butyl acetate). Addition of solvent will increase VOC.

To store partially used container, pour a small amount of the recommended thinner over the surface. Do not stir. Replace lid securely. Store away from heat or open flame. Mix thoroughly before reusing.

CLEAN UP:

Use xylene, aromatic solvent or MEK for cleaning guns and equipment.

Davis Paint Company

1311 IRON STREET • N. KANSAS CITY, MISSOURI 64116 P.O. BOX 7589 • (816) 471-4447 <u>www.davispaint.com</u>

APPLICATION:

Material can be applied by conventional air, air-assist airless, airless, dip or more advanced application equipment such as turbo disk or bell. This product may also be applied with electrostatic and/or heated equipment. Not recommended for brush or roller application over large areas. Small touchup areas may be prushed. Use the following recommendations as an application guide:

CONVENTIONAL AIR SPRAY:

Air Cap								(56PF
Fluid Nozzle									63
Needle									63
Air Pressure .						50) – 6	50	psi
Fluid Pressure.						10) - 2	20	psi

AIR ASSIST-AIRLESS SPRAY:

Тір					0.0	0.0-0	013"
Fluid Pressure					. 30	00-600	psi
Air Pressure .						10-25	psi
Pump/tip Filter						100 1	Mesh

AIRLESS SPRAY:

Tip													0	.03	11-0	.015"	
Fan									5	50°	(10	-12	2 i	nch	fan)	
Pres	su	ire	5									×	12	00.	-1800) psi	
Pump	/t	ip)]	Fil	Lte	er									100	Mesh	

For dip, flowcoat or turbo application, use the viscosity range 25-35" #2 Zahn as a starting point. For hot spray applications it is recommended to stay in the 90-140°F range.

APPLICATION RATE:

Application rate will vary depending on texture, configuration and porosity of surfaces on which coating is applied. Rough or porous surfaces will require more paint. At an application rate of 500 square feet per gallon, 3.2 mils wet, the resulting dry film thickness is approximately 1.5 mils on smooth surface. A dry film thickness of 1.0-2.0 mils is recommended

DRYING:

Optimum drying conditions are $60^{\circ}F$ to $90^{\circ}F$ ($16^{\circ}C$ to $32^{\circ}C$) at 50° R.H. Lower temperatures and high humidity will slow dry. Surface must be dry and at least $5^{\circ}F$ above the dew point.

Dry to Touch 60 Minutes

To Recoat . . Between 0-1 hours or after 96 hours This product may also be force cured to enhance dry. Temperatures in the range of 110-180°F may be utilized to accelerate solvent evaporation and speed oxidation.

WARNING! FLAMMABLE! FOR INDUSTRIAL USE ONLY! Keep away from heat and open flame. Avoid prolonged contact with skin and breathing of vapor or spray mist. Do not take internally. Close container after each use. Use only with adequate ventilation. Use respiratory devices and other personal protective equipment required by OSHA 29CFR 1910. KEEP OUT OF REACH OF CHILDREN. For specific safety requirements, refer to the Material Safety Data Sheet.

LIMITATION OF LIABILITY: To the best of our knowledge, the technical data contained herein is true and accurate at the date of issuance, but is subject to change without prior notice. We make no guarantee of any kind, express or implied, including merchantability and fitness for particular purposes. Liability, if any, is limited to replacement of the product or refund of the purchase price. Labor, or cost of labor, and other consequential damages are hereby excluded.

PRODUCT PROFILE

	Polyamidoamina Epoyy										
	Innovative potable water coating	which offers high build edge	a protection and allows for an	lication at a wide range of							
COMMON USAUL	temperatures (down to 35°F or 2 tanks, reservoirs, pipes, valves, p	² °C with 44-700 Accelerator). I pumps and equipment in pota	For use on the interior and extended ble water service.	erior of steel or concrete							
COLORS	1211 Red, 1255 Beige, 00WH Tn with extended exposure to sunli carbon dioxide and carbon mon	emec White, 15BL Tank Whit ght. Lack of ventilation, incon oxide during application and	e, 35GR Black and 39BL Delft I nplete mixing, miscatalyzation initial stages of curing may cau	Blue. Note: Epoxies chalk or the use of heaters that emit use yellowing to occur.							
SPECIAL QUALIFICATIONS	Certified by NSF International 44-700 Epoxy Accelerator) is qua 18 inches (46 cm) in diameter or (10 cm) in diameter or greater. C Conforms to AWWA C 210 (wit A two-coat system at 4.0-6.0 dry 4556F for fuel storage. Reference maximum allowable DFT.	Certified by NSF International in accordance with ANSI/NSF Std. 61. Ambient air cured Series N140 (with or without 44-700 Epoxy Accelerator) is qualified for use on tanks and reservoirs of 1,000 gallons (3,785 L) capacity or greater, pipes 18 inches (46 cm) in diameter or greater, valves four (4) inches (10 cm) in diameter or greater and fittings four (4) inches (10 cm) in diameter or greater. Conforms to AWWA D 102 Inside Systems No. 1 and No. 2 (with or without 44-700). Conforms to AWWA C 210 (without 44-700). Contact your Themec representative for systems and additional information. A two-coat system at 4.0-6.0 dry mils (100-150 dry microns) per coat passes the performance requirements of MIL-PRF-4556F for fuel storage. Reference the "Search Listings" section of the NSF website at www.nsf.org for details on the maximum allowable DFT									
PERFORMANCE CRITERIA	Extensive test data available. Con	ntact your Tnemec representa	tive for specific test results.								
COATING SYSTEM											
SURFACER/FILLER/PATCHER	215, 217, 218										
PRIMERS	Self-priming, 22, 91-H ₂ O, 94-H ₂ O	D, L140, L140F, N140F, V140,	V140F, 141								
TOPCOATS	Interior: Series 22, FC22, L140, L140F, N140, N140F, V140, V140F, 141, 406. Exterior: Series 27, 66, L69, L69F, N69, N69F, V69, V69F, 72, 73, L140, L140F, N140F, V140, V140F, 156, 157, 161, 175, 180, 181, 446, 740, 750, 1028, 1029, 1074, 1074U, 1075, 1075U, 1077, 1078, 1080, 1081. Refer to COLORS on applicable topcoat data sheets for additional information. Note: The following recoat times apply for Series N140: Immersion Service—Surface must be scarified by blasting with fine abrasive after 60 days. Atmospheric Service—After 60 days. Scarification or an epoxy tie-coat is required. When topcoating with Series 740 or 750, recoat time for N140 is 21 days. Contact your Tnemec representative for specific recommendations.										
SURFACE PREPARATION											
PRIMED STEEL	Immersion Service: Scarify the epoxy prime coat surface by abrasive blasting with fine abrasive before topcoating if it has been exterior exposed for 60 days or longer and N140 is the specified topcoat.										
STEEL	Immersion Service: SSPC-SP10/NACE 2 Near-White Blast Cleaning with a minimum angular anchor profile of 1.5 mils. Non-Immersion Service: SSPC-SP6/NACE 3 Commercial Blast Cleaning with a minimum angular anchor profile of 1.5 mils.										
CAST/DUCTILE IRON	Contact your Themec representative or Themec Technical Services										
CONCRETE	Allow new concrete to cure 28 c SP13/NACE 6, ICRI-CSP 2-4 Surfa all holes pits voids and cracks	lays. For optimum results and ace Preparation of Concrete a with 215–217 or 218	/or immersion service, abrasive nd Tnemec's Surface Preparatio	e blast referencing SSPC- on and Application Guide. Fill							
ALL SURFACES	Must be clean, dry and free of o	il, grease and other contamina	ants.								
TECHNICAL DATA											
VOLUME SOLIDS	67.0 + 2.0% (mixed—A_B & 44-	700 Epoxy Accelerator) †									
RECOMMENDED DFT	2.0 to 10.0 mils (50 to 225 micro microns) per coat. Otherwise, th method and exposure. Contact y	ns) per coat. Note: MIL-PRF- e number of coats and thickn your Tnemec representative.	4556F applications require two less requirements will vary with	coats at 4.0-6.0 mils (100-150 a substrate, application							
CURING TIME AT 5 MILS DFT	Without 44-700 Accelerator:										
	Temperature	To Handle	To Recoat	Immersion							
	90°F (32°C)	5 hours	7 hours	7 days							
	80°F (27°C)	7 hours	9 hours	7 days							
	70°F (21°C)	9 hours	12 hours	7 days							
	60°F (16°C)	16 hours	22 hours	9 to 12 days							
	50°F (10°C)	24 hours	32 hours	12 to 14 days							
	allow 14 days cure at 75°F (24°C) prior to immersion. For pipe applications allow 30 days cure at 75°F (24°C) prior to immersion. Ventilation: When used in enclosed areas, provide adequate ventilation during application and cure. Note: Refer to product listing on www.nsf.org for specific potable water return to service information. Note: For faster curing and low temperature applications, add No. 44-700 Epoxy Accelerator, see separate product data sheet for cure information.										
VOLATILE ORGANIC COMPOUNDS	Unthinned: 2.4 lbs/gallon (285 Thinned 5% (#60): 2.6 lbs/gallo Thinned 10% (#4): 2.8 lbs/gallo	grams/litre) on (311 grams/litre) on (334 grams/litre) †									
HAPS	Unthinned: 2.4 lbs/gal solids Thinned 10% (#4): 3.3 lbs/gal	Thinned 5% (#60): 2.4 lbs/ solids	gal solids								
THEORETICAL COVERAGE	1,070 mil sq ft/gal (27.2 m²/L at 25 microns). See APPLICATION for coverage rates. †										
NUMBER OF COMPONENTS	Two: Part A (amine) and Part B (epoxy) — One (Part A) to one (Part B) by volume.										

Published technical data and instructions are subject to change without notice. The online catalog at www.tnemec.com should be referenced for the most current technical data and instructions or you may contact your Tnemec representative for current technical data and instructions.

PRODUCT DATA SHEET

POTA-POX® PLUS | SERIES N140

PACKAGING	5 gallon (18.9L) pails and 1 gallon (3.79L) cans - Order in multiples of 2. Reference 44-700 Epoxy Accelerator product data sheet for its packaging information.
NET WEIGHT PER GALLON	12.66 ± 0.25 lbs (5.82 ± .11 kg) (mixed) †
STORAGE TEMPERATURE	Minimum 20°F (-7°C) Maximum 110°F (43°C)
TEMPERATURE RESISTANCE	(Dry) Continuous 250°F (121°C) Intermittent 275°F (135°C)
SHELF LIFE	Part A: 24 months; Part B: 12 months at recommended storage temperature.
FLASH POINT - SETA	Part A: 82°F (28°C) Part B: 80°F (27°C) 44-700: None
HEALTH & SAFETY	Paint products contain chemical ingredients which are considered hazardous. Read container label warning and Material Safety Data Sheet for important health and safety information prior to the use of this product. Keen out of reach of children .

APPLICATION

Suggest Minimu Maximu Note: Roller or br and surface irregu minimum or abov the "Search Listing I. Start with equal 2. Using a power	ed	6.0 (150) 2.0 (50) 10.0 (225) requires two or m a thickness is roun ommended dry filr	ore coats to		9.0 (230) 3.0 (75)	17	9 (16.6) 7 (49.9)						
Minimu Maximu Note: Roller or bu and surface irregu minimum or abov the "Search Listing I. Start with equal 2. Using a power	m um ush application ilarities. Wet film e maximum rec gs" section of the	2.0 (50) 10.0 (225) requires two or m a thickness is roun ommended dry filr	ore coats to		3.0 (75)	53	7 (49.9)						
Maximu Note: Roller or bu and surface irregu minimum or abov the "Search Listing I. Start with equal 2. Using a power	um rush application ilarities. Wet filn re maximum rec gs" section of the	10.0 (225) requires two or m a thickness is roun ommended dry film	ore coats to				537 (49.9)						
Note: Roller or br and surface irregu minimum or abov the "Search Listing l. Start with equal 2. Using a power	rush application ilarities. Wet filn 'e maximum rec gs" section of the	requires two or m n thickness is roun ommended dry filr	ore coats to		15.0 (375)	10	7 (10.0)						
l. Start with equal 2. Using a power		Note: Roller or brush application requires two or more coats to obtain recommended film thickness. Allow for overspray and surface irregularities. Wet film thickness is rounded to the nearest 0.5 mil or 5 microns. Application of coating below minimum or above maximum recommended dry film thicknesses may adversely affect coating performance. Reference the "Search Listings" section of the NSF website at www.nsf.org for details on the maximum allowable DFT. †											
3. (For accelerated Add four (4) fluid 4. Add Part A to F 5. Both componer between 50°F to (mixed material to 6. For optimum a Note: The use of	amounts of bot mixer, separatel d version. If not ounces of 44-7(Part B under agit nts must be abov 50°F (10°C to 16 stand 30 minute pplication prope more than the r	h Parts A & B. y stir Parts A & B. using 44-700, skip 00 per gallon of Pa ation, stir until tho ve 50°F (10°C) pric °C) or the accelera es and restir before rties, the material ecommended amo	to No. 4.) art A while broughly ma or to mixing ted versior e using. temperatur unt of 44-7	Part A is ixed. g. For aj n to surf re should 700 will	s under agitation. oplication of the u aces between 35°F 1 be above 60°F (1 adversely affect pe	naccelerated vers ? to 50°F (2°C to :6°C). erformance.	sion to surfaces 10°C), allow						
Use No. 4 or No. to 5% or 1/4 pint (190 mL) per gallo for tanks and or certification.	60 Thinner. For (190 mL) per ga on. Caution: Se Ily No. 60 Thin	air spray, thin up llon with No. 60 ries N140 NSF co mer for pipe, val	to 10% or 3 Thinner. Fo ertification lves and fi	3/4 pint or airless n is bas ittings.	(380 mL) per gallo spray, roller or br ed on thinning v Use of any other t	on with No. 4 Thi ush, thin up to 5 vith No. 4 or No hinner voids AN	inner or thin up % or 1/4 pint o. 60 Thinner SI/NSF Std. 61						
Without 44-700 With 44-700 2 h	6 hours at 50°F hours at 50°F (10	r (10°C) 4 hours 0°C) 1 hour at 7	s at 75°F (2 5°F (24°C)	24°C) 30 m	1 hour at 100°F (3 inutes at 100°F (38	8°C) 3°C)							
Without 44-700: 1 Note: Spray appli	hour at 77°F (2 cation after liste	5°C) With 44 d times will advers	í-700: 30 m sely affect a	iinutes a ability to	t 75°F (24°C) achieve recomme	ended dry film th	ickness.						
Air Spray													
Gun	Fluid Tip	Air Cap	Air Ho	se ID	Mat'l Hose ID	Atomizing Pressure	Pot Pressure						
DeVilbiss JGA	Е	765 or 704	5/16" or (7.9 or 9.	r 3/8" 5 mm)	3/8" or 1/2" (9.5 or 12.7 mm)	75-100 psi (5.2-6.9 bar)	10-20 psi (0.7-1.4 bar)						
Airless Spray		•			•								
Tip Orif	ice	Atomizing Pres	sure	N	1at'l Hose ID	Mani	fold Filter						
0.015"-0. (380-485 mi	019" crons)	3000-4800 ps (207-330 bar)	si)	(6	1/4" or 3/8" 5.4 or 9.5 mm)	6 (250	0 mesh microns)						
Low temperatures applicator technic Roller: Use 3/8" rough or porous s Brush: Recomme	or longer hoses ue and weather or 1/2" (9.5 mm surfaces. ended for small a	s require higher po conditions. to 12.7 mm) synth areas only. Use hig	ot pressure. netic wover sh quality n	. Use ap n nap ro natural o	propriate tip/atom ller cover. Use lon r synthetic bristle l	izing pressure fo ger nap to obtain brushes.	r equipment, n penetration on						
Without 44-700: M The surface shoul temperature.	1in. 50°F (10°C), d be dry and at	Max. 135°F (57°C) least 5°F (3°C) abo) With 4 ove the dev	í4-700: N w point.	/lin. 35°F (2°C), Ma Coating will not c	ax. 135°F (57°C) ure below minin	num surface						
Flush and clean a † Values may va	ll equipment im ry with color.	mediately after use	e with the r	recomme	ended thinner or M	IEK.							
LLER'S LIABILITY: Tneme BOVE PARAGRAPH SHA Y OR FITNESS FOR A PA gainst Tnemec Company led its essential purpose a NSEQUENTIAL DAMAGES L BE AVAILABLE TO THE	c Company, Inc. wa LL BE IN LIEU OF A RTICULAR PURPOS I.nc. shall be for re is long as Tnemec is FOR LOST PROFIT BUYER. Technical	rrants only that its coat NY OTHER WARRANT E. THERE ARE NO WA placement of the produ willing to provide con S. LOST SALES, INJUR and application inform	ings represen Y, EXPRESSE RRANTIES TH ict in the ever parable repla V TO PERSON ation herein is	ted herein D OR IMP HAT EXTE nt a defect acement p N OR PRO s providee	meet the formulation LIED, INCLUDING BU ND BEYOND THE DE ive condition of the pr roduct to the buyer. NP PERTY, ENVIRONMEN I for the purpose of est	standards of Tnemec T NOT LIMITED TO, SCRIPTION ON THE oduct should be fou O OTHER REMEDY (TAL INJURIES OR AT ablishing a general p	Company, Inc. THE ANY IMPLIED FACE HEREOF. The do to exist and the INCLUDING, BUT NO Y OTHER INCIDENT rofile of the coating a						
	5. Both component between 50°F to 6 mixed material to 6. For optimum aj Note: The use of Use No. 4 or No. to 5% or 1/4 pint (190 mL) per galle for tanks and or certification. Without 44-700 2 f: Without 44-700 2 f: Without 44-700 2 f: Without 44-700 2 f: Without 44-700 2 f: DeVilbiss JGA Air Spray Gun DeVilbiss JGA Airless Spray Tip Orifi 0.015"-0.0 (380-485 mi) Low temperatures applicator techniq Roller: Use 3/8" 6 rough or porous s Brush: Recomme Without 44-700: M The surface shoul temperature. Flush and clean a † Values may va UNE SE AVAILABLE TO THE res. Test performance res SEQUENTIAL DAMAGES	5. Both components must be abo between 50°F to 60°F (10°C to 16 mixed material to stand 30 minute 6. For optimum application proper Note: The use of more than the r Use No. 4 or No. 60 Thinner. For to 5% or 1/4 pint (190 mL) per ga (190 mL) per gallon. Caution: See for tanks and only No. 60 Thin certification. Without 44-700 6 hours at 50°F (100 With 44-700 2 hours at 50°F (100 With 44-700 2 hours at 50°F (100 Without 44-700 1 hour at 77°F (2 Note: Spray application after liste Air Spray Gun Fluid Tip DeVilbiss JGA E Airless Spray Tip Orifice 0.015"-0.019" (380-485 microns) Low temperatures or longer hoses applicator technique and weather Roller: Use 3/8" or 1/2" (9.5 mm rough or porous surfaces. Brush: Recommended for small a Without 44-700: Min. 50°F (10°C), The surface should be dry and at temperature. Flush and clean all equipment im † Values may vary with color. LER'S LIABILITY: Tnemec Company, Inc. wa BOVE PARAGRAPH SHALL BE IN LIEU OF A Y OR FITNESS FOR A PARTICULAR PURPOS ugainst Tnemec Company, Inc. wa BOVE PARAGRAPH SHALL BE IN LIEU OF A Y OR FITNESS FOR A PARTICULAR PURPOS ugainst Tnemec Company, Inc. shall be for re ed its essential purpose as long as Tnemec is USEQUENTIAL DAMAGES FOR LOST PROFIT . BE AVALABLE TO THE BUYER. Technical res. Test performance results were obtained i cation. environmental and design factors can	 5. Both components must be above 50°F (10°C) prime between 50°F to 60°F (10°C to 16°C) or the accelera mixed material to stand 30 minutes and restir before 6. For optimum application properties, the material Note: The use of more than the recommended amore Use No. 4 or No. 60 Thinner. For air spray, thin up to 5% or 1/4 pint (190 mL) per gallon with No. 60 ′ (190 mL) per gallon. Caution: Series N140 NSF or for tanks and only No. 60 Thinner for pipe, valcettification. Without 44-700 6 hours at 50°F (10°C) 4 hours with 44-700 2 hours at 50°F (10°C) 1 hour at 77 Without 44-700: 1 hour at 77°F (25°C) With 44 Note: Spray application after listed times will adverse Air Spray Gun Fluid Tip Air Cap DeVilbiss JGA E 765 or 704 Airless Spray Control Control Cont	 5. Both components must be above 50°F (10°C) prior to mixin between 50°F to 60°F (10°C to 16°C) or the accelerated version mixed material to stand 30 minutes and restir before using. 6. For optimum application properties, the material temperatur. Note: The use of more than the recommended amount of 44-7. Use No. 4 or No. 60 Thinner. For air spray, thin up to 10% or 1 to 5% or 1/4 pint (190 mL) per gallon with No. 60 Thinner for (190 mL) per gallon. Caution: Series N140 NSF certification for tanks and only No. 60 Thinner for pipe, valves and f certification. Without 44-700 6 hours at 50°F (10°C) 4 hours at 75°F (24°C) Without 44-700; 1 hour at 75°F (25°C) 1 hour at 75°F (24°C) Without 44-700; 1 hour at 77°F (25°C) With 44-700; 30 m Note: Spray application after listed times will adversely affect: Air Spray Gun Fluid Tip Air Cap Air Ho DeVilbiss JGA E 765 or 704 5/16° or (7.9 or 9. Airless Spray Cigen Atomizing Pressure 0.015°-0.019° 3000-4800 psi (207-330 bar) Low temperatures or longer hoses require higher pot pressure applicator technique and weather conditions. Roller: Use 3/8° or 1/2° (9.5 mm to 12.7 mm) synthetic wover rough or porous surfaces. Brush: Recommended for small areas only. Use high quality r Without 44-700: Min. 50°F (10°C), Max. 135°F (57°C) With 47 the surface should be dry and at least 5°F (3°C) above the detemperature. Flush and clean all equipment immediately after use with the r † Values may vary with color. 	 both components must be above 50°F (10°C.) prior to mixing. For a petween 50°F to 60°F (10°C to 16°C) or the accelerated version to suff mixed material to stand 30 minutes and restir before using. For optimum application properties, the material temperature should Note: The use of more than the recommended amount of 44-700 will Use No. 4 or No. 60 Thinner. For air spray, thin up to 10% or 3/4 pint to 5% or 1/4 pint (190 mL) per gallon with No. 60 Thinner. For airless (190 mL) per gallon. Caution: Series N140 NSF certification is bas for tanks and only No. 60 Thinner for pipe, valves and fittings. certification. Without 44-700 6 hours at 50°F (10°C) 4 hours at 75°F (24°C). With 44-700 2 hours at 50°F (10°C) 1 hour at 75°F (24°C). With 44-700 1 hour at 77°F (25°C) With 44-700: 30 minutes a Note: Spray application after listed times will adversely affect ability to Air Spray Air Spray Gun Fluid Tip Air Cap Air Hose ID 0.015° -0.019° (380° 485 microns) (207-330 bar) (207-330 bar) Airless Spray Airless Spray Contor of the second of the	5. Both components must be above 50°F (10°C) prior to mixing. For application or tine u between 50°F to 60°F (10°C to 16°C) or the accelerated version to surfaces between 35°F mixed material to stand 30 minutes and restir before using. 6. For optimum application properties, the material temperature should be above 60°F (1 Note: The use of more than the recommended amount of 44-700 will adversely affect pe Use No. 4 or No. 60 Thinner. For air spray, thin up to 10% or 3/4 pint (380 mL) per galle to 5% or 1/4 pint (190 mL) per gallon with No. 60 Thinner. For airless spray, roller or br (190 mL) per gallon. Caution: Series N140 NSF certification is based on thinning v for tanks and only No. 60 Thinner for pipe, valves and fittings. Use of any other t certification. Without 44-700 6 hours at 50°F (10°C) 4 hours at 75°F (24°C) 1 hour at 100°F (3 With 44-700 2 hours at 50°F (10°C) 1 hour at 75°F (24°C) 30 minutes at 100°F (3 Without 44-700: 1 hour at 77°F (25°C) With 44-700: 30 minutes at 100°F (3 Without 44-700: 1 hour at 77°F (25°C) With 44-700: 30 minutes at 100°F (3 Without 44-700: 1 hour at 77°F (25°C) With 44-700: 30 minutes at 75°F (24°C) Note: Spray application after listed times will adversely affect ability to achieve recomme Air Spray Mices Spray Mices Spray Cause Spray Lie Confide Atomizing Pressure Mat'l Hose ID 0.015°-0.019° 3000-4800 psi 1/4° or 3/8° (380-485 microns) (207-330 bar) (6.4 or 9.5 mm) Low temperatures or longer hoses require higher pot pressure. Use appropriate tip/atom applicator technique and weather conditions. Roller: Use 3/8° or 1/2° (9.5 mm to 12.7 mm) synthetic woven nap roller cover. Use lon rough or porous surfaces. Brush: Recommended for small areas only. Use high quality natural or synthetic bristel I Without 44-700: Min. 50°F (10°C), Max. 135°F (3°C) With 44-700 Min. 35°F (2°C), Mi The surface should be dry and at least 5°F (3°C) above the dew point. Coating will not c temperature. Flush and clean all equipment immediately after use with the recommended thinner or N † Value	5. Both components must be above 50°F (10°C) prior to mixing. For application of the unaccelerated version to surfaces between 35°F to 50°F (2°C to mixed material to stand 30 minutes and resit before using. 6. For optimum application properties, the material temperature should be above 60°F (16°C). Note: The use of more than the recommended amount of 44-700 will adversely affect performance. Use No. 4 or No. 60 Thinner. For air spray, thin up to 10% or 3/4 pint (380 mL) per gallon with No. 4 Thit to 5% or 1/4 pint (190 mL) per gallon with No. 60 Thinner. For airless spray, goller or brush, thin up to 5 (190 mL) per gallon. Caution: Series N140 NSF certification is based on thinning with No. 4 or No for tanks and only No. 60 Thinner for pipe, valves and fittings. Use of any other thinner voids AN certification. Without 44-700 1 hours at 50°F (10°C) 1 hour at 75°F (24°C) 1 hour at 100°F (38°C) Without 44-700 1 hour at 77°F (25°C) With 44-700: 30 minutes at 75°F (24°C) Note: Spray application after listed times will adversely affect ability to achieve recommended dry film th Air Spra Material Signal A E 765 or 704 5/16° or 3/8° 3/8° or 1/2° (5.2 of 12.7 75-100 psi (32.6 d) E 7500 psi (3.000-4800 psi (1.4° or 3/8° (6.2 of 3.0°) mm) (250) Low temperatures or longer hoses require higher pot pressure. Use appropriate tip/atomizing pressure for applicator technique and weather conditions. Roller: Use 3/8° or 1/2° (9.5 min to 12.7 mm) synthetic woven nap roller cover. Use longer nap to obtain rough or porous surfaces. Brush: Recommended for small areas only. Use high quality natural or synthetic bristle brushes. Without 44-700 Min. 50°F (10°C), Max. 135°F (5°C) With 44-700 Min. 35°F (2°C), Max. 135°F (5°C) The surface should be dry and at least 5°F (3°C) above the dew point. Coating will not cure below minin torup or porous surfaces. Brush: Recommended for small areas only. Use high quality natural or synthetic bristle brushes. Without 44-700 Min. 50°F (10°C), Max. 135°F (5°C) With 44-700 Min. 35°F						

Tnemec Company Incorporated 6800 Corporate Drive Kansas City, Missouri 64120-1372 1-800-TNEMEC1 Fax: 1-816-483-3969 www.tnemec.com

NIDEC MOTOR CORPORATION

8050 WEST FLORISSANT AVE. ST. LOUIS, MO 63136

DATE: 7/20/2022

TO: PENTAIR FLOW TECHNOLOGIES LLC 400 REGENCY FOREST DRIVE SUITE 300 CARY, NC, 27518 ATTN: SHILO

Model Number: NA Catalog Number: VHS Weather Protected CONF.MOTOR.VHS WPI

 P.O. NO.:
 12572178

 Order/Line NO.:
 22701184
 SO
 100

REVISIONS: (NONE)

ALL DOCUMENTS HEREIN ARE CONSIDERED CERTIFIED BY NIDEC MOTOR CORPORATION. THANK YOU FOR YOUR ORDER AND THE OPPORTUNITY TO SERVE YOU.

Features:

HOLD PRODUCTION Horsepower 00050.00~00000.00 ~ KW: 37.3 Enclosure WPI Poles 04~00 ~ RPM: 1800~0 Frame Size 326~TP Phase/Frequency/Voltage.. 3~060~230/460 Winding Type Random Wound Service Factor 1.15 Insulation Class Class "F" ~ Insulife 2000 Altitude In Feet (Max) .. 3300 Ft.(1000 M) ~ +40 C Efficiency Class Premium Efficiency Application Unknown Inverter Duty NEMA MG1 Part 31 Customer Part Number FMB0913483A01 16.5" Base ~ Coupling Size: 1-1/4" Bore, 1/4" Key Non-Reverse Ratchet ~ Steady Bushing Pricebook Thrust Value (lbs).. 5700 Customer Down Thrust (lbs) ... 1017 Customer Shutoff Thrust (lbs). 1382 Up Thrust (lbs): ~ Inverter Duty Rating Details: Load Type (Base Hz & Below) .. Variable Torque Speed Range (Base Hz & Below). 10:1 VFD Service Factor 1.00 Temperature Rise (Sine Wave): "B" Rise @ 1.0 SF (Resist) Starting Method Direct-On-Line Start Duty Cycle Continuous Duty Efficiency Value 94.5 % ~ Typical Load Inertia: NEMA ~ Standard Inertia: 232.00 LB-FT2 Number Of Starts Per Hour: NEMA Motor Type Code RUI 8.69 LB-FT² Rotor Inertia (LB-FT²) 1 Qty. of Bearings PE (Shaft) Qty. of Bearings SE (OPP) 1 6211-J Bearing Number PE (Shaft) Bearing Number SE (OPP) 7220 BEP

Nidec trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office.

NIDEC MOTOR CORPORATION

8050 WEST FLORISSANT AVE. ST. LOUIS, MO 63136

DATE: 7/20/2022

TO: PENTAIR FLOW TECHNOLOGIES LLC 400 REGENCY FOREST DRIVE SUITE 300 CARY, NC, 27518 ATTN: SHILO

Model Number:NACatalog Number:VHS Weather ProtectedVHS Weather ProtectedCONF,MOTOR,VHS WPI

P.O. NO.: 12572178 Order/Line NO.: 22701184 SO 100

REVISIONS: (NONE)

ALL DOCUMENTS HEREIN ARE CONSIDERED CERTIFIED BY NIDEC MOTOR CORPORATION. THANK YOU FOR YOUR ORDER AND THE OPPORTUNITY TO SERVE YOU.

Accessories:

Counter CW Rotation FODE Aegis Ground Ring (SGR) Special Balance Multiple ID Plates Requested Thermostats - Normally Closed Lubrication Instruction Plate Shipping Tag Information: FMB0913483A01 12572178 10

USE THE DATA PROVIDED BELOW TO SELECT THE APPROPRIATE DIMENSION PRINT

Horsepower	50
Pole(s)	04
Voltage(s)	460-230
Frame Size	326TP
Outlet Box AF	4.25
Outlet Box AA	3.00

Nidec trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office.

3601 Fairbanks Avenue Kansas City, Kansas 66106 913-371-5000 FAX 913-371-2272

CERTIFIED MOTOR PERFORMANCE DATA

MOTOR MANUFACTURER:	NIDEC MOTOR COR	PORATION	DATE:	7/20/2022
PENTAIR PURCHASE ORDER #:	12572178	PENTAIR TAG #	: FME	30913483A01

PERFORMANCE DATA BASED ON STANDARD RULES OF: X IEEE X ASA X NEMA

HP	SYNCHRONOUS SPEED (RPM)	FULL LOAD * SPEED (RPM)	FRAME NUMBER	TYPE	ENCLOSURE
50	1800	1780	326TP	RUI	WPI

*Full Load Speed Tolerance Per NEMA MG1-12.46 is+/- 20% of slip (Slip=Synchronous RPM-Full Load RPM)

			AMPH	ERES		MAX. TEMP. RISE		NEMA	
PHASE	HERTZ	VOLTS	FULL	LOCKED	INSULATION	<u>X</u> RESIS.	SERVICE	KVA/HP	NEMA
			LOAD	ROTOR	CLASS	THERM.	FACTOR	CODE	DESIGN
3	60	460/230	57/113	357/715	F	80 DEG C AT 1.00 SF	1.15	G	В

						TORQUE	AT FULL VOLT	AGE
GUARA	GUARANTEED EFFICIENCY			WER FACT	OR	FULL LOAD	LOCKED	PULLOUT
						TORQUE AT	STARTING	BREAKDOWN
FULL LOAD	3/4 LOAD	1/2 LOAD	FULL LOAD	3/4 LOAD	1/2 LOAD	FULL LOAD SPEED (LB.FT)	PERCENT O	F FULL LOAD
93.6	93.6	92.4	87.8	86.3	81.0	147.5	191	251

vss	VHS X	NRR X	(SRC	HORIZ	
BEARINGS:	Drive End Lubrication:	K Grease n: Grease	3 QT/2.8 L	PAINT: (Attach Tec X Factory Stan Other	hnical Data Shee dard	ets)
MOTOR NO.:	22701184		_			
MOTOR WEIG	HT: 675 LE	S	_			
ROTATION:		C]cw	xccw		
Certified by:	Sharon Corco	ro	Date	e: 7/20/2022	Revision #	0

FN015/012020

PENTAIR FLOW TECHNOLOGIES

3601 Fairbanks Avenue Kansas City, Kansas 66106 913-371-5000 FAX 913-371-2272

			Accessory	Data			
Motor Manufacture	er:	NIDEC MOTO	R CORPORATION	D	ate:	7/20/2022	
Pentair Purchase	Order #:		12572178	F	entair Tag #:	FMB09134	83A01
Space Heaters:	Required	Not Required	Desc Watts: Voltage:	pription			
Thermostats:	\times		Туре: 🔲 N.O.	XN.C.			
Thermistors:	Quantity Per Motor:	×	Make & Model: Trip Range: relay not Sup relay supplie wiring diagra	oplied d: Type:factory set m/cut sheet attached. Re	field adju	stable	
Winding RTD's:	Quantity Per Motor:_	⊠	Make & Model: Construction/O relay not Sup relay supplie wiring diagra	HM Rating: oplied d: Type:	field adju	stable	
Bearing RTD's:	Quantity _	×	Make & Model: Construction/O relay not Sup relay supplie wiring diagra	HM Rating: oplied d: Type:factory set m/cut sheet attached. Re	☐field adju	stable	
Vibration Sensor:		\boxtimes	Make & Model: relay not Sup relay supplie wiring diagra	pplied d: Type: □factory set m/cut sheet attached. Re	field adju	stable	
Tests:			Short comme Short comme Calibration T Complete ini Sound test, u Bump Test, u Vibration Tes Polarization Reed Critical IEEE841	ercial, unwitnessed ercial, witnessed fest, unwitnessed tial, unwitnessed unwitnessed unwitnessed st, unwitnessed Index, unwitnessed			
Certified by:	Sharo	ou Corcoro	Date:	7/20/2022	Re	vision #:	0

FN015/012020

PENTAIR FLOW TECHNOLOGIES

3601 Fairbanks Avenue Kansas City, Kansas 66106 913-371-5000 FAX 913-371-2272

Accessory Data

Motor Manufacturer:	NIDEC MOTOR CORPORATION	Date:	7/20/2022
Pentair Purchase Order #:	12572178	Pentair Tag #:	FMB0913483A01

Features:

Enclosure WPI Winding Type Random Wound Service Factor 1.15 Insulation Class Class "F" ~ Insulife 2000 Altitude In Feet (Max) .. 3300 Ft.(1000 M) ~ +40 C Efficiency Class Premium Efficiency Inverter Duty NEMA MG1 Part 31 16.5" Base ~ Coupling Size: 1-1/4" Bore, 1/4" Key Non-Reverse Ratchet ~ Steady Bushing Pricebook Thrust Value (lbs).. 5700 Customer Down Thrust (lbs) ... 1017 Customer Shutoff Thrust (lbs). 1382 Inverter Duty Rating Details: Load Type (Base Hz & Below) .. Variable Torque Speed Range (Base Hz & Below). 10:1 VFD Service Factor 1.00 Temperature Rise (Sine Wave): "B" Rise @ 1.0 SF (Resist) Starting Method Direct-On-Line Start Duty Cycle Continuous Duty Efficiency Value 94.5 % ~ Typical Load Inertia: NEMA ~ Standard Inertia: 232.00 LB-FT2

Accessories:

Aegis Ground Ring (SGR) Special Balance Thermostats - Normally Closed Lubrication Instruction Plate Shipping Tag Information: FMB0913483A01 12572178 10

Certified by:

Sharon Corcoro

Date:

7/20/2022

FN015/012020

NAMEPLATE DATA

CATALOG NUM	BER:	NAMEPLATE PART #:	422707-005
MODEL	FR 326TP	TYPE RUI	ENCL WPI
SHAFT END BRG	6211-J - QTY 1	OPP END BRG	7220 BEP - QTY 1
PH 3	MAX 40 C	ID# (ref: Order#: 22	701184, Type: SO, Line#: 100)
INSUL F	Asm Pos	DUTY	CONT
HP 50	RPM 1780		
VOLTS 460		VOLTS	
FL 57.0		FL	
SF		SF	
AMPS 65.0		AMPS	
	15 DESIGN B CODE G		
EFFICIENCY 94	.5 PF 87.8 KiloWatt 37.3	0 EFFICIENCY PF	X UZ
GUARANTEED EFFICIENCY	.6 MAX HZ 60	EFFICIENCY KVA	R R
HAZARDOUS LOCATION	N DATA (IF APPLICABLE):		
DIVISION		GRO	
			NEMA
			Premium *
			NU SUZ
VFD DATA (IF APPLICAE	BLE):		
VOLTS	460 230	AMPS 59.	9 118.7
TORQUE 1		TORQUE 2	
VFD LOAD TYP	PE 1 VT/PWM	VFD LOAD TYPE 2	
VFD HERTZ RAN	IGE 1 6-60	VFD HERTZ RANGE 2	
VFD SPEED RAN	NGE 1 180-1800	VFD SPEED RANGE 2	
SERVICE FACT	TOR 1.00	FL SLIP	
NO. POLES VECTOR MAX F	RPM	Encoder PPR	
Radians / Seco	nds	Encoder Volts	
TEAO DATA (IF APPLIC			
HP (AIR OVER)	HP (AIR OVER M/S)		M/S)
FPM AIR VELOCITY	FPM AIR	FPM AIR	I

ADDITIONAL NAMEPLATE DATA:

Decel / Dista		Customer DN	EMD0012492401
	109143	Non Rev Ratchet	NRR
Max Temp Rise	80C BISE/BES@1 00SE		3 0T/2 8 1
Thermal (WDG)	OVER TEMP PROT 2	SHAFT/Lower Oil Cap	GREASE
Altitude		Lisable At	
Regulatory Notes		Regulatory Compliance	
		Marine Duty	
Balance	0.08 IN/SEC	Arctic Duty	
S/4 Load Ell.	94.0		
	675	Special Note 1	
	E700		
Vertical Trifust (LBS)		Special Note 2	
	100% H1	Special Note 3	
Bearing Life			
Starting Method		Special Note 5	
Number of Starts		Special Note 6	
200/208V 60Hz Max Amps		SH Max. Temp.	
190V 50 hz Max Amps		SH Voltage	
380V 50 Hz Max Amps		SH Watts	
NEMA Inertia		Load Inertia	
Sumpheater Voltage		Sumpheater Wattage	
Special Accessory Note 1		Special Accessory Note 16	
Special Accessory Note 2		Special Accessory Note 17	
Special Accessory Note 3		Special Accessory Note 18	
Special Accessory Note 4		Special Accessory Note 19	
Special Accessory Note 5		Special Accessory Note 20	
Special Accessory Note 6		Special Accessory Note 21	
Special Accessory Note 7		Special Accessory Note 22	
Special Accessory Note 8		Special Accessory Note 23	
Special Accessory Note 9		Special Accessory Note 24	
Special Accessory Note 10		Special Accessory Note 25	
Special Accessory Note 11		Special Accessory Note 26	
Special Accessory Note 12		Special Accessory Note 27	
Special Accessory Note 13		Special Accessory Note 28	
Special Accessory Note 14		Special Accessory Note 29	
Special Accessory Note 15		Special Accessory Note 30	
Heater in C/B Voltage		Heater in C/B Watts	
Zone 2 Group		Division 2 Service Factor	
Note 1		Note 2	
Note 3		Note 4	
Note 5		Note 6	
Note 7		Note 8	
Note 9		Note 10	
Note 11		Note 12	
Note 13		Note 14	
Note 15		Note 16	
Note 17		Note 18	
Note 19		Note 20	
Note 21	L	Note 22	

NIDEC MOTOR CORPORATION ST. LOUIS, MO TYPICAL NAMEPLATE DATA ACTUAL MOTOR NAMEPLATE LAYOUT MAY VARY

SOME FIELDS MAY BE OMITTED Nidec trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office.

MOTOR PERFORMANCE

MODEL NO.	CATALOG NO.	PHASE	TYPE	FRAME
NA	NA	3	RUI	326TP
ORDER	NO.	22701184	LINE NO.	100
MPI:	-,		98315	98316
HP:			50	50
POLES:			4	4
VOLTS:			460	230
HZ:			60	60
SERVICE FACTO	र:		1.15	1.15
EFFICIENCY (%):				
	S.F.		93.8	93.8
	FULL		94.5	94.5
	3/4		94.6	94.6
	1/2		94	94
	1/4		90.9	90.9
POWER FACTOR	(%):			
	S.F.		87.9	87.9
	FULL		87.8	87.8
	3/4		86.3	86.3
	1/2		81	81
	1/4		63.8	63.8
	NO LOA	D	6.8	6.8
	LOCKED RO	DTOR	37.5	37.5
AMPS:				
	S.F.		65	131
	FULL		57	113
	3/4		43	86
	1/2		31	61
	1/4		20.2	40
	NO LOA	D	15	30
	LOCKED RO	DTOR	357	715
NEMA CODE LET	TER		G	G
NEMA DESIGN LE	TTER		В	B
FULL LOAD RPM			1780	1780
NEMA NOMINAL /	EFFICIENCY (%)		94.5	94.5
GUARANTEED EF	FICIENCY (%)		93.6	93.6
MAX KVAR			10.2	10.2
AMBIENT (°C)			40	40
ALTITUDE (FASL)	1		3300	3300
SAFE STALL TIME	E-HOT (SEC)		26	26
SOUND PRESSUR	RE (DBA @ 1M)		65	65
TORQUES:				
	BREAKDOWN	{% F.L.}	251	251
	LOCKED ROTO	R{% F.L.}	191	191
	FULL LOAD{	LB-FT}	147.5	147.5

NEMA Nominal and Guaranteed Efficiencies are up to 3,300 feet above sea level and 25 ° C ambient

The Above Data Is Typical, Sinewave Power Unless Noted Otherwise

NIDEC MOTOR CORPORATION ST. LOUIS, MO

Nidec trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office.

Connection Plate: A109145 Connection Decal: 344122

THERMOSTATS

1. MOTOR IS EQUIPPED WITH QTY-3 (1 PER PHASE) NORMALLY CLOSED THERMOSTATS. THERMOSTATS ARE SET TO OPEN AT HIGH TEMPERATURE.

2. CONTACT RATINGS FOR THERMOSTATS: 120-600 VAC, 720 VA

N. C. THERMOSTATS

NOTE: THERMOSTATS LEADS MAY BE LOCATED IN EITHER THE MAIN OUTLET BOX OR IF SO EQUIPPED, AN AUXILIARY BOX.

				ACCESSORY LIS	STING
				QTY-3 N.C. THERMOS	TATS
	REVISION DESCRIPTION FOR: MISC STL0211 - UPDATED FORMAT .	SCALE NONE IN TOLERANCES ON DIMENSIONS (UNLESS OTHERWISE SPECIFIED)		CUSTOMER ECTION DIAGRAM	NIDEC MOTOR CORPORATION
	MATERIAL:	INCHES <u>mm</u>	ISSUED BY R. KI	NG C. CADE	REVISION DATE 24-FEB-11
NIDEC CONFIDENTIAL NIDEC MOTOR CORPORATION 24-Feb-11	 MUST BE COMPLIANT TO RoHS DIRECTIVE EU 2002/95/IEC AND REGULATION EC 1907/2006 (REACH) AS AMENDED	ANGLES X°=±1°	CODE D'	0834066	G 1 OF 1 A
MCA (JAN-2011)			-		SOLIDEDGE

RENEWAL PARTS

FRAME 320 TO 400 TYPES: RU, RUE, RUEI, RUS, RUSI

BEARINGS: Refer to motor nameplate for the bearing numbers.

PRICES: Parts stocking distributors: refer to renewal parts numerical index. All Others: refer to your nearest parts distributor.

reference: Renewal Parts Section 700 - 270

RENEWAL PARTS

FRAME 320 TO 400 TYPES: RU, RUE, RUEI, RUS, RUSI

BEARINGS: Refer to motor nameplate for the bearing numbers.

PRICES: Parts stocking distributors: refer to renewal parts numerical index. All Others: refer to your nearest parts distributor.

reference: Renewal Parts Section 700 - 270

RENEWAL PARTS

FRAME 320 TO 400 TYPES: RU, RUE, RUEI, RUS, RUSI

ITEM NO.	QTY.	NAME OF PART	ITEM NO.	QTY	NAME OF PART
1	1	Lower Bracket	21	1	Upper Bracket
2	1	Water Deflector	22	1	Oil Fill Plug (Expanding)
3	1	Pipe Plug	23	1	Upper Plug (Oil Drain)
4	1	Zerk Fitting Grease	24	1	O-Ring Sight Gauge Window
5	1	Spacer Washer	25	1	Deflector Sight Gauge Window
6	1	Snap Ring	26	1	Glass Sight Gauge Window
7	1	Lower Bearing	27	1	Cover Sight Gauge Window
8	1	Lower Bearing Cap	28	-	Upper Bearing (Qty 1 or 2)
9	1	Rotor Assembly	29	1	Bearing Mount
10	1	Кеу	30	1	Upper Lockwasher
11	1	Lower Screen Intake (External)	31	1	Upper Lock Nut
12	1	Lower Screen Intake (Internal)	32	1	Dust Cover (Only on Units Without Ratchet)
13	1	Lower Air Deflector	33	1	Ratchet Adaptor (Only on Units With Ratchet)
14	1	Stator Assembly	34	1	Stationary Ratchet (Only on Units With Ratchet)
15	1	Gasket Outlet Box (Frame and Box)	35	1	Ratchet Ball (Only on Units With Ratchet)
16	1	Outlet Base	36	1	Ball Retaining Ring (Only on Units With Ratchet)
17	1	Gasket Outlet Box (Base and Cover)	37	1	Thrust Coupling (Only on Hollowshaft)
18	1	Cover Outlet Box	38	1	Gib Key (Only on Hollowshaft)
19	1	Upper Air Deflector	39	1	Upper Baffle
20	1	Upper Screen	40	1	Сапору Сар

BEARINGS: Refer to motor nameplate for the bearing numbers.

PRICES: Parts stocking distributors: refer to renewal parts numerical index. All Others: refer to your nearest parts distributor.

reference: Renewal Parts Section 700 - 270

Copyright $\textcircled{\mbox{\scriptsize c}}$ 2020 Nidec Motor Corporation. All rights reserved.

Vertical HOLLOSHAFT Coupling Dimensions

Standard Coupling Dimensions

Coupling Part Number	162458
BX Nominal	1 1/4
Actual Bore	1.251
BY	1/4-20
BZ	1 3/4
ХВ	2 15/16
XD	17/32
XE	2 7/8
XF	1 15/16
SQ. KEY	1/4

Notes:

- 1. All Rough casting dimensions may vary by 0.25" due to casting variations.
- 2. All tapped holes are Unified National Course, Right Hand thread.
- 3. Coupling bore dimension "BX" is machined with a tolerance of .000", +.001" up to 1.50" bore inclusive. Larger bores: -.000", +.002".

Copyright © 2010 Nidec Motor Corporation. All rights reserved.

TYPICAL REED CRITICAL FREQUENCY DATA

<u>Note</u>: Motor RCF Test Data can be provided at time of motor shipment through special test. Please contact your Nidec Motor Corporation representative for more information.

MODEL NO: NA CATALOG NO: NA

Frame: 326TP Type: RUI

REED CRITICAL FREQUENCY:	57	ΗZ
CENTER OF GRAVITY:	13	IN
DEFLECTION @ CENTER OF GRAVITY:	0.00301	IN
UNIT WEIGHT:	675	LBS
BASE DIAMETER:	ALL	IN
TOLERANCE ON RCF VALUE:	10%	
DATE:	7/20/2022	

Copyright © 2010 Nidec Motor Corporation. All rights reserved.

DIRECTION OF ROTATION

This motor is unidirectional and can <u>only be operated in</u> <u>one direction</u> to ensure proper cooling.

The motor will be supplied with the industry standard CCW (counter clockwise) rotation as shown below. CW rotation is available upon request.

NIDEC MOTOR CORPORATION ST. LOUIS, MISSOURI

9700

Thermal Protector for Motor/Fluorescent ballasts and Temperature Sensing Controls

•:•: Sensata

Technologies

The Klixon® 9700 protector is a field proven miniature protector developed to protect shaded pole and permanent split capacitor motors, fluorescent ballasts, solenoids, transformers and other electrical equipment against overheating.

In addition to being small and lightweight, the unit is both temperature and current sensitive. Since the 9700 is sealed to withstand varnish dipping, it can be mounted directly in windings where it can best sense the true temperature of the electrical equipment. As a result, over-temperature protection is assured.

Since the case is not electrically insulated, the protector is furnished with a durable Mylar insulating sleeve. Shrinkable and non-shrinkable sleeves are available.

Technical Characteristics

Purpose of control:

Contact capacity:

Temperature range:

Tolerance on Open temp: Automatic action:

Operating time: Pollution situation: Extent of sensing element: PTI of the insulation: Enclosure protection degree: thermal motor protector (TMP) thermal ballast protector (TBP) thermal cut-out (TCO) 250VAC 13A for TCO 250VAC 2A for TBP 60°C to 150°C for TCO and TMP 60°C to 135°C for TBP +/- 5K or +/- 8K Type 3C for TMP Type 2C for TBP and TCO Continuous Normal Whole control 175 IP00

KEY BENEFITS

Miniature size-compact design assures ease of installation

Precision Calibration-temperature calibrated and inspected in controlled ambients for dependable consistent performace

Snapaction-positive make and break assured with proven Klixon® strip disc...contact pressure at open temperature eliminates nuisance trips due to vibration

Sealed steel case-withstands impregnation and baking...maybe varnish dipped...prevents changes in calibration during installation

Sensata **Technologies**

Sensata **Technologies**

TECHNICAL / SALES SUPPORT

Holland Phone +31 546 879560 Fax +31 546 879204 Italy Phone +39 039 6568310 Fax +39 039 6568316 Internet: www.sensata.com

Email: info-cpe@list.sensata.com

Current in Amps

Current in Amp.

Important Notice: The products and services of Sensata Technologies and its subsidiaries described herein are sold subject to Sensata's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about Sensata products and services before placing orders. Sensata assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute Sensata's approval, warranty or endorsement thereof.

AEGIS® Shaft Grounding Rings

VFD-Driven Motors Are at Risk of Electrical Bearing Damage!

Motors operated by variable frequency drives (VFD) are vulnerable to VFDinduced shaft voltage and bearing currents that can cause premature bearing failure - often in as little as 3 months!

VFDs induce destructive shaft voltage that can discharge through motor bearings, burning bearing grease and reducing its effectiveness. Through electrical discharge machining (EDM), these discharges can also cause pitting, frosting, and fluting damage to the motor's bearings and eventual bearing failure. The result is costly repairs, downtime, and lost production.

Protect Motor Bearings With AEGIS® Shaft Grounding Rings

By channeling harmful VFD-induced shaft current away from bearings and safely to ground, AEGIS[®] Shaft Grounding Rings protect motors from costly bearing damage.

Bearing Protection Best Practices

The AEGIS® Motor Repair Handbook details best practices for protecting VFD-driven motors from electrical bearing damage and preventing costly repairs, downtime and lost production.

Learn about:

- · Bearing currents and shaft voltage
- AEGIS[®] technology
- Shaft voltage testing
- Installation best practices

For detailed recommendations, refer to the AEGIS® Bearing Protection Handbook. An essential reference, the Handbook is available free at

Prevent EDM Pitting and Fluting Damage

AEGIS® Shaft Grounding Ring Options

Standard Mounting Clamps (-1)

Shaft diameters: 0.311" to 6.02" 3 to 4 mounting clamps, 6-32 x 1/4" cap screws and washers

Split Ring (-1A4)

Shaft diameter: 0.311" to 6.02" 4 to 6 mounting clamps, 6-32 x 1/4" cap screws and washers Installs without decoupling motor

Bolt Through Mounting (-3FH)

Shaft diameters: 0.311" to 6.02", 6-32 x 1/2" flat head screws 2 mounting holes up to shaft size 3.395" 4 mounting holes for larger sizes

Conductive Epoxy Mounting (-OAW, -OA4W) Shaft diameters: 0.311" to 6.02"

Solid and Split Ring Conductive Epoxy Included

Press Fit Mounting (-0A6)

Shaft diameters: 0.311" to 6.02" Clean dry 0.004" press fit Custom sizes available

uKIT with Universal Mounting Bracket Sized for NEMA and IEC frame motors Solid and Split Ring

Can be mounted with hardware or conductive epoxy

AEGIS® PRO Series

AEGIS® PROSL, PROSLR, PROMAX, PROMR

AEGIS[®] Shaft Voltage Tester™

100 MHz Digital Oscilloscope, 10:1 probe with SVP tip for measuring voltages on a rotating shaft AEGIS® One-Touch™ instant image capture

Accessories

HFGS - AEGIS® High-Frequency Ground Strap CS015 - AEGIS® Colloidal Silver Shaft Coating EP2400 - AEGIS® Conductive Epoxy

Motors up to and including 100 HP (75 kW)

Install AEGIS® Shaft Grounding Ring – either internally or externally – on drive end or the non-drive end of motor.

Product recommendation: AEGIS® SGR

- Drive End: Install AEGIS[®] Shaft Grounding Ring - Internally on the back of the bearing cap or externally on the motor end bracket.
- Non-Drive End: Isolate bearing housing with insulated sleeve or coating or use insulated ceramic or hybrid bearing to disrupt circulating currents.

Product recommendation: LV Motors up to 500HP: AEGIS® SGR LV Motors over 500HP: AEGIS® PRO Series MV Motors: AEGIS® PRO Series

Electro Static Technology

 31 Winterbrook Road

 Mechanic Falls, ME 04256 USA

 Tel:
 (866) 738-1857

 Tel:
 (207) 998-5140

 E-Mail:
 sales@est-aegis.com

www.est-aegis.com

Standard Paint Specification

For

EM Gray

NIDEC MOTOR CORPORATION USEM DE MEXICO SA DE CV Apodaca, Nuevo León, México

<u>CONTENTS</u>

1.0	Scope
2.0	Unpainted Surfaces
3.0	Surface Preparation
4.0	Cast Aluminum
5.0	Motor Assembly
6.0	General
7.0	Finish Top Coating
8.0	Final Finish Inspection
9.0	Material Identification

1.0 <u>Scope</u>

Nidec Motor Corporation in Apodaca, Nuevo Leon. Has selected enamel paint from "OSEL." for its superior rust inhibitive qualities and durability. The paint also has excellent resistance to various chemicals. This specification covers surface preparation and application of protective coating on motors built in the Apodaca, Nuevo Leon facility.

2.0 Unpainted Surfaces

The following surfaces will not require protective coating:

Grounding Pads
Machined Surfaces
Motor Leads
Porcelain Enamel Finishes
Rubber
Stainless Steel
Vacuum Pressure Impregnated Parts

3.0 <u>Surface Preparation</u> (Cast Iron & Steel)

- A. The foundries are required to snag, remove all sand and slag from castings. This is to be immediately followed by primer paint to insure 100% coverage. Foundry to apply primer (approved by plant). Film Thickness: 1 to 3 mils.
- B. Prime all castings, in plant, if they have not been primed by the foundry.

Primer Dequimsa # DQ-PR-150

- C. All parts are to be cleaned prior to priming or finish painting as follows:
 - 1. If parts are dirty wash and rise in parts washer.
 - 2. If parts are dusty sandblast
 - 3. Thoroughly dry all parts prior to priming or finish painting. Primer must be applied immediately after cleaning and drying process.

4.0 Cast Aluminum.

Priming is not required on cast aluminum or fiberglass parts. Oxidation must be removed from aluminum parts with a solvent prior to finish painting.

5.0 Motor Assembly

After assembling the motor, there may be surfaces that require priming or touch-up prior to final painting. These surfaces are bracket-to-frame register fits, outlet box pads, etc. If surfaces are oily, wash with clean paint thinner using a clean rag to prevent contamination of other surfaces.

6.0 <u>General</u>

- A. Finished coating shall not be applied to wet or damp surfaces.
- B. All coatings shall be applied in a conscientious manner and in accordance with the written application instructions of the coating manufacturer.
- C. Re-application time between coats shall be in accordance with the coating manufacturer's recommendation corresponding to the conditions of temperature and humidity.
- D. Hardware trim and other items not requiring coating may be removed as required for proper application of coatings. Such items shall be replaced after completion of work.
- E. The dry film thickness of each coat, and of the entire system, shall follow the coating manufacturer's recommendation and this specification. The number of coats specified shall be a minimum number of coats to achieve the specified film thickness.
- F. Coverage rates, as calculated by the coating manufacturer, shall be considered as the maximum allowable.
- G. All spraying equipment shall be maintained in good working order, with daily inspection, and shall be in conformity with the coating manufacturer's most recent application specification.

7.0 Finish Top Coating

All motor products must be clean and free of any dirt, oil or grease on the primed surface prior to finish painting. Except where otherwise specified, thinners shall not be used. Motors will be painted with one coat unless otherwise noted. Film thickness: 2 to 4 mils.

8.0 Final Finish Inspection

Visual inspection of completed work shall be performed on the finished motor by the Quality Assurance Department. The final surface finish is to be in accordance with industry standards for comparable equipment. Any surfaces found in violation of this specification will be rejected and will require rework. Acceptance or rejection of final finish paint is the sole responsibility of the Quality Assurance Department.

9.0 Material Identification

A. Standard Primer: Foundry's

Alternate Primer Vendors:

AIR DRY PREMIER ROBINSON CHEMICAL COATINGS. 14-G-205

SHERWIN-WILLIAMS GRAY ALKYD B50AZ6 KEM KROMIK UNIVERSAL METAL PRIMER

B. Standard Finish Paint

NMC P/N 138538 EM GRAY VENDOR: PINTURAS OSEL FORMULA #4588-B GRAY (LOW GLOSS)

VOC: ~ 3.6 lbs per gallon

Rev. 07/21/20 NIDEC MOTOR CORPORATION 8050 W. Florissant Avenue | St Louis, MO 63136 www.nidec-motor.com | www.usmotors.com
IX. Lubrication

Motor must be at rest and electrical controls should be locked open to prevent energizing while being serviced. If motor is being taken out of storage, refer to **Section III "STORAGE", item 4** for instructions.

1. Oil lubricated bearings

Motors are tested with oil at our manufacturing facility then drained prior to shipment. A small amount of residual oil and rust inhibitor will remain on the oil sump. This residual oil and rust inhibitor is compatible with Turbine Type Mineral Oils and Synthetic, PAO (Poly Alpha Olefin) based oils listed in this manual. It is not necessary to drain this residual oil when adding new oil for operation.

Change oil once per year with normal service conditions. Frequent starting and stopping, damp or dusty environment, extreme temperature, or any other severe service conditions will warrant more frequent oil changes. If there is any question, consult Nidec Motor Corporation Product Service Department for recommended oil change intervals regarding your particular situation.

Determine required oil ISO Viscosity Grade (VG) and base oil type from Table 3, then see Table 4 for approved oils. Add oil into oil fill hole at each bearing housing until the oil level reaches between minimum and maximum marks located on the sight of the gauge window. It is important to wipe excess oil from the threads of the drain hole and to coat the plug threads with Gasoila^{®†} P/N SS08, manufactured by Federal Process Corporation or equivalent thread sealant before replacing the drain plug. Plug should be tightened to a minimum of 20 lb.-ft. using a torque wrench. See the motor nameplate or Table 5 for the approximate quantity of oil required.

2. Grease Lubricated Bearings

A. Relubrication of Units In Service

Grease lubricated bearings are pre-lubricated at the factory and normally do not require initial lubrication. Relubricating interval depends upon speed, type of bearing and service. Refer to Table 1 or suggested regreasing intervals and quantities. Note that operating environment and application may dictate more frequent lubrication. To relubricate bearings, remove the drain plug. Inspect grease drain and remove any blockage (caked grease or foreign particles) with a mechanical probe, taking care not to damage bearing.

Should a motor supplied with a self-release coupling become uncoupled, the motor and pump must be stationary and all power locked out before manually re-coupling.

Add new grease at the grease inlet. New grease must be compatible with the grease already in the motor (refer to table 2 for compatible greases).

Greases of different bases (lithium, polyurea, clay, etc.) may not be compatible when mixed. Mixing such greases can result in reduced lubricant life and premature bearing failure. Prevent such intermixing by disaasembling motor, removing all old grease and repacking with new grease per item B of this section. Refer to Table 2 for recommended greases. Run the motor for 15 to 30 minutes with the drain plug removed to allow purging of any excess grease. Shut off unit and replace the drain plug. Return motor to service.

Overgreasing can cause excessive bearing temperatures, premature lubricant breakdown and bearing failure. Care should be exercised against overgreasing.

B. Change of Lubricant

Motor must be disassembled as necessary to gain full access to bearing housing(s).

Remove all old grease from bearings and housings (including all grease fill and drain holes). Inspect and replace damaged bearings. Fill bearing housings both inboard and outboard of bearing approximately 30 percent full of new grease. Grease fill ports must be completely charged with new grease. Inject new grease into bearing between rolling elements to fill bearing. Remove excess grease extending beyond the edges of the bearing races and retainers.

Bearing	Number	Grease Replensibment	Lubrication Interval		
62xx, 72xx	63xx, 73xx	Quantity (FI. Oz.)	1801 thru 3600 RPM	1201 thru 1800 RPM	1200 RPM and slower
03 thru 07	03 thru 06	0.2	1 Year	2 Years	2 Years
08 thru 12	07 thru 09	0.4	6 Months	1 Year	1 Year
13 thru 15	10 thru 11	0.6	6 Months	1 Year	1 Year
16 thru 20	12 thru 15	1.0	3 Months	6 Months	6 Months
21 thru 28	16 thru 20	1.8	3 Months	6 Months	6 Months

 Table 1

 Recommended Grease Replensihment Quantities & Lubrication Intervals

Refer to motor nameplate for bearings provided on a specific motor. For bearings not listed in Table 1, the amount of grease required may be calculated by the formula:

 $G = 0.11 \times D \times B$

Where: G = Quantity of grease in fluid ounces D = Outside diameter of bearing in inches B = Width of bearing in inches

Recommended Greases					
Motor Frame Size Motor Enclosure Grease Manufacturer Grease (NLGI Grade 2)					
All Thru 447	All		Dolyroy EM		
449 and Up	Open Dripproof	Exxon Mobil	POlyrex-Elvi		
449 and Up	TEFC and Explosionproof		Mobilith SHC-100		

Table 2

The above greases are interchangeable with the grease provided in units supplied from the factory (unless stated otherwise on motor lubrication nameplate).

Lubrication

Table 3 Nidec Motor Corporation Recommended Oil Viscosities

Use chart below when "no" special lubrication plate is attached to the motor

Angular Contact Thrust Bearing (7XXX Series) (ABMA BT-Series)					
Motor Enclosure	Frame Size	Speed (RPM)	Ambient Temperature	ISO VG	Base Oil Type
Open Dripproof or	224 and larger	All	-15°C thru 40°C (5-104°F)	32	Mineral or Synthetic
Weather Protected	324 and larger		41°C thru 50°C (105-122°F)	68	Synthetic Only
Totally Enclosed or Explosion proof	404 thru 447		-15°C thru 40°C (5-104°F)	32	Mineral or Synthetic
			41°C thru 50°C (105-122°F)	68	Synthetic Only
	449 thru 5811	1801-3600	15°C tru 40°C (104°E)	32	Synthetic Only
		1800 & below	-15 C (10 40 C (104 F)	68	Synthetic Only
		All	41°C thru 50°C (105-122°F)	7	Refer to Office

Spherical Roller Thrust Bearing (29XXX Series) (ABMA TS-Series)					
Motor Enclosure	Frame Size	Speed (RPM)	Ambient Temperature	ISO VG	Base Oil Type
Open Dripproof or Weather Protected	444 and larger	1800 and below	-15°C thru 25°C (5-77°F)	68	Mineral or Synthetic
			6°C thru 40°C (42-104°F)	150	
			41°C thru 50°C (105-122°F)	150	Synthetic Only
Totally Enclosed or Explosion proof	449 and larger		-15°C thru 25°C (5-77°F)	68	Mineral or Synthetic
			6°C thru 40°C (42-104°F)	150	Synthetic Only
			41°C thru 50°C (105-122°F)	7	lefer to Office

Notes:

- 1. If lower guide bearing is oil lubricated, it should use the same oil as the thrust bearing.
- 2. If lower guide bearing is grease-lubricated, refer to TABLE 2 for recommended greases.
- 3. Refer to Nidec Motor Corporation for ambient temperatures other than those listed.

Table 4	
Nidec Motor Corporation Approved Oil Specifications For Use with Anti-Friction Bearing	ıgs

	ISO VG 32		ISO \	ISO VG 68		ISO VG 150	
Oil	Viscosity: 130-165 SSU @ 100F		Viscosity: 284-347 SSU @100F		Viscosity: 620-765 SSU @ 100F		
Manufacturer	Mineral Base Oil	Synthetic Base Oil	Mineral Base Oil	Synthetic Base Oil	Mineral Base Oil	Synthetic Base Oil	
Chevron USA, Inc.	GST Turbine Oil 32	Cetus 32 Hipersyn	GST Turbine Oil 68	Cetus 32 Hipersyn	R & O Machine Oil 150	Cetus 32 Hipersyn	
Conoco Oil Co.	Hydroclear Turbine Oil 32	Syncon 32	Hydroclear Turbine Oil 32	Syncon 32	Hydroclear AW Hyd. Fluid 150	N/A	
ExxonMobil	DTE Oil Light, Teresstic 32	SHC 624	DTE Oil Heavy Medium, Teresstic 68	SHC 626	DTE Oil Extra Heavy, Teresstic 150	SHC 629	
Phillips Petroleum Co.	Magnus 32	Syndustrial "E" 32	Magnus 68	Syndustrial "E" 68	Magnus 150	N/A	
Shell Oil Co.	Tellus S2 MX 32	Tellus HD Oil AW SHF 32	Tellus S2 MX 68	Tellus HD Oil AW SHF 68	Morlina S3 BA 150	N/A	
Texaco Lubricants Co.	Regal 32	Cetus PAO 32	Regal 68	Cetus PAO 68	Regal 150	N/A	

Table 5					
Approximate Oil	Sump	Ca	oacities		

	Motor Type Designation	Oil Capacity (Quarts)		
Frame Size	(See Motor Nameplate)	Upper Bearing	Lower Bearing	
180 - 280	AU, AV-4			
180 - 280	AV	Grease		
320 - 440	RV			
320 - 360	RV-4, RU	3		
400	RV-4, RU	5		
110	RV-4 (2 pole)	17		
440	RV-4, RU (4 pole & slower)	6		
180 - 440	TV-9, TV, LV-9, LV	Graans		
180 - 360	TV-4, TU, LV-4, LU	Grease	Grasse	
400	TV-4, TU, LV-4, LU	6	Grease	
440	TV-4, TU, LV-4, LU	5		
	JU, JV-4	22		
449	HU, HV-4	12		
	JV-3, JV, HV	Crassa		
	HV, EV, JV, RV	Grease		
	RU, RV-4	30		
5000	HU, HV-4 (4 pole & slower)	12		
	HV-4 (2 pole only)	20		
	EU, JU, EV-4, JV-4	22	5	
5808-5810	HU, HV-4	24	3	
5807-5811	EU, JU, EV-4, JV-4	37	4	
5812	JU, JV4	41	4	
5813	RU, RV-4	48	4	
6808-6810	HU, HV-4	70	3	
6808-6810	HV (Bow Thruster)	Grease	Grease	
6808-6810	HV (Other Than Bow Thruster)	70	3	
6812	JU, JV4	48	7	
6813	RU, RV4	45	7	
8000	RU, RV-4	70	6	
8000	RV	Grease	Grease	
0600	RU, RV-4	95	13	
9000	RV	Grease	Grease	
6812	JU, JV4	48	7	
6813	RU, RV4	41	7	

General Information for Integral Horsepower (IHP) Motors on Variable Frequency Drives (VFDs)

Variable Frequency Drives (VFD)

A VFD is a type of controller used to vary the speed of an electric motor. The VFD takes a fixed AC voltage and frequency and allows it to be adjusted in order to get different speeds from the motor. Motor speed can be varied by changing the frequency of the input power waveform. The equation below shows how the frequency affects the speed of a three phase induction motor.

> Speed = 120* Fundamental Input Frequency Number of Motor Poles

How does a VFD work?

A VFD takes the fixed frequency and voltage sine wave from the power grid or power station and puts it through a few steps in order to allow the VFD user to vary the frequency and in turn control the motor speed. First it rectifies the AC power into DC Power. Because of this step, a term commonly used instead of VFD is inverter. This only describes one step of what the VFD does to the power waveform. Once rectified into a DC voltage the drive sends the power through a set of transistors or switches. These switches can take the DC waveform and by opening and closing at certain speeds and durations can create an output waveform that mimics the sine wave that is required to drive a three phase electric motor. The output wave form is known as a Pulse Width Modulation (PWM) waveform because the waveform is created by multiple pulses of the switches at short intervals.

What variables should be considered when deciding whether to power a motor with a VFD?

VFD compatibility with motors is complex. As a result, many variables must be considered when determining the suitability of a particular motor for use with a VFD. These variables include:

- Torque requirements (Constant or Variable)
- Speed Range
- Line / System Voltage
- · Cable length between the VFD and the motor
- Drive switching (carrier) frequency
- Motor construction

- VFD dv/dt winding end turn differential in voltage versus differential in time
- · High temperatures or high humidity
- Grouding system

Wider speed ranges, higher voltages, higher switching frequencies, insufficient grounding and increased cable lengths all add to the severity of the application and, therefore, the potential for premature motor failure.

How does a VFD affect the motor?

There are many things to consider when a motor is powered using a VFD or PWM power. When a motor is powered by a PWM waveform the motor windings very often see a large differential voltage, either from phase to phase or turn to turn. When the voltage differential becomes large enough it creates a reaction at the molecular level that converts available oxygen into O3. This phenomenon is called partial discharge or corona. This reaction creates energy in the form of light and heat. This energy has a corrosive effect on the varnish used to protect the motor windings. PWM waveforms can also magnify shaft voltages which lead to arcing across the bearing and causing premature bearing failure. Corrective action must be taken to mitigate these issues that arise when using an electric motor with a VFD.

How do I protect the motor?

Nidec Motor Corporation (NMC) has developed specific motor designs to decrease the harmful affects that a VFD can have on a motor. NMC's INVERTER GRADE® insulation system is the first line of defense against corona and phase to phase faults that can be common when a motor is powered using a PWM waveform. The INVERTER GRADE[®] insulation system is standard on all of NMC's Inverter Duty products. Along with the INVERTER GRADE[®] insulation, thermostats are installed as a minimum protection against over heating the motor. Special consideration must also be given to bearings in motors powered by VFD's. In order to create a low resistance path to ground for built up shaft voltages a shaft grounding device can be used. On larger horsepower motors an insulated bearing system should be used in conjunction with the shaft grounding device when installed, to force the stray shaft voltages to ground. The bearing failures are more prominent on motors with thrust handling bearings. NMC has created an Inverter Duty vertical motor line that not only uses the INVERTER GRADE® insulation system, but that also comes standard with a shaft grounding device. On motors that are 100 HP and greater the thrust bearing is also insulated for additional protection.

What does "Inverter Duty" mean?

An Inverter Duty motor should describe a motor that helps mitigate potential failure modes of a motor that is powered by a VFD. Inverter duty motor windings should be able to withstand the voltage spikes per NEMA MG1 Part 31.4.4.2 and protect against overheating when the motor is run at slow speeds. On thrust handling bearings it is apparent that the bearings require additional protection. Inverter Duty vertical motors should have a shaft grounding device to protect the motor bearings from fluting due to voltage discharge through the bearing. On larger motors (100HP and larger) the shaft should also be electrically isolated from the frame in order to aid the shaft grounding ring in discharging the shaft voltages to ground.

*This information applies only to Integral Horsepower (IHP) motors as defined on the Agency Approval page, under UL®t & CSA®t listings where indicated.

Thermal Overloads and Single Phase Motors

Motors with thermal overloads installed may not operate properly on a VFD. The current carrying thermal overload is designed for sine wave power. Operation on a VFD may cause nuisance tripping or potentially not protect the motor as would be expected on line power. Thermostats or thermistors installed in the motor and connected properly to the VFD may provide suitable thermal overload protection when operating on a VFD. (consult codes for installation requirements)

Single phase motors and other fractional horsepower ratings are not designed to be operated on a VFD. Within Nidec Motor Corporation standard products, all motors NEMA®r 48 frame (5.5" diameter) and smaller are not suitable for VFD applications. Three phase 56 and 143/145 frame applications should be noted on the catalog price page; or if in doubt ask a Nidec Motor Corporation technical representative for recommendations on compatibility with a VFD.

Slow Speed Motors

Motors with a base design of slower than six poles require special consideration regarding VFD sizing and minimizing harmonic distortion created at the motor terminals due to cable installation characteristics. Additional external PWM waveform filters and shielded motor cables designed for PWM power may be required to provide acceptable motor life. Harmonic distortion on the output waveform should be kept to a minimum level (less than 10%) mismatch impedance.

690V Applications

Motors that are rated for 690VAC and that will be powered by 690VAC PWM VFDs require the use of an external filter to limit peak voltage spikes and the use of an INVERTER GRADE® motor. Where available, an alternative to using an output filter is to upgrade to a 2300V insulation system.

Low Voltage TITAN® Motors

When using 449 frame and larger motors on PWM type VFDs consider the use of an external filter and shielded motor cables designed for PWM power to minimize harmonic distortion and peak voltages at the motor terminals. Harmonic distortion on the output waveform should be kept to a minimum level (less than 10%).

Bearing Currents Related to PWM Waveforms

Protection of the motor bearings from shaft currents caused by common mode voltages is becoming a standard feature on Inverter Duty motor products. Some installations may be prone to a voltage discharge condition through the motor bearings called Electrical Discharge Machining (EDM) or fluting. Vertical HOLLOSHAFT and HOSTILE DUTY World Motor come with grounding devices installed as standard. EDM damage is related to characteristics of the PWM waveform, and the VFD programming, and installations factors.

Bearing Protection on Inverter Duty Vertical Motors

All U.S. MOTORS® brand "Inverter Duty" vertical products have a shaft grounding system that allows damaging shaft currents a low resistance path to ground. **Bearings on vertical motors fed by VFD power without this bearing protection are not covered under any warranty.** All other bearing failure is covered per NMC's standard warranty. An electric motor repair shop approved to service U.S. MOTORS® brand motors must verify that the cause of the bearing failure was not due to EDM damage.

Guideline For Insulated Anti-Friction Bearings

Bearing insulation is required to prevent circulating shaft currents which can damage bearings. Circulating shaft current can be caused by use of improper power and/or ground cables, improper grounding systems and higher switching frequencies. Finding and correcting the external condition(s) is the responsibility of the system designer or specifying engineer. To prevent circulating shaft current in motors with anti-friction bearings, Nidec Motor Corporation's standard practice is to insulate the non-drive end bearing.

Adjustable Speed Drives produce a common mode voltage condition. To interrupt common mode voltage on induction motors of all sizes, NEMA MG1-2018 Part 31 recommends insulating both bearings. In cases where both anti-friction bearings are insulated, the system designer or specifying engineer should determine whether to apply one or more of the following options to prevent or reduce shaft currents: sinewave filters, line reactors or mechanical devices, such as shaft grounding or an insulated half coupling. Motors with shaft grounding devices are not suitable for installation in hazardous locations unless housed in an enclosure suitable for the specified Division (or Zone), Class and Group(s).

Multiple Motors on a Single VFD

Special considerations are required when multiple motors are powered from a single VFD unit. Most VFD manufacturers can provide guidelines for proper motor thermal considerations and starting/stopping of motors. Cable runs from the VFD and each motor can create conditions that will cause extra stress on the motor winding. Filters may be required at the motor to provide maximum motor life.

Grounding and Cable Installation Guidelines

Proper output winding and grounding practices can be instrumental in minimizing motor related failures caused by PWM waveform characteristics and installation factors. VFD manufacturers typically provide detailed guidelines on the proper grounding of the motor to the VFD and output cable routing. Cabling manufacturers provide recommended cable types for PWM installations and critical information concerning output wiring impedance and capacitance to ground.

Integrated Motor and Inverter

By integrating the motor and inverter at NMC's manufacturing facility, many of the motor compatibility problems are minimized or eliminated. During the manufacturing process, the motor is matched to the inverter characteristics which ensures the winding temperature and torque levels meet the design specification. Since the inverter output wiring to the motor is nearly eliminated, bearing currents are rarely experienced. When the unit is properly grounded, reducing the output cable lengths in conjunction with an inverter grade insulation system and low factory setting of the switching frequency of the inverter drive, results in low risk of voltage peaks produced by the PWM waveform.

Vertical Motors on VFDs

Vertical motors operated on VFD power present unique conditions that may require consideration by the user or installation engineer:

- Locked rotor and drive tripping caused by non-reversing-ratchet operation at low motor speeds. It is not recommended to operate motors at less than 1/4 of synchronous speed. If slow speeds are required contact NMC engineering.
- Unexpected / unacceptable system vibration and or noise levels caused by the torque pulsation characteristics of the PWM waveform, a system critical frequency falling inside the variable speed range of the process or the added harmonic content of the PWM waveform exciting a system component
- Application related problems related to the controlled acceleration/deceleration and torque of the motor on VFD power and the building of system pressure/ load.
- The impact the reduction of pump speed has on the down thrust reflected to the pump motor and any minimum thrust requirements of the motor bearings
- · Water hammer during shutdown damaging the non-reversing ratchet

Humidity and Non-operational Conditions

The possible build-up of condensation inside the motor due to storage in an uncontrolled environment or non-operational periods in an installation, can lead to an increased rate of premature winding or bearing failures when combined with the stresses associated with PWM waveform characteristics. Moisture and condensation in and on the motor winding over time can provide tracking paths to ground, lower the resistance of the motor winding to ground, and lower the Corona Inception Voltage (CIV) level of the winding.

Proper storage and maintenance guidelines are important to minimize the potential of premature failures. Space heaters or trickle voltage heating methods are the common methods for drying out a winding that has low resistance readings. Damage caused by these factors are not covered by the limited warranty provided for the motor unless appropriate heating methods are properly utilized during non-operational periods and prior to motor start-up.

NEMA® Application Guide for AC Adjustable Speed Drive Systems: http://www. nema.org/stds/acadjustable.cfm#download

* This information applies only to Integral Horsepower (IHP) motors as defined on the Agency Approval page, under UL^{et} & CSA^{et} listings where indicated.

Warranty Guidelines

The information in the following section refers to the motor and drive application guidelines and limitations for warranty.

Hazardous Location Motors

Use of a variable frequency drive with the motors in this catalog, intended for use in hazardous locations, is only approved for Division1, Class I, Group D hazardous location motors with a T2B temperature code, with a limitation of 2:1 constant torque or 10:1 variable torque output. **No** other stock hazardous location motors are inherently suitable for operation with a variable frequency drive. If other requirements are needed, including non-listed Division 2, please contact your Nidec Motor Corporation territory manager to conduct an engineering inquiry.

575 Volt Motors

575 volt motors can be applied on Inverters when output filters are used. Contact the drive manufacturer for filter selection and installation requirements.

Applying INVERTER GRADE[®] Insulated Motors on Variable Frequency Drives (2, 4, 6 pole)

The products within this catalog labeled "Inverter Duty" or "Vector Duty" are considered INVERTER GRADE[®] insulated motors. INVERTER GRADE[®] motors exceed the NEMA^{®†} MG-1 Part 31 standard. Nidec Motor Corporation provides a three-year limited warranty on all NEMA^{®†} frame INVERTER GRADE[®] insulated motors and allows long cable runs between the motor and the VFD (limited to 400 feet without output filters). Cable distance can be further limited by hot and humid environments and VFD manufacturers cable limits. These motors may be appropriate for certain severe inverter applications or when the factors relating to the end use application are undefined (such as spares).

Nidec Motor Corporation's U.S. Motors® brand is available in the following INVERTER GRADE® insulated motors:

- Inverter Duty NEMA^{®†} frame motors good for 20:1 Variable Torque & 5:1 Constant Torque, including Vertical Type RUSI (10:1 V.T.)
- Inverter Duty motors rated for 20:1 Constant Torque
- \bullet ACCU-Torq® and Vector Duty Motors with full torque to 0 Speed or 5000:1
- 841 Plus® NEMA®† Frame Motors

Applying Premium Efficient motors (that do not have INVERTER GRADE[®] insulation) on Variable Frequency Drives (2, 4, 6 pole)

Premium efficient motors without INVERTER GRADE insulation meet minimum NEMA^{®†} MG-1, Section IV, Part 31.4.4.2. These motors can be used with Variable Frequency Drives (with a reduced warranty period) under the following parameters:

- On NEMA®† frame 447 and smaller motors, 20:1 speed rating on variable torque loads & 4:1 speed range on constant torque loads.
- On TITAN $^{\otimes}$ 449 and larger frame motors, 10:1 speed rating on variable torque loads.

 On TITAN[®] frame motors, inquiry required for suitability on constant torque loads.

Cable distances are for reference only and can be further limited by hot and humid environments (refer to Table 1). Refer to specific VFD

Table 1 - Cable Distances					
Maximum Ca	ble Distance	VFD to Moto)r		
Switching Frequency	460 Volt	230 Volt	380 Volt		
3 Khz	127 ft	400 ft	218 ft		
6 Khz	90 ft	307 ft	154 ft		
9 Khz	73 ft	251 ft	126 ft		
12 Khz	64 ft	217 ft	109 ft		
15 Khz	57 ft	194 ft	98 ft		
20 Khz	49 ft	168 ft	85 ft		

manufacturers cable limits. Refer to the Motor/ Inverter Compatibility page for special consideration of vertical motor bearings.

Warranty Period Clarifications and Exceptions

Standard Energy Efficient Exclusion

Applying Standard & Energy Efficient Motors on Variable Frequency Drives is not recommended. VFD related failures on standard and energy efficient motors will not be covered under warranty.

Vertical Motor Windings

Premium efficient vertical motors without INVERTER GRADE[®] insulation that are installed using the criteria described in this document and applied in the correct applications shall have a warranty while powered by a VFD for 12 months from date of installation or 18 months from date of manufacturing whichever comes first. See limited warranty page for horizontal motor warranty periods.

Bearing Exclusion for Thrust Handling Bearings

Bearings used in premium efficienct vertical motors, and all thrust handling bearings, that are powered by VFDs without shaft grounding devices or insulated bearings (when required) will not be covered under any warranty for damages caused from being powered by a VFD. All other bearing failure is covered per NMC's standard warranty. An electric motor repair shop approved to service U.S. MOTORS[®] brand motors must verify that the cause of the bearing failure was not due to Electrical Discharge Machining.

Medium Voltage and Slow Speed Considerations

Motors that are rated above 700 VAC or that are eight pole and slower require special consideration and installation and are not covered under the warranty guidelines in this document. Motors that are rated above 700VAC have special cable length and voltage differential issues that are specific to the VFD type and manufacture. The motor construction and cost may vary dramatically depending on the VFD topology and construction. Contact your NMC representative with VFD manufacturer name and model type for application and motor construction considerations. Motors that are designed eight pole and slower also require special installation and filters per the drive manufacturer.

* This information applies only to Integral Horsepower (IHP) motors as defined on the Agency Approval page, under UL®t & CSA®t listings where indicated.

PENTAIR FAIRBANKS NIJHUIS"

October 17, 2022

Hayes Pump, Inc. 66 Old Power Mill Road West Concord, MA 01742

Attn: Craig Huff

Subject:	Purchase Order Number:	132657
-	Sales Order Number:	53113215
	Project:	0913484

To Whom It May Concern:

The submittal data for the above order is attached. This submittal is for your review and approval prior to release for manufacturing.

We require submittal return with your review comments and/or approval to release within 35 days for production scheduling purposes. At time of release, please advise firm "on-site" requirement dates for this equipment.

Very Truly Yours,

Specifications Department Pentair Flow Technologies

Return Submittal to: fmproduct@pentair.com

CC:

Enclosures: (1) pdf submittal

Pentair Flow Technologies General Clarifications

- 1. The supply and installation of the following items are by others unless otherwise identified in this submittal.
 - Anchor bolts, nuts and washers.
 - Gauges, valves and miscellaneous fittings and adapters.
 - Connecting piping and/or supports.
 - Maintenance lubrication, lubrication piping and related equipment.
 - System control apparatus.
 - Maintenance tools and/or storage boxes.
 - Equipment tags
 - Installation or field performance testing.
- 2. The following items are to be installed in the field:
 - Accessory items that are shipped separately.
- 3. Verification and/or confirmation of the following are requested at or prior to release of this equipment.
 - Overall lengths or elevations

	Fairbanks Nijhuis Submittal Data For Marsh Road Water Pump Station Hudson, NH
Supplier:	Hayes Pump, Inc. 66 Old Power Mill Road West Concord, MA 01742
Manufacturer:	
Pump:	Fairbanks Nijhuis 3601 Fairbanks Ave. Kansas City, Kansas 66106-0906 (913) 371-5000
Project Number:	0913484
Sales Order Number:	53113215
Quantity:	1
Pump Size & Model:	12E 7100AW
Motor:	Nidec P. O. Box 3946 St. Louis, MO 63136 (314) 553-2878

1. **Comment:** Setting Plan to include the 6" height of the concrete slab. The total length from the centerline of the discharge to the centerline of the suction should be 8.0 FT with dimension from top of can to centerline of the suction 87.5"

Response: Confirmed, See Revised Submittal

 Comment: I'm missed this requirement during the order entry process, per but the contract drawing M001, the distance from the bottom of the pump station slab to the centerline of the suction can inlet needs to be 5'-6". (See below screenshot of section view.) This translates to distance of 81.5" from top of can to the suction centerline, and 8.0 FT from discharge connection centerline to suction inlet centerline. Please adjust overall can lengths for both project #'s 0913483 & 0913484 as needrd to accommodate this suction inlet location, and revise the setting plans and can dimensional drawings accordingly.

Response: Confirmed, See Revised Submittal

2. **Comment:** Please advise if the type CT and/or type D discharge heads are provided with pressure gauge tap, either at the top of the flange or other location

Response: Confirmed, Pressure Gauge tap is Provided on the Discharge Head

Fairbanks Nijhuis Table Of Contents

Pump:	
Included Features	. IF-7100
Technical Clarifications	. CE-5000
Performance Curve	. 0913484C
Pump Setting Plan	.0913484SP1
Suction Can Setting Plan	.0913484SP2
Material Specifications	. ML-7100
Assembly Drawings	
Bowl Assembly	.0913484AB
Column & Shaft	.0913484AC
Discharge Head	. 0913484AH
Shaft Seal	.0913484AS
Pump Technical Data	. TD-7100
Critical Speed Calculations	. 16 Pages
Mechanical Seal Data	. 5 Pages
Paint Specifications	. PC-1000
Driver:	
Performance Data	. FM013
Certification & Accessory Data	. FM015
Dimensions	.1 Page
Vertical Hollowshaft Coupling Dimensions	.1 Page
Lubrication	. 4 Pages
Silicone Rubber Space Heaters	. 2 Pages
Heater Connection Diagram	. 970798
Klixon Miniature Protector	. 2 Pages
Connection Diagram	. 834066
Paint Specifications	. 5 Pages
Wiring Diagram	.1 Page

Fairbanks Nijhuis Included Features

- Potable Water Application None NSF Certified
- Variable Speed Operation
- Suction Can
- Pump Shipped Assembled
- 12E, 6 Stage Flanged Bowl Assembly
- Suction Bell & Threaded Discharge Case
- Dynamically Balanced 316 Stainless Steel Impellers
- 416 Stainless Steel Collet Impeller Fasteners
- 316 Stainless Steel Impeller Wear Ring
- Stainless Steel Bowl Wear Ring
- 8" Flanged Column with 1-3/16" Open Line Shaft
- 416 Stainless Steel Line Shaft and Coupling
- 304 Stainless Steel Top Shaft Sleeve
- 16-1/2 x 6 Type "D" Above Ground Discharge Head
- 175 Lb. Seal Box
- Mechanical Seal John Crane 5610
- 416 Stainless Steel Drive Shaft
- 416 Stainless Steel Pump Shaft
- Certified Non-Witness Performance Test
- Curve Approval Required Prior to Shipment
- Test Logs Required

Fairbanks Nijhuis Technical Clarifications & Exceptions 1. Refer also to clarifications that may be included on the vendor submittal.

0913484SR2.doc

CE-5000

Fairbanks Nijhuis							
		Material Specifications					
Item Description Material Specification ¹							
1	Top Shaft Adjusting Nut	Steel	A108 Gr. 12l14				
6	Water Slinger	Rubber Neoprene					
7	Discharge Head	Cast Iron	A48 Class 30				
11	Gasket	Tag Board	F104				
13	Top Shaft Sleeve	Stainless Steel	AISI 304 SSTL.				
16	Column Flange Gasket	Tag Board	F104				
17	Seal Box	Cast Iron	A48 Class 30				
17A	Seal Box Bushing	Bismuth Bronze	C89835				
19A	Motor Shaft	Steel	AISI 1045				
19B	Top Shaft	Stainless Steel	A582 S41600 MOD				
21	Top Column	Steel	A53 & A361				
23	Line Shaft	Stainless Steel	A582 S41600 MOD				
25	Bearing Retainer	SST or Bronze	Mfg. Option				
26	Bearing	Neoprene	Commercial				
29	Shaft Sleeve	Stainless Steel	AISI 304				
30	Column	Steel	A53 & A361				
31	Shaft Coupling	Steel ²	A108 Grade 12L14				
32	Pump Shaft	Stainless Steel	A582 S41600 MOD				
34	Top Bowl Bearing	Bronze	B505 Alloy 932				
35	Inter Bowl Bearing	Bronze	B505 Alloy 932				
36	Inter Bowl	Cast Iron ³	A48 Class 30				
36W	Bowl Wear Ring	Stainless Steel	A743 CA-40 MOD				
38	Impeller	Stainless Steel	A743 GR CF-8M				
38W	Impeller Wear Ring	Stainless Steel	A743 GR CF-8M				
39	Drive Collet	Stainless Steel	A582 S41600				
40	Suction Bell	Cast Iron	A48 Class 30				
41	Suction Bearing	Bronze	B505 Alloy 932				
50	Connector Bearing	Bronze	B505 Alloy 932				
54	Discharge Case	Cast Iron	A48 Class 30				
55	Top Inter Bowl	Cast Iron ³	A48 Class 30				
58	Sand Collar	Bronze	B505 C93200				
59	Suction Bowl Plug	Cast Iron	Commercial				
88	Set Screw	Stainless Steel	18-8 SSTL.				
456	Mechanical Seal		Commercial				
	Bowl Bolting	Steel	Commercial				
	Column Bolting	Steel	Commercial				
	Discharge Head Bolting	Steel	Commercial				

 ¹ All material specifications are ASTM unless otherwise noted and are for description of chemistry only.
 ² Pump Shaft Coupling is Stainless Steel, ASTM A582 S41600
 ³ Bowls are coated Cast Iron

Fairbanks Nijhuis Technical Data⁴

Bowl Assembly	
Bowl Size	12E
Pump Shaft Diameter	1.938
Bowl Weight, First Stage, Lbs	410
Bowl Weight, Each Additional Stage Lbs	145
Allowable Shaft Stretch	0.375
Maximum Working Pressure, Standard Material PSI	400
Maximum Hydro Pressure, Standard Material PSI	600
Impeller	
Impeller Eye Area In ²	25.5
Rotor Wt. Per Stage K _A , Lbs	31
Maximum Sphere Size	0.75
Thrust Factor K _T Lbs./Ft	9.4
WK ² LbsFt ^{.2}	1.3
Running Position (Above Bowl Seat)	0.125
Maximum Clearances	
Bowl Bearings	0.010
Wear Ring	0.023
Column	
Nominal Size	8
Schedule	30
Outside Diameter	8.625
Wall Thickness	0.277
Weight Per Foot, Lbs./Ft	24.7
Flange OD	11.75
Flange Weight (Each) Lbs.	17.98
Line Shaft	
Size	1-1/4
Weight Per Foot (Lbs./Ft.)	4.18
Shaft Coupling Weight (Lbs.)	1.6
Shaft Sleeve Thickness	0.093
Sealing Box	
Inside Diameter of Box	2-3/16
Depth of Box	1-5/8
Outside Diameter of Sleeve	1-7/16
Max Bearing Clearances	
Lineshaft	0.025
Sealing Box	0.20
Discharge Head	
Size & Type	16-1/2 X 6
Туре	D
Maximum Discharge Pressure, PSI	
250 Lb. Flange	400
Weight, Including Packing Box, Lbs.	487

⁴ Values shown are in inches unless otherwise noted.

Project Name: Marsh Road Water Pump Station Sales Order Number: 53113215 Project Number: 0913484 Pump Model: 12E Revision: 0

Prepared By: Billy Faltas Engineer

Date Prepared: 7/29/2022

Ref: 0913484LC PG1 **Revision:** 0

Analysis Conclusion

All structural natural frequencies are outside of the required separation margin. There should be no excessive vibration due to structural resonance when the pump is operated within the specified operating region.

Summary of Results For Pump and Motor Assembly

The X direction natural frequency is outside of the required separation margin. The Y direction natural frequency is outside of the required separation margin.

ω _{1x} =	2709	RPM
$\omega_{1y} =$	2827	RPM
Min Speed =	1080	RPM
Max Speed =	1780	RPM
ω_{1_X} Percentage of Min Speed =	251%	
ω_{1_X} Percentage of Max Speed =	152%	
ω_{1y} Percentage of Min Speed =	262%	
ω_{1y} Percentage of Max Speed =	159%	

Required Margin = 20%

Summary of Results For Column Assembly

The natural frequency is outside of the required separation margin.

ω ₁ =	796	RPM
Minimum Speed =	1080	RPM
Maximum Speed =	1780	RPM
ω_1 Percentage of Min Speed =	74%	
ω_1 Percentage of Max Speed =	45%	

Required Margin = 20%

Ref: 0913484LC PG2 **Revision:** 0

Summary of Analysis Method For Pump and Motor Assembly

Analysis is performed in accordance with ANSI/HI 9.6.8-2014. The above floor portion of the pump was analyzed as a cantilever beam to find its first, or lowest, natural frequency. The foundation was assumed to be rigid. The discharge pipe was assumed to add no support to the pump. The beam was given a non-constant stiffness along its length to model the changing geometry. To reflect the non-symmetry of the problem, two axes were analyzed with each axis having a different stiffness. The Y-axis is parallel to the discharge pipe centerline. The X-axis is perpendicular to the Y-axis. A numerical method was used to find the deflection, D, at the free end of the beam.

The first natural frequency is given by the equation, $\omega_1 = \frac{187.7}{\sqrt{D}}$, where ω is the natural frequency in RPM.

In order to model the motor's effect on the system, the motor's equivalent moment of inertia was calculated using the data supplied by the motor manufacturer and the equation for deflection of a cantilever beam with a constant moment of inertia.

$$I = \frac{FL^3}{3Ey} \quad in^4$$

Where I is the equivalent moment of inertia of the motor, F (lb) is the weight of the motor, L (in) is the height of the motor's center of gravity relative to it's base, E (psi) is the modulus of elasticity of the pump material, and y (in) is the deflection of the motor at it's center of gravity.

Summary of Results For Pump and Motor Assembly

The X direction natural frequency is outside of the required separation margin. The Y direction natural frequency is outside of the required separation margin.

ω _{1x} = 2709	RPM
$\omega_{1y} = 2827$	RPM
Min Speed = 1080	RPM
Max Speed = 1780	RPM
ω_{1_X} Percentage of Min Speed = 251%	
ω_{1x} Percentage of Max Speed = 152%	
ω_{1y} Percentage of Min Speed = 262%	
ω_{1y} Percentage of Max Speed = 159%	

Required Margin = 20%

Ref: 0913484LC PG3 **Revision:** 0

Inputs For Pump and Motor Assembly

Type of Discharge Head = D	
Discharge Head Size = 16-1/2 x 6	
Variable Speed Application = Yes	
Discharge Head Height = 21.5	in
Discharge Head Weight = 487	lbs
Elastic Modulus = 15000000	psi

Motor

Motor Weight = 1110	lbs
Motor Center of Gravity = 18	in
Motor Deflection at Center of Gravity = 0.00348	in
Motor Reed Critical Frequency = 54	Hz

Operating Conditions

Minimum Operating Speed = 1080	RPM
Maximum Operating Speed = 1780	RPM
Required Separation Margin = 20%	

Calculations For Pump and Motor Assembly

Motor Moment of Inertia

I= 41.34	in⁴	$I = \frac{FL^3}{3E\gamma}$	in^4
)	

Height				
-				

Discharge Head Height plus Motor CG = 39.5 in

Ref: 0913484LC PG4 **Revision:** 0

Calculations Continued

A plot of the deflection of the pump and motor assembly obtained from the numerical results is shown below.

Deflection at 39.5in X

 $D_x = 0.0048$ in

Deflection at 39.5in Y

 $D_v = 0.00441$ in

Ref: 0913484LC PG5 Revision: 0

Calculations Continued

Natural Frequency	
	ω _{1x} = 2709

RPM

 ω_{1x} Percentage of Min Speed = 251%

RPM

 ω_{1x} Percentage of Max Speed = 152%

$$\omega_1 = \frac{187.7}{\sqrt{D}}$$

 $\omega_{1_{y}} = 2827$ $\omega_{1_{y}}$ Percentage of Min Speed = 262% $\omega_{1_{\rm V}}$ Percentage of Max Speed = 159%

Required Margin = 20%

Ref: 0913484LC PG6 **Revision:** 0

Summary of Analysis Method For Column Assembly

Analysis is performed in accordance with ANSI/HI 9.6.8-2014. The below floor portion of the pump was analyzed as a cantilever beam to find its first, or lowest, natural frequency. The foundation was assumed to be rigid. The beam was given a non-constant stiffness along its length to model the changing geometry. A numerical method was used to find the deflection, D, at the free end of the beam.

The first natural frequency is given by the equation, $\omega_1 = \frac{187.7}{\sqrt{D}}$, where ω is the natural frequency.

Summary of Results For Column Assembly

(

The natural frequency is outside of the required separation margin.

ω ₁ =	796	RPM
Minimum Speed =	1080	RPM
Maximum Speed =	1780	RPM
ω ₁ Percentage of Min Speed =	74%	
ω ₁ Percentage of Max Speed =	45%	

Required Margin = 20%

Ref: 0913484LC PG7 **Revision:** 0

Inputs For Column Assembly

Pump

Pump Model = 12E	
Number of Stages = 6	
Pump Length = 92.00	in
Bowl Assembly Length = 72.88	in
Bowl Assembly Weight = 1135	lbs
Bowl Assembly Elastic Modulus = 14500000	psi
Column Size = 8	in
Column Elastic Modulus = 30000000	psi

Operating Conditions

Minimum Speed = 1080	RPM
Maximum Speed = 1780	RPM
Required Margin = 20%	

Calculations For Column Assembly

Column Length = 19.12	in	
Column Weight Per Foot = 24.70	lbs/ft	π
Column Moment of Inertia = 63.35	in⁴	$Inertia = \frac{\pi}{64}(0D^4 - ID^4)$

A plot of the deflection of the pump obtained from the numerical results is shown below.

Deflection at 92in

D = 0.0557 in

Ref: 0913484LC PG8 **Revision:** 0

Calculations Continued

Natural Frequency

RPM

$$\omega_1 = \frac{187.7}{\sqrt{D}}$$

 $ω_1$ Percentage of Min Speed = 74% $ω_1$ Percentage of Max Speed = 45%

Required Margin = 20%

ω1 = 796

Ref: 0913484LC PG9

Revision: 0

A Campbell diagram provides a visual method to verify no resonance conditions will occur when operating a pump over its operating speed range. The diagram is constructed by plotting frequency in Hz versus frequency in RPM. Common excitation frequencies are shown as diagonal lines. The natural frequencies of the pump are shown as horizontal lines. A resonance condition is likely to occur when a horizontal line crosses a diagonal line within the operating speed range.

Rotor Torsional Natural Frequency Analysis

Project Name: Marsh Road Water Pump Station Sales Order Number: 53113215 Project Number: 0913484 Pump Model: 12E Revision: 0

Prepared By: Billy Faltas Engineer

Date Prepared: 7/29/2022

Ref: 0913484TC PG1 **Revision:** 0

Summary of Analysis Method

Analysis is performed in accordance with ANSI/HI 9.6.8-2014. The torsional natural frequencies were calculated using Holzer's method. A diagram of the system is shown below.

Where J_1 and J_2 are the masses of the motor and coupling, respectively. K_1 is the motor shaft stiffness and K_2 is the line shaft stiffness above the top most impeller. J_3 is mass of the top most impeller. K_n is the stiffness of the pump shaft between each impeller stage and J_n is the mass of each impeller below the top impeller.

Summary of Results

A torsional natural frequency in the separation margin was found. A steady state torsional stress analysis will be performed to verify safe operation of the pump rotor.

The torsional natural frequency associated with the highest amount of torque is shown below.

ω = 1207	RPM	Required Margin = 20%	
Min Speed = 1080	RPM	Min Vane Pass = 37800	RPM
Max Speed = 1780	RPM	Max Vane Pass = 62300	RPM
ω Percentage of Min Speed = 112% ω Percentage of Max Speed = 68%		ω Percentage of Min Vane Pass = 3% ω Percentage of Max Vane Pass = 2%	

Although there is a torsional natural frequency in the operating range, the torsional stress analysis showed that there will be no adverse affect on the life of the pump.

Shaft Stress = 4145 psi Allowable Stress = 8125 psi Factor of Safety = 1.96

Ref: 0913484TC PG2 **Revision:** 0

Inputs			
Rotor Inertias			
WR ² 1=	17.00	lb-ft ²	
WR ² ₂ =	0.00	lb-ft ²	
WR ² ₃ =	1.30	lb-ft ²	
WR ² n =	1.30	lb-ft ²	
Shafting	6 655+01	in-lb/rad	
K -	6.03E+04	in-lb/rad	
K ₂ -	1 505,06	in-lb/rad	
Kh =	1.596+06	in-id/rad	
Pump			
Model =	12E		
Number of Stages =	6		
Number of Impeller Vanes =	5		
Number of Bowl Vanes =	7		
Operating Conditions			
Minimum Speed =	1080	RPM	
Maximum Speed =	1780	RPM	
Separation Margin =	20%		
Calculations			
Potor Massas			
	6 34	in-lb-sec ²	im ²
51 2 =	0.00	in-lb-sec ²	$144 \frac{th^2}{ft^2}$
52 2 =	0.48	in-lb-sec ²	$J = \frac{J c}{in}$
•3 In –	0.48	in-lh-sec ²	$386.4 \frac{m}{sec^2}$
511 –	0.40	11-10-300	
Vane Pass			
Min Vane Pass =	37800	RPM	
Max Vane Pass =	62300	RPM	
Torsional Natural Frequencies			
The lowest torsional natural frequencies cal	culated are	reported below.	
$\omega_1 = 1207$	RPM		
$\omega_2 = 9064$	RPM		
$\omega_3 = 17348$	RPM		
$\omega_4 = 24492$	RPM		
ω ₅ = 29981	RPM		

 $\omega_6 = 33432$

 $\omega_7 = 91003$

RPM

RPM

Ref: 0913484TC PG3 **Revision:** 0

Calculations Continued

ω ₁ % of Min Speed =	112%
ω_1 % of Max Speed =	68%
ω_1 % of Min Vane Pass =	3%
ω_1 % of Max Vane Pass =	2%
ω_2 % of Min Speed =	839%
ω_2 % of Max Speed =	509%
ω_2 % of Min Vane Pass =	24%
ω_2 % of Max Vane Pass =	15%
ω₃ % of Min Speed =	1606%
ω_3 % of Max Speed =	975%
ω_3 % of Min Vane Pass =	46%
ω_3 % of Max Vane Pass =	28%
ω_4 % of Min Speed =	2268%
ω_4 % of Max Speed =	1376%
ω_4 % of Min Vane Pass =	65%
ω_4 % of Max Vane Pass =	39%
ω_5 % of Min Speed =	2776%
ω₅ % of Max Speed =	1684%
ω_{5} % of Min Vane Pass =	79%
ω_{5} % of Max Vane Pass =	48%
ω_6 % of Min Speed =	3096%
ω_6 % of Max Speed =	1878%
ω_6 % of Min Vane Pass =	88%
ω_6 % of Max Vane Pass =	54%
ω_7 % of Min Speed =	8426%
ω_7 % of Max Speed =	5113%
ω_7 % of Min Vane Pass =	241%
ω_7 % of Max Vane Pass =	146%

Ref: 0913484TC PG4

Revision: 0

A Campbell diagram provides a visual method to verify no resonance conditions will occur when operating a pump over its operating speed range. The diagram is constructed by plotting frequency in Hz versus frequency in RPM. Common excitation frequencies are shown as diagonal lines. The torsional natural frequencies of the pump are shown as horizontal lines. A resonance condition is likely to occur when a horizontal line crosses a diagonal line within the operating speed range. For clarity two different Hz frequency scales are shown below.

Ref: 0913484TC PG5

Revision: 0

In order to verify that the torsional natural frequency will have no adverse effects on the life of the pump a torsional stress analysis of the shafting was performed.

Inputs			
	Natural Frequency =	1207	RPM
	Running Speed =	1207	RPM
	Motor HP =	100	HP
	Motor Speed =	1800	RPM
	Shaft Minimum Diameter =	1.25	in
	Shaft Ultimate Tensile Strength =	100000	psi
	Fatigue Stress Failure Criteria	ASME Sect	ion III
	Torque Amplification Factor =	1	%
Calcula	tions Torque = 1589.614	in-lb	$Torque(in - lb) = \frac{63000HP}{RPM} \cdot (1 + TAF)$
	Polar Moment of Inertia = 0.24	in⁴	Polar Moment of Inertia = $\frac{\pi Shaft Diameter^4}{32}$
	Shaft Stress = 4145	psi	$Stress = \frac{Torque \cdot Shaft Radius}{Polar Moment of Inertia}$
	Allowable Stress = 8125	psi	
	Factor of Safety = 1.96		$Factor of Safety = \frac{Allowable Stress}{Shaft Stress}$

Conclusion

Although there is a torsional natural frequency in the operating range, the torsional stress analysis showed that there will be no adverse affect on the life of the pump.

TYPE 5610/56100 SINGLE O-RING SEALS

Technical Specification

- A Face/Primary Ring
- B Seat/Mating Ring
- \boldsymbol{C} Secondary O-ring
- **D** Nonclogging
- Wave Spring
- E Sleeve
- F Gland

Product Description

The 5600 Series is a modular cartridge seal family that includes interchangeable elastomer bellows, metal bellows, and elastomer O-ring pusher seal designs.

- Type 5610 and 5610Q single seal arrangements incorporate an elastomer O-ring as the secondary sealing member
- A common seal head/mating ring set, utilized throughout all versions, is reversible to allow rotating seat/mating ring or rotating seal head operation, and is interchangeable with metal bellows seal heads
- Seal has an optional quench gland (5610Q) with carbon ring throttle bushing

Performance Capabilities

- Temperature: -20°F to 400°F/-30°C to 205°C
- Pressure: up to 3.000"/75mm: 300 psi(g)/21 bar(g) max. 75mm/3.000" and over: 200 psi(g)/13 bar(g) max.
- Speed:up to 5000 fpm/25 m/s
- End play/axial float allowance: 0.005"/0.13mm
- Runout/out of squareness: 0.002"/0.05mm

Design Features

- · Reversible seal head
- Fits ANSI B73.1M, ISO 3069 and DIN 24960 seal chambers
- Optimized primary ring design for greater reliability
- Nonclogging wave spring outside the product

john crane

TYPE 5610/56100 SINGLE O-RING SEALS

Technical Specification

Type 5610 Typical Arrangement

Type 5610 Dimensional Data (inches)

Seal Size/D1		D	4										
(inches)	D2	Min.	Max.	D26	L12	L23	L39	L56	L90	L91	L92	М	Ν
1.000	1.375	1.445	1.889	4.000	1.989	1.353	1.954	0.531	2.000	0.160	0.035	0.525	2.805
1.125	1.500	*	2.015	4.125	2.062	1.446	2.062	0.531	2.125	0.125	*	0.525	2.933
1.250	1.625	*	2.294	4.250	2.062	1.446	2.062	0.531	2.125	0.125	*	0.525	3.213
1.375	1.750	*	2.421	4.375	2.062	1.446	2.062	0.531	2.125	0.125	*	0.525	3.338
1.500	1.937	2.007	2.680	4.875	2.156	1.487	2.125	0.593	2.187	0.156	0.031	0.525	3.599
1.625	2.062	2.132	2.812	5.000	2.156	1.487	2.125	0.593	2.187	0.156	0.031	0.562	3.766
1.750	2.170	2.240	2.918	5.250	2.156	1.487	2.125	0.593	2.187	0.156	0.031	0.562	3.875
1.875	2.312	2.382	2.918	5.250	2.156	1.487	2.125	0.593	2.187	0.156	0.031	0.562	3.875
2.000	2.437	2.507	3.015	5.500	2.375	1.601	2.312	1.063	2.375	0.187	0.062	0.562	4.000
2.125	2.562	2.632	3.360	5.859	2.375	1.601	2.312	0.593	2.375	0.187	0.062	0.687	4.469
2.250	2.687	2.757	3.485	6.500	2.375	1.601	2.312	0.593	2.375	0.187	0.062	0.687	4.566
2.375	2.812	2.882	3.610	6.500	2.484	1.717	2.466	0.625	2.528	0.143	0.018	0.687	4.719
2.500	3.062	*	3.891	6.750	2.484	1.717	2.562	0.625	2.625	0.125	*	0.687	5.000
2.625	3.312	*	4.062	6.750	2.500	1.625	2.500	0.625	2.562	0.125	*	0.687	5.170
2.750	3.312	*	4.062	6.750	2.500	1.625	2.500	0.625	2.562	0.125	*	0.687	5.170
2.875	3.375	*	4.186	7.000	2.500	1.725	2.500	0.625	2.562	0.125	*	0.687	5.312
3.000	3.625	*	4.469	7.750	2.500	1.787	2.562	0.685	2.625	0.125	*	0.812	5.720
3.125	3.750	3.853	4.600	7.875	2.562	1.593	2.562	**	2.687	0.125	*	0.812	5.845
3.250	3.750	3.853	4.600	7.437	2.562	1.593	2.510	* *	2.635	0.177	0.052	0.812	5.845
3.375	4.000	4.125	4.850	8.125	2.562	1.593	2.562	* *	2.687	0.125	*	0.812	6.095
3.500	4.125	4.250	4.975	8.250	2.562	1.593	2.562	**	2.687	0.125	*	0.812	6.220
3.625	4.218	4.343	5.100	8.375	2.562	1.593	2.562	**	2.687	0.125	*	0.687	6.250
3.750	4.343	4.468	5.199	8.750	2.562	1.593	2.562	**	2.687	0.125	*	0.687	6.770
3.875	4.468	4.593	5.375	8.750	2.562	1.593	2.562	* *	2.687	0.125	*	0.812	6.636
4.000	4.593	4.718	5.500	9.000	2.562	1.593	2.562	**	2.687	0.125	*	0.812	6.761
4.125	4.718	4.843	5.625	9.000	2.562	1.593	2.562	**	2.687	0.125	*	0.812	6.886
4.250	4.843	4.968	5.750	9.250	2.562	1.593	2.562	**	2.687	0.125	*	0.812	7.011
4.500	5.093	5.218	6.000	9.500	2.562	1.593	2.562	**	2.687	0.125	*	0.812	7.261
4.750	5.343	5.468	6.313	10.375	2.562	1.593	2.562	**	2.687	0.125	*	0.812	7.574
5.000	5.843	5.968	7.260	12.000	2.953	1.749	3.043	**	3.168	0.125	*	0.812	10.000
5.250	6.093	6.218	7.510	12.250	2.953	1.749	3.043	**	3.168	0.125	*	0.812	10.250
5.500	6.343	6.468	8.000	12.687	2.953	1.749	3.043	**	3.168	0.125	*	0.937	10.500

*Not applicable. Completely outside mounted.

**L56 not applicable. Refer to L23 for sizes over 3".

TYPE 5610/56100 SINGLE O-RING SEALS

Technical Specification

Basic Pressure Rating

John cra

The basic pressure rating is for a standard seal, as shown in the typical arrangement, when installed according to the criteria given in this data sheet and generally accepted industrial practices.

The basic pressure rating assumes stable operation at the speeds indicated on the above chart in a clean, cool, lubricating, nonvolatile liquid with an adequate flush rate. When used with the multiplier factors, the basic pressure rating can be adjusted to provide a conservative estimate of the dynamic pressure rating. For process services outside this range or a more accurate assessment of the dynamic pressure rating, contact John Crane for more information.

Multiplier Factors

	Selection Considerations	Multiplier Factor
Sealed Fluid Lubricity (applies to Silicon Carbide vs. Silicon Carbide only)	Petrol/Gasoline, Kerosene, or Better Water and Aqueous Solutions (<176°F/80°C) Flashing Hydrocarbons*	x 1.00 x 0.75 x 0.60
Sealed Fluid Temperature (applies to Carbon vs. Silicon Carbide)	Up to 175°F/80°C From 175°F to 250°F/80°C to 120°C From 250°F to 355°F/120°C to 180°C Above 350°F/180°C	x 1.00 x 0.90 x 0.80 x 0.65

*The ratio of sealed pressure to vapor pressure must be greater than 1.5, otherwise consult John Crane. If the specific gravity is less than 0.60, consult John Crane.

Example for Determining Pressure Rating Limits:

Seal: 2"/50.8mm diameter Type 5610 Product: aqueous solution Face materials: silicon carbide vs. silicon carbide Operating temperature: 175°F/80°C Operating speed: 2950 rpm

Using the pressure rating limits graph, the maximum pressure would be 268 psi(g)/18.5 bar(g).

From the multiplier factors chart, apply the multipliers for the specific service requirements to determine the maximum operating pressure for the application:

 $268 \text{ psi}(g)/18.5 \text{ bar}(g) \times 0.75 \times 1 = 201 \text{ psi}(g)/13.9 \text{ bar}(g)$

The maximum operating pressure for this 2"/50.8mm Type 5610 is 201 psi(g)/13.9 bar(g).

TYPE 5610/56100 SINGLE 0-RING SEALS

Technical Specification

Materials of Construction

SEAL COMPONENTS	MATERIALS		
Description	Standard	Options	
Face/Primary Ring	Resin-Impregnated Carbon	Sintered Silicon Carbide Nickel Binder Tungsten Carbide	
Seat/Mating Ring	Sintered Silicon Carbide	Nickel Binder Tungsten Carbide	
Sleeve Gland Plate Collar Retainer Drive Ring Anti-Extrusion Ring	316 Stainless Steel	Alloy 20CB3 SS (UNS N8020) Alloy C-276 (UNS N10276) Titanium	
O-ring	Fluoroelastomer Ethylene Propylene	Perfluoroelastomer Buna-N Neoprene	
Gland Gasket	Glass-Filled PTFE	_	
Spring	Alloy C-276 (UNS N10276)	_	
Quench Bushing (5610Q)	Resin-Impregnated Carbon	_	

Application Criteria

The Type 5610 and 5610Q cartridge seals may be customized for specific installations after review and evaluation by John Crane. The following data is needed to evaluate the proposed service:

- Make and model of equipment
- Shaft or sleeve OD
- Seal cavity dimensions
- Speed
- Quench fluid (if applicable)

- Process fluid
 - Specific gravity
 - Box pressure
 - Vapor pressure
 - Temperature
 - Viscosity

TYPE 5610/56100 SINGLE O-RING SEALS

Technical Specification

North America	Europe	Latin America	Middle East & Africa	Asia Pacific
United States of America	United Kingdom	Brazil	United Arab Emirates	Singapore
Tel: 1-847-967-2400	Tel: 44-1753-224000	Tel: 55-11-3371-2500	Tel: 971-481-27800	Tel: 65-6518-1800
Fax: 1-847-967-3915	Fax: 44-1753-224224	Fax: 55-11-3371-2599	Fax: 971-488-62830	Fax: 65-6518-1803

If the products featured will be used in a potentially dangerous and/or hazardous process, your John Crane representative should be consulted prior to their selection and use. In the interest of continuous development, John Crane Companies reserve the right to alter designs and specifications without prior notice. It is dangerous to smoke while handling products made from PTFE. Old and new PTFE products must not be incinerated. ISO 9001 and ISO14001 Certified, details available on request.

Fairbanks Nijhuis Paint Specifications

Above Ground Coating

Prime Coat

Color

•

Coating Manufacturer Surface Preparation

Number of Coats

Dry Film Thickness

Surfaces to be coated

- **Davis Industrial Coatings & Tnemec** SSPC-SP6, Commercial Blast Cleaning. Series 20 One 3 to 5 mils 15BL Tank White Exterior of Discharge Head Exposed portions of the Packing Box
- Finish Coat Modified Alkyd Enamel Number of Coats One **Dry Film Thickness** 3 to 5 mils Color Pentair Blue Surfaces to be coated Exterior of Discharge Head Exposed portions of the Packing Box

Below Ground Coating

- **Coating Manufacturer**
- **Surface Preparation**
- Prime Coat Number of Coats Dry Film Thickness Color Surfaces to be coated

Series N140 Pota-Pox One 4 to 6 mils 35GR - Black Interior & Exterior of Bowl Assembly Interior & Exterior of Column Interior of Discharge Head Exposed portions of the Packing Box

SSPC-SP6, Commercial Blast Cleaning

Finish Coat Series N140 Pota-Pox Number of Coats One **Dry Film Thickness** 4 to 6 mils Color 35GR – Black Surfaces to be coated Interior & Exterior of Bowl Assembly Interior & Exterior of Column Interior of Discharge Head Exposed portions of the Packing Box

Tnemec

Suction Can Coating

- Coating Manufacturer Tnemec
- Surface Preparation SSPC-SP6, Commercial Blast Cleaning •
- Prime Coat Series N140 Pota-Pox Number of Coats Two Dry Film Thickness 8 to 12 mils Color 35GR – Black Surfaces to be coated Interior & Exterior of Suction Can

	PRODUCT PROFIL	E						
	GENERIC DESCRIPTION	Polvamide Epoxy						
	COMMON USAGE	Industry standard forgiving applicati performance.	for potable water on characteristics	epoxy coatings fo in adverse and va	r nearly 30 years. K ried conditions, and	nown for its for its benchmark		
	COLORS	1211 Red, 1255 Beige, AA90 White, 15BL Tank White, 39BL Delft Blue. Note: Epoxies chalk with extended exposure to sunlight. Lack of ventilation, incomplete mixing, miscatalyzation or the use of heaters that emit carbon dioxide and carbon mono						
	SPECIAL QUALIFICATIONS	during application and initial stages of curing may cause yellowing to occur. Certified by NSF International in accordance with ANSI/NSF Std. 61. Ambient air cured Seri 20 is qualified for use on the interior of potable water storage tanks and reservoirs of 1,000 gallons (3785 L) capacity or greater. Force-cured Series 20 is qualified for tanks of 100 gallons (378 L) or greater. Conforms to AWWA D 102 Inside Systems No. 1 and No. 2. Contact your Tnemec representative for approved systems and additional information on potential uses.						
INEMEC	PERFORMANCE CRITERIA	Extensive test data	available. Contac	t your Tnemec re	presentative for spe	cific test results.		
	COATING SYSTEM							
	PRIMERS	Self-priming, FC20, 91-H ₂ 0. Note: 91-H ₂ 0 is ANSI/NSF Std. 61 certified by \textcircled{W} as a primer for Series 20. Refer to the 91-H ₂ 0 product data sheet for additional information						
	TOPCOATS	Interior: Series 20 Exterior: Series 2 topcoating with Se Refer to COLORS	0, FC20, N140, N14 0, FC20, 66, N69, ⁻ eries 700, an intern on applicable topo	40F, 264, 265 73, N140, 161, 175 nediate coat of Se coat data sheets fo	5, 700, 1074, 1075. I ries 73 or 1075 is re or additional informa	Note: When equired. ation.		
	SURFACE PREPAR	ATION						
	STEEL	Immersion Servi Non-Immersion	ce: SSPC-SP10 Ne: Service: SSPC-SP6	ar-White Blast Cle Commercial Blas	aning t Cleaning			
	PRIMED SURFACES	Immersion Service: Scarify the Series 20 or FC20 prime coat by brush-blasting with fir abrasive before topcoating if it has been exterior exposed for 60 days or longer.						
	CAST/DUCTILE IRON	Contact your Tner	nec representative	or Tnemec Tech	nical Services.			
	CONCRETE	Allow new concrete to cure for 28 days. Abrasive blast referencing SSPC-SP13/NACE 6 Surface Preparation of Concrete and Tnemec's Surface Preparation and Application Guide.						
	ALL SURFACES	Must be clean, dry	and free of oil, g	rease, chalk and o	other contaminants.			
	TECHNICAL DATA							
	VOLUME SOLIDS*	56.0 ± 2.0% (mixe	d)					
	RECOMMENDED DFT	Primer: 3.0 to 5.0	mils (75 to 125 m	icrons) per coat.				
		Intermediate, To Note: Number of	pcoat: 4.0 to 6.0 r coats and thickness	nils (100 to 150 m ness requirement	nicrons) per coat. ts will vary with s	ubstrate, applica-		
	CURING TIME	Temperature	To Handle	To Recoat	Immersion			
		75°F (24°C)	10 hours	12 hours	7 days			
		Curing time varies	with surface temp	perature, air move	ement, humidity and	l film thickness.		
		Force	Cure (Temperatu	res shown are f	or substrate.)			
		1st Coat	24 hours at 75°F	(24°C)				
		2nd Coat	Flash 2 to 4 hour	rs at 75°F (24°C), fo	ollowed with			
			24 hours at 150°I 24 hours at 75°F	F (66°C), plus (24°C)				
	VOLATILE ORGANIC	Un	thinned	Thi	inned 10%			
	COMPOUNDS*	3.06	lbs/gallon	3.41	lbs/gallon			
		(366 g	grams/litre)	(408	grams/litre)			
	IHEUKEIICAL COVERAGE*	898 mil sq ft/gal (22.0 m²/L at 25 mi	crons). See APPLI	CATION for coverag	ge rates.		
	NUMBER OF COMPONENTS	Two: Part A and P	art B		1 • 1.• 1 • •	2		
		5 gallon (18.9L) pa	ails and 1 gallon (5./9L) cans — Ore	der in multiples of 2	2.		
	NET WEIGHT PER GALLON*	12.50 ± 0.25 lbs (5	o./ ± .11 kg) (mixe	ed)				
		Published technical data and inst current technical data and instruc	ructions are subject to change wit tions or you may contact your Tn	hout notice. The online catalog emec representative for current t	at www.tnemec.com should be refer technical data and instructions.	enced for the most		

SERIES 20 Pota-Pox

TECHNICAL DATA continued

STORAGE TEMPERATURE	Minimum 20°F (-7°C)	Maximum 110°F (43°C)			
TEMPERATURE RESISTANCE	(Dry) Continuous 250°F (121°C)	Intermittent 275°F (135°C)			
SHELF LIFE	Part A: 24 months at recommended	storage temperature.			
	Part B: 12 months at recommended	storage temperature.			
FLASH POINT - SETA	Part A: 82°F (28°C)	Part B: 64°F (18°C)			
HEALTH & SAFETY	Paint products contain chemical ingredients which are considered hazardous. Read container label warning and Material Safety Data Sheet for important health and safety information prior to the use of this product. Keep out of the reach of children.				

APPLICATION

COVERAGE RATES*

	Primer			Intern	nediate / Toj	ocoat
	Dry Mils (Microns)	Wet Mils (Microns)	Sq Ft/Gal (m²/Gal)	Dry Mils (Microns)	Wet Mils (Microns)	Sq Ft/Gal (m²/Gal)
Suggested (1)	4.0 (100)	7.0 (180)	225 (20.9)	5.0 (125)	9.0 (230)	180 (16.7)
Minimum	3.0 (75)	5.5 (140)	299 (27.8)	4.0 (100)	7.0 (180)	225 (20.9)
Maximum	5.0 (125)	9.0 (230)	180 (16.7)	6.0 (150)	10.5 (265)	150 (13.9)

thickness. Allow for overspray and surface irregularities. Film thickness is rounded to the nearest 0.5 mil or 5 microns. Application of coating below minimum or above maximum recommended dry film thicknesses may adversely affect coating performance.

- MIXING Power mix contents of each container, making sure no pigment remains on the bottom. Pour a measured amount of Part B into a clean container large enough to hold both components. Add an equal volume of Part A to Part B while under agitation. Continue agitation until the two components are thoroughly mixed. Do not use mixed material beyond pot life limits. Note: Both components must be above 50°F (10°C) prior to mixing. For application to surfaces between 50°F to 60°F (10°C to 16°C), allow mixed material to stand thirty (30) minutes and restir before using. For optimum application properties, blended components should be above 60°F (16°C). Mixing ratio is one (Part A) to one (Part B) by volume.
- POT LIFE 20 hours at 50°F (10°C) 10 hours at 77°F (25°C) 4 hours at 100°F (38°C)
- THINNING Use No. 4 Thinner. For air spray, thin up to 10% or 34 pint (380 mL) per gallon. For airless spray, roller or brush thin up to 5% or ¼ pint (190 mL) per gallon. Caution: Series 20 NSF certification is based on thinning with No. 4 Thinner. Use of any other thinner voids ANSI/NSF Std. 61 certification.
- SURFACE TEMPERATURE Minimum $50^{\circ}F(10^{\circ}C)$ Maximum 135°F (57°C) The surface should be dry and at least 5°F (3°C) above the dew point. Coating won't cure below minimum surface temperature.

APPLICATION	EQUIPMENT	
-------------	-----------	--

Air Spray Gun Fluid Air Cap Air Hose Mat'l Hose Atomizing Pot ID Pressure Pressure Tip ID 5/16" or 3/8" 3/8" or 1/2" 10-20 psi DeVilbiss Е 765 75-100 psi MBC or JGA or 78 (7.9 or 9.5 mm) (9.5 or 12.7 mm) (5.2-6.9 bar) (0.7-1.4 bar)

Low temperatures or longer hoses require higher pot pressure.

Airless Spray											
Tip Orifice	Atomizing Pressure	Mat'l Hose ID	Manifold Filter								
0.015"-0.019" (380-485 microns)	1800-3000 psi (124-207 bar)	1/4" or 3/8" (6.4 or 9.5 mm)	60 mesh (250 microns)								

Use appropriate tip/atomizing pressure for equipment, applicator technique and weather conditions. Plural Component Spray: Contact your Themec representative or Themec Technical Services. Roller: Roller application optional when environmental restrictions do not allow spraying. Use 3/8" or 1/2" (9.5 mm or 12.7 mm) synthetic nap covers.

Brush: Recommended for small areas only. Use high quality natural or synthetic bristle brushes.

CLEANUP Flush and clean all equipment immediately after use with the recommended thinner or MEK. *Values may vary with color.

WARRANTY & LIMITATION OF SELLER'S LIABILITY: Tnemec Company, Inc. warrants only that its coatings represented herein meet the formulation standards of Tnemec Company, Inc.

THE WARRANTY DESCRIBED IN THE ABOVE PARAGRAPH SHALL BE IN LIEU OF ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES THAT EXTEND BEYOND THE DESCRIPTION ON THE FACE HEREOF. The buyer's sole and exclusive remedy against Tnemec Company, Inc. shall be for replacement of the product in the event a defective condition of the product should be found to exist and the exclusive remedy shall not have failed its essential purpose as long as Tnemec is willing to provide comparable replacement product to the buyer. NO OTHER REMEDY (INCLUDING, BUT NOT LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR LOST PROFITS, LOST SALES, INJURY TO PERSON OR PROPERTY, ENVIRONMENTAL INJURIES OR ANY OTHER INCIDENTAL OR CONSEQUENTIAL LOSS) SHALL BE AVAILABLE TO THE BUYER. Technical and application information herein is provided for the purpose of establishing a general profile of the coating and proper coating application procedures. Test performance results were obtained in a controlled environment and Inemec Company makes no claim that these tests or any other tests, accurately represent all environments. As application, environmental and design factors can vary significantly, due care should be exercised in the selection and use of the coating. FOR INDUSTRIAL USE ONLY.

Davis Paint Company

1311 IRON STREET • N. KANSAS CITY, MISSOURI 64116 P.O. BOX 7589 • (816) 471-4447 www.davispaint.com

HIGH SOLIDS FAST DRY ENAMEL PENTAIR BLUE 4-5725

PHYSICAL PROPERTIES:

Weight Gallon: 9.88 ± 0.2 lbs/gal

Weight Solids: 64.7 ± 2%

Volume Solids: 48.4 ± 2%

Coverage: @ 1 Dry Mil:

VOC:

418 g/l; 3.49 lb/gal

Viscosity: 35-45" #4 Ford Cup @ 77°F

Gloss @ 60: - 85+

Cure T	ime (Base	ed on	70°	F. (£ 50%	R.H.):							
То	Touch:			6	0 mi:	nutes								
То	Recoat:			0	-1 h	ours,	or	afte	er 96	hou	ırs			
												1		
Recomm	ended Thi	nner:		В	utvl	aceta	ate	for	clear	lup	and	reduction	to	spray

776 sq. ft./gallon

Temperature Resistance: Continuous 150° F., Intermittent 200° F.

WARNING! FLAMMABLE! FOR INDUSTRIAL USE ONLY! Keep away from heat and open flame. Avoid prolonged contact with skin and breathing of vapor or spray mist. Do not take internally. Close container after each use. Use only with adequate ventilation. Use respiratory devices and other personal protective equipment required by OSHA 29CFR 1910. KEEP OUT OF REACH OF CHILDREN. For specific safety requirements, refer to the Material Safety Data Sheet.

to the Material Safety Data Sheet. LIMITATION OF LIABILITY: To the best of our knowledge, the technical data contained herein is true and accurate at the date of issuance, but is subject to change without prior notice. We make no guarantee of any kind, express or implied, including merchantability and fitness for particular purposes. Liability, if any, is limited to replacement of the product or refund of the purchase price. Labor, or cost of labor, and other consequential damages are hereby excluded. 02-15

Davis Paint Company

1311 IRON STREET • N. KANSAS CITY, MISSOURI 64116 P.O. BOX 7589 • (816) 471-4447 www.davispaint.com

HIGH SOLIDS FAST DRY ENAMEL

DESCRIPTION:

High Solids Fast Dry Enamel is an alkyd enamel for general industrial finishing of farm machinery, tanks, electrical equipment, heavy duty equipment and a variety of other products that require a high performance coating. Fast Dry Enamel exhibits excellent color and gloss retention, flexibility, hardness and corrosion resistance.

SPECIAL CAUTIONS:

Do not apply Fast Dry Enamel when surface, air or material temperature is below 40° F. Surface must be dry and at least 5° F above the dew point.

SURFACE PREPARATION:

GENERAL - Surfaces to be finished must be clean, dry and free of dirt, oil or any contamination that would adversely affect adhesion, protective properties or appearance of the coating. Abrasive blasting is an effective method of cleaning steel surfaces and removing mill scale, rust and previous coatings.

IRON, STEEL AND FERROUS METAL - For optimum adhesion and corrosion resistance, metal should be cleaned and phosphate treated or primed with Davis Fast Dry Metal Primer.

ALUMINUM & GALVANIZED METAL - For optimum adhesion chemically etch or prime with Vinyl Wash Primer.

PREVIOUSLY FINISHED SURFACES - Scaling and peeling paint must be removed by wirebrushing, sanding or scraping. Rusting metal should be cleaned and spot primed with Fast Dry Primer.

MIXING & THINNING:

Stir each container thoroughly prior to use. Material is packaged at a viscosity requiring little or no reduction for application by airless spray equipment. Conventional air spray, air-assist airless, dip or turbo may require up to a 25% reduction (4 parts paint to 1 part solvent by volume) with aromatic solvent.

Aromatic solvents include toluene, xylene, and SC-100. For cool weather conditions (below 65°F) use toluene or xylene. For normal temperatures (65-80°F) use xylene. For temperatures above 80°F use xylene or SC-100. Never use solvents such as VM&P naphtha, mineral spirits or reclaimed thinner. This product may also be thinned with ketone (MEK) or ester solvents (i.e. n-butyl acetate). Addition of solvent will increase VOC.

To store partially used container, pour a small amount of the recommended thinner over the surface. Do not stir. Replace lid securely. Store away from heat or open flame. Mix thoroughly before reusing.

CLEAN UP:

Use xylene, aromatic solvent or MEK for cleaning guns and equipment.

Davis Paint Company

1311 IRON STREET • N. KANSAS CITY, MISSOURI 64116 P.O. BOX 7589 • (816) 471-4447 <u>www.davispaint.com</u>

APPLICATION:

Material can be applied by conventional air, air-assist airless, airless, dip or more advanced application equipment such as turbo disk or bell. This product may also be applied with electrostatic and/or heated equipment. Not recommended for brush or roller application over large areas. Small touchup areas may be prushed. Use the following recommendations as an application guide:

CONVENTIONAL AIR SPRAY:

Air Cap								(56PF
Fluid Nozzle									63
Needle									63
Air Pressure .						50) – 6	50	psi
Fluid Pressure.						10) - 2	20	psi

AIR ASSIST-AIRLESS SPRAY:

Тір					0.0	0.0-0	013"
Fluid Pressure					. 30	00-600	psi
Air Pressure .						10-25	psi
Pump/tip Filter						100 1	Mesh

AIRLESS SPRAY:

Tip													0	.03	11-0	.015"	
Fan									5	50°	(10	-12	2 i	nch	fan)	
Pres	su	ire	5									×	12	00.	-1800) psi	
Pump	/t	ip)]	Fil	Lte	er									100	Mesh	

For dip, flowcoat or turbo application, use the viscosity range 25-35" #2 Zahn as a starting point. For hot spray applications it is recommended to stay in the 90-140°F range.

APPLICATION RATE:

Application rate will vary depending on texture, configuration and porosity of surfaces on which coating is applied. Rough or porous surfaces will require more paint. At an application rate of 500 square feet per gallon, 3.2 mils wet, the resulting dry film thickness is approximately 1.5 mils on smooth surface. A dry film thickness of 1.0-2.0 mils is recommended

DRYING:

Optimum drying conditions are $60^{\circ}F$ to $90^{\circ}F$ ($16^{\circ}C$ to $32^{\circ}C$) at 50° R.H. Lower temperatures and high humidity will slow dry. Surface must be dry and at least $5^{\circ}F$ above the dew point.

Dry to Touch 60 Minutes

To Recoat . . Between 0-1 hours or after 96 hours This product may also be force cured to enhance dry. Temperatures in the range of 110-180°F may be utilized to accelerate solvent evaporation and speed oxidation.

WARNING! FLAMMABLE! FOR INDUSTRIAL USE ONLY! Keep away from heat and open flame. Avoid prolonged contact with skin and breathing of vapor or spray mist. Do not take internally. Close container after each use. Use only with adequate ventilation. Use respiratory devices and other personal protective equipment required by OSHA 29CFR 1910. KEEP OUT OF REACH OF CHILDREN. For specific safety requirements, refer to the Material Safety Data Sheet.

LIMITATION OF LIABILITY: To the best of our knowledge, the technical data contained herein is true and accurate at the date of issuance, but is subject to change without prior notice. We make no guarantee of any kind, express or implied, including merchantability and fitness for particular purposes. Liability, if any, is limited to replacement of the product or refund of the purchase price. Labor, or cost of labor, and other consequential damages are hereby excluded.

PRODUCT PROFILE

	Polyamidoamina Epoyy			
	Innovative potable water coating	which offers high build edge	a protection and allows for an	lication at a wide range of
COMMON USAUL	temperatures (down to 35°F or 2 tanks, reservoirs, pipes, valves, p	² °C with 44-700 Accelerator). I pumps and equipment in pota	For use on the interior and extended ble water service.	erior of steel or concrete
COLORS	1211 Red, 1255 Beige, 00WH Tn with extended exposure to sunli carbon dioxide and carbon mon	emec White, 15BL Tank Whit ght. Lack of ventilation, incon oxide during application and	e, 35GR Black and 39BL Delft I nplete mixing, miscatalyzation initial stages of curing may cau	Blue. Note: Epoxies chalk or the use of heaters that emit use yellowing to occur.
SPECIAL QUALIFICATIONS	Certified by NSF International 44-700 Epoxy Accelerator) is qua 18 inches (46 cm) in diameter or (10 cm) in diameter or greater. C Conforms to AWWA C 210 (wit A two-coat system at 4.0-6.0 dry 4556F for fuel storage. Reference maximum allowable DFT.	in accordance with ANSI/NS alified for use on tanks and re r greater, valves four (4) inche Conforms to AWWA D 102 In hout 44-700). Contact your Tr mils (100-150 dry microns) p e the "Search Listings" section	F Std. 61. Ambient air cured servoirs of 1,000 gallons (3,785 sc (10 cm) in diameter or greatenside Systems No. 1 and No. nemec representative for system er coat passes the performance of the NSF website at www.ns	Series N140 (with or without 5 L) capacity or greater, pipes er and fittings four (4) inches . 2 (with or without 44-700). ns and additional information. requirements of MIL-PRF- f.org for details on the
PERFORMANCE CRITERIA	Extensive test data available. Con	ntact your Tnemec representa	tive for specific test results.	
COATING SYSTEM				
SURFACER/FILLER/PATCHER	215, 217, 218			
PRIMERS	Self-priming, 22, 91-H ₂ O, 94-H ₂ O	D, L140, L140F, N140F, V140,	V140F, 141	
TOPCOATS	Interior: Series 22, FC22, L140, Exterior: Series 27, 66, L69, L69 175, 180, 181, 446, 740, 750, 102 applicable topcoat data sheets fo Immersion Service—Surface mus days, scarification or an epoxy ti days. Contact your Themec repr	L140F, N140, N140F, V140, V. F, N69, N69F, V69, V69F, 72, 8, 1029, 1074, 1074U, 1075, 11 or additional information. Not st be scarified by blasting with e-coat is required. When topo esentative for specific recomm	140F, 141, 406. 73, L140, L140F, N140, N140F, 075U, 1077, 1078, 1080, 1081. F e: The following recoat times a fine abrasive after 60 days. At coating with Series 740 or 750, nendations.	V140, V140F, 156, 157, 161, Refer to COLORS on upply for Series N140: mospheric Service—After 60 recoat time for N140 is 21
SURFACE PREPARATION				
PRIMED STEEL	Immersion Service: Scarify the has been exterior exposed for 60	epoxy prime coat surface by days or longer and N140 is t	abrasive blasting with fine abr the specified topcoat.	asive before topcoating if it
STEEL	Immersion Service: SSPC-SP10 Non-Immersion Service: SSPC mils	/NACE 2 Near-White Blast Clo -SP6/NACE 3 Commercial Bla	eaning with a minimum angula st Cleaning with a minimum ar	r anchor profile of 1.5 mils. ngular anchor profile of 1.5
CAST/DUCTILE IRON	Contact your Tnemec representa	tive or Tnemec Technical Ser	vices.	
CONCRETE	Allow new concrete to cure 28 c SP13/NACE 6, ICRI-CSP 2-4 Surfa all holes pits voids and cracks	lays. For optimum results and ace Preparation of Concrete a with 215–217 or 218	/or immersion service, abrasive nd Tnemec's Surface Preparatio	e blast referencing SSPC- on and Application Guide. Fill
ALL SURFACES	Must be clean, dry and free of o	il, grease and other contamina	ants.	
TECHNICAL DATA				
VOLUME SOLIDS	67.0 + 2.0% (mixed—A_B & 44-	700 Epoxy Accelerator) †		
RECOMMENDED DFT	2.0 to 10.0 mils (50 to 225 micro microns) per coat. Otherwise, th method and exposure. Contact y	ns) per coat. Note: MIL-PRF- e number of coats and thickn your Tnemec representative.	4556F applications require two less requirements will vary with	coats at 4.0-6.0 mils (100-150 a substrate, application
CURING TIME AT 5 MILS DFT	Without 44-700 Accelerator:			
	Temperature	To Handle	To Recoat	Immersion
	90°F (32°C)	5 hours	7 hours	7 days
	80°F (27°C)	7 hours	9 hours	7 days
	70°F (21°C)	9 hours	12 hours	7 days
	60°F (16°C)	16 hours	22 hours	9 to 12 days
	50°F (10°C)	24 hours	32 hours	12 to 14 days
	Curing time varies with surface t allow 14 days cure at 75°F (24°C immersion. Ventilation : When Refer to product listing on www and low temperature application information.	emperature, air movement, hu) prior to immersion. For pip- used in enclosed areas, provic .nsf.org for specific potable w us, add No. 44-700 Epoxy Acco	umidity and film thickness. No e applications allow 30 days cu de adequate ventilation during rater return to service informati elerator, see separate product c	te: For valve applications ire at 75°F (24°C) prior to application and cure. Note: on. Note: For faster curing data sheet for cure
VOLATILE ORGANIC COMPOUNDS	Unthinned: 2.4 lbs/gallon (285 Thinned 5% (#60): 2.6 lbs/gallo Thinned 10% (#4): 2.8 lbs/gallo	grams/litre) on (311 grams/litre) on (334 grams/litre) †		
HAPS	Unthinned: 2.4 lbs/gal solids Thinned 10% (#4): 3.3 lbs/gal	Thinned 5% (#60): 2.4 lbs/ solids	gal solids	
THEORETICAL COVERAGE	1,070 mil sq ft/gal (27.2 m²/L at	25 microns). See APPLICATIC	N for coverage rates. †	
NUMBER OF COMPONENTS	Two: Part A (amine) and Part B	(epoxy) — One (Part A) to or	ne (Part B) by volume.	

Published technical data and instructions are subject to change without notice. The online catalog at www.tnemec.com should be referenced for the most current technical data and instructions or you may contact your Tnemec representative for current technical data and instructions.

PRODUCT DATA SHEET

POTA-POX® PLUS | SERIES N140

PACKAGING	5 gallon (18.9L) pails and 1 gallon (3.79L) cans - Order in multiples of 2. Reference 44-700 Epoxy Accelerator product data sheet for its packaging information.
NET WEIGHT PER GALLON	12.66 ± 0.25 lbs (5.82 ± .11 kg) (mixed) †
STORAGE TEMPERATURE	Minimum 20°F (-7°C) Maximum 110°F (43°C)
TEMPERATURE RESISTANCE	(Dry) Continuous 250°F (121°C) Intermittent 275°F (135°C)
SHELF LIFE	Part A: 24 months; Part B: 12 months at recommended storage temperature.
FLASH POINT - SETA	Part A: 82°F (28°C) Part B: 80°F (27°C) 44-700: None
HEALTH & SAFETY	Paint products contain chemical ingredients which are considered hazardous. Read container label warning and Material Safety Data Sheet for important health and safety information prior to the use of this product. Keen out of reach of children .

APPLICATION

Suggest Minimu Maximu Note: Roller or br and surface irregu minimum or abov the "Search Listing I. Start with equal 2. Using a power	ed	6.0 (150) 2.0 (50) 10.0 (225) requires two or m a thickness is roun ommended dry filr	ore coats to		9.0 (230) 3.0 (75)	17	9 (16.6) 7 (49.9)					
Minimu Maximu Note: Roller or bu and surface irregu minimum or abov the "Search Listing I. Start with equal 2. Using a power	m um ush application ilarities. Wet film e maximum rec gs" section of the	2.0 (50) 10.0 (225) requires two or m a thickness is roun ommended dry filr	ore coats to		3.0 (75)	53	7 (49.9)					
Maximu Note: Roller or bu and surface irregu minimum or abov the "Search Listing I. Start with equal 2. Using a power	um rush application ilarities. Wet filn re maximum rec gs" section of the	10.0 (225) requires two or m a thickness is roun ommended dry film	ore coats to				537 (49.9)					
Note: Roller or br and surface irregu minimum or abov the "Search Listing l. Start with equal 2. Using a power	rush application ilarities. Wet filn 'e maximum rec gs" section of the	requires two or m n thickness is roun ommended dry filr	Note: Roller or brush application requires two or more coats to obtain recommended film thickness. Allow for overspray									
l. Start with equal 2. Using a power		e NSF website at w	ded to the n thickness vww.nsf.org	o obtain nearest ses may g for de	recommended file 0.5 mil or 5 micro adversely affect co tails on the maxim	m thickness. Allo ns. Application c pating performan um allowable DI	w for overspray f coating below ce. Reference T. †					
3. (For accelerated Add four (4) fluid 4. Add Part A to F 5. Both componer between 50°F to (mixed material to 6. For optimum a Note: The use of	amounts of bot mixer, separatel d version. If not ounces of 44-7(Part B under agit nts must be abov 50°F (10°C to 16 stand 30 minute pplication prope more than the r	h Parts A & B. y stir Parts A & B. using 44-700, skip 00 per gallon of Pa ation, stir until tho ve 50°F (10°C) pric °C) or the accelera es and restir before rties, the material ecommended amo	to No. 4.) art A while broughly ma or to mixing ted versior e using. temperatur unt of 44-7	Part A is ixed. g. For aj n to surf re should 700 will	s under agitation. oplication of the u aces between 35°F 1 be above 60°F (1 adversely affect pe	naccelerated vers ? to 50°F (2°C to :6°C). erformance.	sion to surfaces 10°C), allow					
Use No. 4 or No. to 5% or 1/4 pint (190 mL) per gallo for tanks and or certification.	60 Thinner. For (190 mL) per ga on. Caution: Se Ily No. 60 Thin	air spray, thin up llon with No. 60 ries N140 NSF co mer for pipe, val	to 10% or 3 Thinner. Fo ertification lves and fi	3/4 pint or airless n is bas ittings.	(380 mL) per gallo spray, roller or br ed on thinning v Use of any other t	on with No. 4 Thi ush, thin up to 5 vith No. 4 or No hinner voids AN	inner or thin up % or 1/4 pint o. 60 Thinner SI/NSF Std. 61					
Without 44-700 With 44-700 2 h	6 hours at 50°F hours at 50°F (10	r (10°C) 4 hours 0°C) 1 hour at 7	s at 75°F (2 5°F (24°C)	24°C) 30 m	1 hour at 100°F (3 inutes at 100°F (38	8°C) 3°C)						
Without 44-700: 1 Note: Spray appli	hour at 77°F (2 cation after liste	5°C) With 44 d times will advers	í-700: 30 m sely affect a	iinutes a ability to	t 75°F (24°C) achieve recomme	ended dry film th	ickness.					
Air Spray												
Gun	Fluid Tip	ip Air Cap Air Hose ID Mat'l Hose ID A		Atomizing Pressure	Pot Pressure							
DeVilbiss JGA	Е	765 or 704	5/16" or (7.9 or 9.	r 3/8" 5 mm)	3/8" or 1/2" (9.5 or 12.7 mm)	75-100 psi (5.2-6.9 bar)	10-20 psi (0.7-1.4 bar)					
Airless Spray		•			•							
Tip Orif	ice	Atomizing Pres	sure	N	1at'l Hose ID	ose ID Manifold Filter						
0.015"-0. (380-485 mi	019" crons)	3000-4800 ps (207-330 bar)	si)	(6	1/4" or 3/8" 5.4 or 9.5 mm)	6 (250	60 mesh (250 microns)					
Low temperatures applicator technic Roller: Use 3/8" rough or porous s Brush: Recomme	or longer hoses ue and weather or 1/2" (9.5 mm surfaces. ended for small a	s require higher po conditions. to 12.7 mm) synth areas only. Use hig	ot pressure. netic wover sh quality n	. Use ap n nap ro natural o	propriate tip/atom ller cover. Use lon r synthetic bristle l	izing pressure fo ger nap to obtain brushes.	r equipment, n penetration on					
Without 44-700: M The surface shoul temperature.	1in. 50°F (10°C), d be dry and at	Max. 135°F (57°C) least 5°F (3°C) abo) With 4 ove the dev	í4-700: N w point.	/lin. 35°F (2°C), Ma Coating will not c	ax. 135°F (57°C) ure below minin	num surface					
Flush and clean a † Values may va	ll equipment im ry with color.	mediately after use	e with the r	recomme	ended thinner or M	IEK.						
LLER'S LIABILITY: Tneme BOVE PARAGRAPH SHA Y OR FITNESS FOR A PA gainst Tnemec Company led its essential purpose a NSEQUENTIAL DAMAGES L BE AVAILABLE TO THE	c Company, Inc. wa LL BE IN LIEU OF A RTICULAR PURPOS I.nc. shall be for re is long as Tnemec is FOR LOST PROFIT BUYER. Technical	rrants only that its coat NY OTHER WARRANT E. THERE ARE NO WA placement of the produ willing to provide con S. LOST SALES, INJUR and application inform	ings represen Y, EXPRESSE RRANTIES TH ict in the ever parable repla V TO PERSON ation herein is	ted herein D OR IMP HAT EXTE nt a defect acement p N OR PRO s providee	meet the formulation LIED, INCLUDING BU ND BEYOND THE DE ive condition of the pr roduct to the buyer. NP PERTY, ENVIRONMEN I for the purpose of est	standards of Tnemec T NOT LIMITED TO, SCRIPTION ON THE oduct should be fou O OTHER REMEDY (TAL INJURIES OR AT ablishing a general p	Company, Inc. THE ANY IMPLIED FACE HEREOF. The do to exist and the INCLUDING, BUT NO Y OTHER INCIDENT rofile of the coating a					
	5. Both component between 50°F to 6 mixed material to 6. For optimum aj Note: The use of Use No. 4 or No. to 5% or 1/4 pint (190 mL) per gald for tanks and or certification. Without 44-700 With 44-700 2 F Without 44-700 2 F Without 44-700 2 F Without 44-700; I Note: Spray Gun DeVilbiss JGA Airless Spray Tip Oriff 0.015"-0.0 (380-485 mi) Low temperatures applicator techniq Roller: Use 3/8" 6 rough or porous s Brush: Recomme Without 44-700: M The surface shoul temperature. Flush and clean a † Values may va USE PARAGRAPH SHAI Y OR FITNESS FOR A PA SEQUENTIAL DAMAGES BE AVAILABLE TO THE res. Test performance res	5. Both components must be abo between 50°F to 60°F (10°C to 16 mixed material to stand 30 minute 6. For optimum application proper Note: The use of more than the r Use No. 4 or No. 60 Thinner. For to 5% or 1/4 pint (190 mL) per ga (190 mL) per gallon. Caution: See for tanks and only No. 60 Thin certification. Without 44-700 6 hours at 50°F (100 With 44-700 2 hours at 50°F (100 With 44-700 2 hours at 50°F (100 Without 44-700 1 hour at 77°F (200 Note: Spray application after liste Air Spray Gun Fluid Tip DeVilbiss JGA E Airless Spray Tip Orifice 0.015"-0.019" (380-485 microns) Low temperatures or longer hoses applicator technique and weather Roller: Use 3/8" or 1/2" (9.5 mm rough or porous surfaces. Brush: Recommended for small at Without 44-700: Min. 50°F (10°C), The surface should be dry and at temperature. Flush and clean all equipment im † Values may vary with color. LER'S LIABILITY: Tnemec Company, Inc. wa BOVE PARAGRAPH SHALL BE IN LIEU OF A Y OR FITNESS FOR A PARTICULAR PURPOS ugainst Tnemec Company, Inc. wa BOVE PARAGRAPH SHALL BE TO THE BUYER. Technical res. Test performance results were obtained i isseQUENTIAL DAMAGES FOR LOST PROFIT BE AVAILABLE TO THE BUYER. Technical res. Test performance results were obtained i	 5. Both components must be above 50°F (10°C) prime between 50°F to 60°F (10°C to 16°C) or the accelera mixed material to stand 30 minutes and restir before 6. For optimum application properties, the material Note: The use of more than the recommended amore Use No. 4 or No. 60 Thinner. For air spray, thin up to 5% or 1/4 pint (190 mL) per gallon with No. 60 ′ (190 mL) per gallon. Caution: Series N140 NSF or for tanks and only No. 60 Thinner for pipe, valcettification. Without 44-700 6 hours at 50°F (10°C) 4 hours with 44-700 2 hours at 50°F (10°C) 1 hour at 77 Without 44-700: 1 hour at 77°F (25°C) With 44 Note: Spray application after listed times will adverse Air Spray Gun Fluid Tip Air Cap DeVilbiss JGA E 765 or 704 Airless Spray Control Control Cont	 5. Both components must be above 50°F (10°C) prior to mixin between 50°F to 60°F (10°C to 16°C) or the accelerated version mixed material to stand 30 minutes and restir before using. 6. For optimum application properties, the material temperatur. Note: The use of more than the recommended amount of 44-7. Use No. 4 or No. 60 Thinner. For air spray, thin up to 10% or 1 to 5% or 1/4 pint (190 mL) per gallon with No. 60 Thinner for (190 mL) per gallon. Caution: Series N140 NSF certification for tanks and only No. 60 Thinner for pipe, valves and f certification. Without 44-700 6 hours at 50°F (10°C) 4 hours at 75°F (24°C) Without 44-700; 1 hour at 75°F (25°C) 1 hour at 75°F (24°C) Without 44-700; 1 hour at 77°F (25°C) With 44-700; 30 m Note: Spray application after listed times will adversely affect: Air Spray Gun Fluid Tip Air Cap Air Ho DeVilbiss JGA E 765 or 704 5/16° or (7.9 or 9. Airless Spray Cigen Atomizing Pressure 0.015°-0.019° 3000-4800 psi (207-330 bar) Low temperatures or longer hoses require higher pot pressure applicator technique and weather conditions. Roller: Use 3/8° or 1/2° (9.5 mm to 12.7 mm) synthetic wover rough or porous surfaces. Brush: Recommended for small areas only. Use high quality r Without 44-700: Min. 50°F (10°C), Max. 135°F (57°C) With 47 the surface should be dry and at least 5°F (3°C) above the detemperature. Flush and clean all equipment immediately after use with the r † Values may vary with color. 	 both components must be above 50°F (10°C.) prior to mixing. For a petween 50°F to 60°F (10°C to 16°C) or the accelerated version to suff mixed material to stand 30 minutes and restir before using. For optimum application properties, the material temperature should Note: The use of more than the recommended amount of 44-700 will Use No. 4 or No. 60 Thinner. For air spray, thin up to 10% or 3/4 pint to 5% or 1/4 pint (190 mL) per gallon with No. 60 Thinner. For airless (190 mL) per gallon. Caution: Series N140 NSF certification is bas for tanks and only No. 60 Thinner for pipe, valves and fittings. certification. Without 44-700 6 hours at 50°F (10°C) 4 hours at 75°F (24°C). With 44-700 2 hours at 50°F (10°C) 1 hour at 75°F (24°C). With 44-700 1 hour at 77°F (25°C) With 44-700: 30 minutes a Note: Spray application after listed times will adversely affect ability to Air Spray Air Spray Gun Fluid Tip Air Cap Air Hose ID 0.015° -0.019° (380° 485 microns) (207-330 bar) (207-330 bar) Airless Spray Airless Spray Contor of the second of the	5. Both components must be above 50°F (10°C) prior to mixing. For application or tine u between 50°F to 60°F (10°C to 16°C) or the accelerated version to surfaces between 35°F mixed material to stand 30 minutes and restir before using. 6. For optimum application properties, the material temperature should be above 60°F (1 Note: The use of more than the recommended amount of 44-700 will adversely affect pe Use No. 4 or No. 60 Thinner. For air spray, thin up to 10% or 3/4 pint (380 mL) per galle to 5% or 1/4 pint (190 mL) per gallon with No. 60 Thinner. For airless spray, roller or br (190 mL) per gallon. Caution: Series N140 NSF certification is based on thinning v for tanks and only No. 60 Thinner for pipe, valves and fittings. Use of any other t certification. Without 44-700 6 hours at 50°F (10°C) 4 hours at 75°F (24°C) 1 hour at 100°F (3 With 44-700 2 hours at 50°F (10°C) 1 hour at 75°F (24°C) 30 minutes at 100°F (3 Without 44-700: 1 hour at 77°F (25°C) With 44-700: 30 minutes at 100°F (3 Without 44-700: 1 hour at 77°F (25°C) With 44-700: 30 minutes at 100°F (3 Without 44-700: 1 hour at 77°F (25°C) With 44-700: 30 minutes at 75°F (24°C) Note: Spray application after listed times will adversely affect ability to achieve recomme Air Spray Mices Spray Mices Spray Confice Atomizing Pressure Mat'l Hose ID 0.015°-0.019° 3000-4800 psi 1/4° or 3/8° (380-485 microns) (207-330 bar) (6.4 or 9.5 mm) Low temperatures or longer hoses require higher pot pressure. Use appropriate tip/atom applicator technique and weather conditions. Roller: Use 3/8° or 1/2° (9.5 mm to 12.7 mm) synthetic woven nap roller cover. Use lon rough or porous surfaces. Brush: Recommended for small areas only. Use high quality natural or synthetic bristel I Without 44-700: Min. 50°F (10°C), Max. 135°F (3°C) With 44-700 Min. 35°F (2°C), Mi The surface should be dry and at least 5°F (3°C) above the dew point. Coating will not c temperature. Flush and clean all equipment immediately after use with the recommended thinner or N † Values may vary with	5. Both components must be above 50°F (10°C) prior to mixing. For application of the unaccelerated version to surfaces between 35°F to 50°F (2°C to mixed material to stand 30 minutes and resit before using. 6. For optimum application properties, the material temperature should be above 60°F (16°C). Note: The use of more than the recommended amount of 44-700 will adversely affect performance. Use No. 4 or No. 60 Thinner. For air spray, thin up to 10% or 3/4 pint (380 mL) per gallon with No. 4 Thit to 5% or 1/4 pint (190 mL) per gallon with No. 60 Thinner. For airless spray, goller or brush, thin up to 5 (190 mL) per gallon. Caution: Series N140 NSF certification is based on thinning with No. 4 or No for tanks and only No. 60 Thinner for pipe, valves and fittings. Use of any other thinner voids AN certification. Without 44-700 1 hours at 50°F (10°C) 1 hour at 75°F (24°C) 1 hour at 100°F (38°C) Without 44-700 1 hour at 77°F (25°C) With 44-700: 30 minutes at 75°F (24°C) Note: Spray application after listed times will adversely affect ability to achieve recommended dry film th Air Spra Material Signal A E 765 or 704 5/16° or 3/8° 3/8° or 1/2° (5.2 of 12.7 75-100 psi (32.6 d) E 7500 psi (3.000-4800 psi (1.4° or 3/8° (6.2 of 3.0°) mm) (250) Low temperatures or longer hoses require higher pot pressure. Use appropriate tip/atomizing pressure for applicator technique and weather conditions. Roller: Use 3/8° or 1/2° (9.5 min to 12.7 mm) synthetic woven nap roller cover. Use longer nap to obtain rough or porous surfaces. Brush: Recommended for small areas only. Use high quality natural or synthetic bristle brushes. Without 44-700 Min. 50°F (10°C), Max. 135°F (5°C) With 44-700 Min. 35°F (2°C), Max. 135°F (5°C) The surface should be dry and at least 5°F (3°C) above the dew point. Coating will not cure below minin torup or porous surfaces. Brush: Recommended for small areas only. Use high quality natural or synthetic bristle brushes. Without 44-700 Min. 50°F (10°C), Max. 135°F (5°C) With 44-700 Min. 35°F					

Tnemec Company Incorporated 6800 Corporate Drive Kansas City, Missouri 64120-1372 1-800-TNEMEC1 Fax: 1-816-483-3969 www.tnemec.com

NIDEC MOTOR CORPORATION

8050 WEST FLORISSANT AVE. ST. LOUIS, MO 63136

DATE: 7/20/2022

TO: PENTAIR FLOW TECHNOLOGIES LLC 400 REGENCY FOREST DRIVE SUITE 300 CARY, NC, 27518 ATTN: SHILO

Model Number: NA Catalog Number: VHS Weather Protected CONF.MOTOR.VHS WPI

 P.O. NO.:
 12572179

 Order/Line NO.:
 22701183 SO 100

REVISIONS: (NONE)

ALL DOCUMENTS HEREIN ARE CONSIDERED CERTIFIED BY NIDEC MOTOR CORPORATION. THANK YOU FOR YOUR ORDER AND THE OPPORTUNITY TO SERVE YOU.

Features:

HOLD PRODUCTION Horsepower 00100.00~00000.00 ~ KW: 74.6 Enclosure WPI Poles 04~00 ~ RPM: 1800~0 Frame Size 404~TP Phase/Frequency/Voltage.. 3~060~230/460 Winding Type Random Wound Service Factor 1.15 Insulation Class Class "F" ~ Insulife 2000 Altitude In Feet (Max) .. 3300 Ft.(1000 M) ~ +40 C Efficiency Class Premium Efficiency Application Unknown Inverter Duty NEMA MG1 Part 31 Customer Part Number FMB0913484A01 16.5" Base ~ Coupling Size: 1-1/4" Bore, 1/4" Key Non-Reverse Ratchet ~ Steady Bushing Pricebook Thrust Value (lbs).. 6700 Customer Down Thrust (lbs) ... 2523 Customer Shutoff Thrust (lbs). 3444 Up Thrust (lbs): ~ Inverter Duty Rating Details: Load Type (Base Hz & Below) .. Variable Torque Speed Range (Base Hz & Below). 10:1 VFD Service Factor 1.00 Temperature Rise (Sine Wave): "B" Rise @ 1.0 SF (Resist) Starting Method Direct-On-Line Start Duty Cycle Continuous Duty Efficiency Value 95.4 % ~ Typical Load Inertia: NEMA ~ Standard Inertia: 441.00 LB-FT2 Number Of Starts Per Hour: NEMA Motor Type Code RUI 17.0 LB-FT² Rotor Inertia (LB-FT²) 1 Qty. of Bearings PE (Shaft) Qty. of Bearings SE (OPP) 1 6212-J Bearing Number PE (Shaft) Bearing Number SE (OPP) 7222 BEM

Nidec trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office.

NIDEC MOTOR CORPORATION

8050 WEST FLORISSANT AVE. ST. LOUIS, MO 63136

DATE: 7/20/2022

TO: PENTAIR FLOW TECHNOLOGIES LLC 400 REGENCY FOREST DRIVE SUITE 300 CARY, NC, 27518 ATTN: SHILO

Model Number:NACatalog Number:VHS Weather ProtectedVHS Weather ProtectedCONF,MOTOR,VHS WPI

P.O. NO.: 12572179 Order/Line NO.: 22701183 SO 100

REVISIONS: (NONE)

ALL DOCUMENTS HEREIN ARE CONSIDERED CERTIFIED BY NIDEC MOTOR CORPORATION. THANK YOU FOR YOUR ORDER AND THE OPPORTUNITY TO SERVE YOU.

Accessories:

Counter CW Rotation FODE Aegis Ground Ring (SGR) Insul. Bearing- Upper Bracket Special Balance Multiple ID Plates Requested Thermostats - Normally Closed Lubrication Instruction Plate Shipping Tag Information: FMB0913484A01 12572179 10

USE THE DATA PROVIDED BELOW TO SELECT THE APPROPRIATE DIMENSION PRINT

Horsepower	100
Pole(s)	04
Voltage(s)	460-230
Frame Size	404TP
Outlet Box AF	4.25
Outlet Box AA	3.00

Nidec trademarks followed by the [®] symbol are registered with the U.S. Patent and Trademark Office.

3601 Fairbanks Avenue Kansas City, Kansas 66106 913-371-5000 FAX 913-371-2272

CERTIFIED MOTOR PERFORMANCE DATA

MOTOR MANUFACTURER:	NIDEC MOTOR COR	DATE:	7/20/2022	
PENTAIR PURCHASE ORDER #:	12572179	PENTAIR TAG #	E FME	30913484A01

PERFORMANCE DATA BASED ON STANDARD RULES OF: X IEEE X ASA X NEMA

HP	SYNCHRONOUS SPEED (RPM)	FULL LOAD * SPEED (RPM)	FRAME NUMBER	TYPE	ENCLOSURE
100	1800	1785	404TP	RUI	WPI

*Full Load Speed Tolerance Per NEMA MG1-12.46 is+/- 20% of slip (Slip=Synchronous RPM-Full Load RPM)

	AMPHERES			MAX. TEMP. RISE		NEMA			
PHASE	HERTZ	VOLTS	FULL	LOCKED	INSULATION	<u>X</u> RESIS.	SERVICE	KVA/HP	NEMA
			LOAD	ROTOR	CLASS	THERM.	FACTOR	CODE	DESIGN
3	60	460/230	114/228	725/1474.9	F	80 DEG C AT 1.00 SF	1.15	G	В

						TORQUE AT FULL VOLTAGE			
GUARA	NTEED EFF	ICIENCY	POWER FACTOR			FULL LOAD	LOCKED	PULLOUT	
						TORQUE AT	STARTING	BREAKDOWN	
FULL LOAD	3/4 LOAD	1/2 LOAD	FULL LOAD	3/4 LOAD	1/2 LOAD	FULL LOAD SPEED (LB.FT)	PERCENT OF FULL LOAD		
94.5	94.5	94.1	86.3	84.5	78.5	294.3	186	230	

VSS	VHS X	NRR	X	SRC		HORIZ	
BEARINGS:	Drive End Lubrication Oil Opposite End Lubrica	XGrease tion: Grease	5 QT/4.7	PAINT:	(Attach Technic Factory Standar Other	cal Data Sheet d	s)
MOTOR NO.:	227011	83					
MOTOR WEIG	HT:1110) LBS					
ROTATION:			Cw		x_ccw		
Certified by:	Sharon Co	rcoro	I	Date: 7/2	0/2022	Revision #	0

FN015/012020

PENTAIR FLOW TECHNOLOGIES

3601 Fairbanks Avenue Kansas City, Kansas 66106 913-371-5000 FAX 913-371-2272

			Accessory Dat	a		
Motor Manufactur	er:	NIDEC MOTO	R CORPORATION	Date:	7/20/	2022
Pentair Purchase	Order #:		12572179	Pentair	Tag #: FME	30913484A01
Space Heaters:	Required	Not Required	Description Watts: Voltage:			
Thermostats:	X		Type: N.O. XI	N.C.		
Thermistors:	Quantity Per Motor:_	X	Make & Model: Trip Range: relay not Supplied relay supplied: Type wiring diagram/cut s	e: factory set sheet attached. Ref.:	field adjustable	
Winding RTD's:	Quantity Per Motor:_	X	Make & Model: Construction/OHM Ra relay not Supplied relay supplied: Type wiring diagram/cut s	ting: e:	field adjustable	
Bearing RTD's:	Quantity _	X	Make & Model: Construction/OHM Ra relay not Supplied relay supplied: Type wiring diagram/cut s	ting: e:factory set sheet attached. Ref.:	field adjustable	
Vibration Sensor:		X	Make & Model: relay not Supplied relay supplied: Type wiring diagram/cut s	e: factory set sheet attached. Ref.:	field adjustable	
Tests:		X	Short commercial, u Short commercial, u Calibration Test, un Complete initial, un Complete initial, wit Sound test, unwithe Bump Test, unwithe Vibration Test, unw Polarization Index, u Reed Critical Test, IEEE841	unwitnessed witnessed witnessed messed nessed sesed sesed itnessed unwitnessed unwitnessed		
Certified by:	Shar	on Corcoro	Date:	7/20/2022	Revision	#:0
EN045/040000						

FN015/012020

PENTAIR FLOW TECHNOLOGIES

3601 Fairbanks Avenue Kansas City, Kansas 66106 913-371-5000 FAX 913-371-2272

Accessory Data

Motor Manufacturer:	NIDEC MOTOR CORPORATION	Date:	7/20/2022	
Pentair Purchase Order #:	12572179	Pentair Tag #:	FMB0913484A01	

Features:

Enclosure WPI Winding Type Random Wound Service Factor 1.15 Insulation Class Class "F" ~ Insulife 2000 Altitude In Feet (Max) .. 3300 Ft.(1000 M) ~ +40 C Efficiency Class Premium Efficiency Inverter Duty NEMA MG1 Part 31 16.5" Base ~ Coupling Size: 1-1/4" Bore, 1/4" Key Non-Reverse Ratchet ~ Steady Bushing Pricebook Thrust Value (lbs).. 6700 Customer Down Thrust (lbs) ... 2523 Customer Shutoff Thrust (lbs). 3444 Inverter Duty Rating Details: Load Type (Base Hz & Below) .. Variable Torque Speed Range (Base Hz & Below). 10:1 VFD Service Factor 1.00 Temperature Rise (Sine Wave): "B" Rise @ 1.0 SF (Resist) Starting Method Direct-On-Line Start Duty Cycle Continuous Duty Efficiency Value 95.4 % ~ Typical Load Inertia: NEMA ~ Standard Inertia: 441.00 LB-FT2

Accessories:

Counter CW Rotation FODE Aegis Ground Ring (SGR) Insul. Bearing- Upper Bracket **Special Balance** Thermostats - Normally Closed Lubrication Instruction Plate Shipping Tag Information: FMB0913484A01 12572179 10

Certified by:

Sharon Corcoro

Date: 7/20/2022

FN015/012020

							P. R	2.0: 12572179 REF. ORDER #: 2270118	3-100
						Т	OLERANCES	IN	MM
						FACE RUNOL	т	.007 T.I.R.	.18 T.I.R.
	NOTES: 1) MAIN BOX FOR MOTOR POWER LEADS, 3.00° CONDUIT CONNECTION.	11) AEGIS GROUNDING RING ON BEARING	GCAP.			PERMISSIBLE OF MOUNTIN	E ECCENTRICITY IG RABBET	.007 T.I.R.	.18 T.I.R.
	BOX VOLUME: 470 CU. IN. [7702 CU. CM.] 2) DRAINS: TOP OIL AND BOTTOM GREASE.	12) GROUNDING LUG ON OUTLET BOX. 13) INSULATED UPPER BRACKET BEARING	G.			MAXIMUM SH	IAFT END PLAY	.010	.25
A	 FILL: TOP OIL AND BOTTOM GREASE. MOTOR LIFTING LUGS. ROTATION: COUNTER CLOCKWISE, WHEN FACING OPPOSITE DRIVE EN BEARINGS: LOWER -6212-J (BALL GUIDE BEARING) UPPER - QTY (1) 7222 BEM (ANGULAR CONTACT DRIVE BEAR TAG: FME0913484A01 	III) ITHERWOSTATS NC 150 °C				CERTIFIE	ED FOR CONS	STRUCTION	
	LINE 10							FRAME 404TP	RUI
	8) ALL ROUGH DIMENSIONS MAY VARY BY .25" DUE TO CASTING AND/OR FABRICATION VARIATIONS. 9) CONDUIT BOX OPENING MAY BE LOCATED IN STEPS OF 90° REGARDLESS	SS OF		1	RATING 100 HP [74.6 KV 230/460 V, 30, 6 ENCLOSURE WPI	/], 1800 RPM S0HZ REVISION D NEW		DIMENSION PRINT	NIDEC MOTOR CORPORATION
	LOCATION. STANDARD AS SHOWN WITH CONDUIT OPENING DOWN.		INFORMATION DISCLOSED ON T	HIS DOCUMENT	LUBRICATION SEE (2 AND 3)		ISSUED BY L.	ARROYO APPROVED BY M. ZAMBRAN	O 07-JUL-22
	10) CLASS F INSULATION, S.F. = 1.15		IS CONSIDERED PROPRIETARY AN REPRODUCED OR DISCLOSED WI CONSENT OF NIDEC MOTOR C	ND SHALL NOT BE ITHOUT WRITTEN CORPORATION	ROTATION FACING O.D.E. CCW NET WEIGHT (±10%) 1110 LBS [504 k	[G]	DWG NO.	09-3415-58	- 1 OF 1 C
Ĩ	HP_DP_NMCC (SEP-2011) 4	3			2	•		1	SOLIDEDGE

4

2

(4)

3

1

D

USER INFORMATION
USTOMER: PENTAIR FLOW TECHNOLOGIES LLC
USTOMER P/N: FMB0913484A01
2.O: 12572179 EF. ORDER #: 22701183-100

CUSTOMER: PENTAIR FLOW
TECHNOLOGIES LLC
CUSTOMER P/N: FMB0913484A01
P.O: 12572179
REF. ORDER #: 22701183-100

в

NAMEPLATE DATA

CATALOG NUMBER:		NAMEPLATE PART #:	422707-005
MODEL	FR 404TP	TYPE RUI	ENCL WPI
SHAFT END BRG	6212-J - QTY 1	OPP END BRG	7222 BEM - QTY 1
PH 3	MAX AMB 40 C	ID# (ref: Order#: 22	701183, Type: SO, Line#: 100)
INSUL F	Asm. Pos.	DUTY	CONT
HP 100	RPM 1785		
VOLTS 460	230	VOLTS	
FL 114.0	228.0		
SF 131.0	263.0	SF	
SF 115		SF DESI	GN CODE
NEMA NOM 95.4	NOM 86.3 KiloWatt 74.60	NEMA NOM	
GUARANTEED	РF нл		R E HZ E
EFFICIENCY 94.3	KVAR		
HAZARDOUS LOCATION DAT	TA (IF APPLICABLE):	GRO	UP I
TEMP CODE	CLASS II	GRO	JP II
			Premium [™] °
		U °	467340
	460 220		7 220.4
			239.4
	294.30LB-F I		
	<u>VI/PVVM</u>		
VED SPEED RANGE 1	180-1800	VED SPEED RANGE 2	
SERVICE FACTOR	1.00	FL SLIP]
NO. POLES			
Radians / Seconds		Encoder PPR Encoder Volts	
TEAO DATA (IF APPLICABLE):		
HP (AIR OVER)	HP (AIR OVER	RPM (AIR	RPM (AIR OVER
			141107
VELOCITY	- VELOCITY M/S	VELOCITY SEC	

ADDITIONAL NAMEPLATE DATA:

	, (BB) (10, (2, 1))		
Decal / Plate	WD=109145	Customer PN	FMB0913484A01
Notes		Non Rev Ratchet	NRR
Max Temp Rise	80C RISE/RES@1.00SF	OPP/Upper Oil Cap	5 QT/4.7 L
Thermal (WDG)	OVER TEMP PROT 2	SHAFT/Lower Oil Cap	GREASE
Altitude		Usable At	
Regulatory Notes		Regulatory Compliance	
COS		Marine Duty	
Balance	0.08 IN/SEC	Arctic Duty	
3/4 Load Eff.	95.5	Inrush Limit	
Motor Weight (LBS)	1110	Direction of Rotation	
Sound Level		Special Note 1	
Vertical Thrust (LBS)	6700	Special Note 2	
Thrust Percentage	100% HT	Special Note 3	
Bearing Life		Special Note 4	
Starting Method		Special Note 5	
Number of Starts		Special Note 6	
200/208V 60Hz Max Amps		SH Max. Temp.	
190V 50 hz Max Amps		SH Voltage	
380V 50 Hz Max Amps		SH Watts	
NEMA Inertia		Load Inertia	
Sumpheater Voltage		Sumpheater Wattage	
Special Accessory Note 1		Special Accessory Note 16	
Special Accessory Note 2		Special Accessory Note 17	
Special Accessory Note 3		Special Accessory Note 18	
Special Accessory Note 4		Special Accessory Note 19	
Special Accessory Note 5		Special Accessory Note 20	
Special Accessory Note 6		Special Accessory Note 21	
Special Accessory Note 7		Special Accessory Note 22	
Special Accessory Note 8		Special Accessory Note 23	
Special Accessory Note 9		Special Accessory Note 24	
Special Accessory Note 10		Special Accessory Note 25	
Special Accessory Note 11		Special Accessory Note 26	
Special Accessory Note 12		Special Accessory Note 27	
Special Accessory Note 13		Special Accessory Note 28	
Special Accessory Note 14		Special Accessory Note 29	
Special Accessory Note 15		Special Accessory Note 30	
Heater in C/B Voltage		Heater in C/B Watts	
Zone 2 Group		Division 2 Service Factor	
Note 1		Note 2	
Note 3		Note 4	
Note 5		Note 6	
Note 7		Note 8	
Note 9		Note 10	
Note 11		Note 12	
Note 13		Note 14	
Note 15		Note 16	
Note 17		Note 18	
Note 19		Note 20	
Note 21		Note 22	

NIDEC MOTOR CORPORATION

MOTOR PERFORMANCE

MODEL NO.	CATALOG NO.	PHASE	TYPE	FRAME
NA	NA	3	RUI	404TP
ORDER	NO.	22701183	LINE NO.	100
MPI:	, ,		141574	141575
HP:			100	100
POLES:			4	4
VOLTS:			460	230
HZ:			60	60
SERVICE FACTO	R:		1.15	1.15
EFFICIENCY (%):				
	S.F.		94.8	94.8
	FULL		95	95
	3/4		95.5	95.5
	1/2		95.1	95.1
	1/4		92.4	92.4
POWER FACTOR	(%):			
	S.F.		86.4	86.4
	FULL		86.3	86.3
	3/4		84.5	84.5
	1/2		78.5	78.5
	1/4		59.7	59.7
	NO LOAD		5.1	5.1
	LOCKED RO	TOR	32.9	32.9
AMPS:				
	S.F.		131	263
	FULL		114	228
	3/4		87	174
	1/2		63	126
	1/4		42	85
	NO LOAD		32.8	65.5
	LOCKED RO	FOR	725	1474.9
NEMA CODE LET	TER		G	G
NEMA DESIGN LE	ETTER		В	В
FULL LOAD RPM			1785	1785
NEMA NOMINAL /	EFFICIENCY (%)		95.4	95.4
GUARANTEED EF	FICIENCY (%)		94.5	94.5
MAX KVAR			22.2	22.2
AMBIENT (°C)			40	40
ALTITUDE (FASL)			3300	3300
SAFE STALL TIME	E-HOT (SEC)		25	25
SOUND PRESSU	RE (DBA @ 1M)		70	70
TORQUES:				
	BREAKDOWN{	% F.L.}	230	230
	LOCKED ROTOR	{% F.L.}	186	186
	FULL LOAD{LE	3-FT}	294.3	294.3

NEMA Nominal and Guaranteed Efficiencies are up to 3,300 feet above sea level and 25 ° C ambient

The Above Data Is Typical, Sinewave Power Unless Noted Otherwise

NIDEC MOTOR CORPORATION ST. LOUIS, MO

Nidec trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office.

Connection Plate: A109145 Connection Decal: 344122

THERMOSTATS

1. MOTOR IS EQUIPPED WITH QTY-3 (1 PER PHASE) NORMALLY CLOSED THERMOSTATS. THERMOSTATS ARE SET TO OPEN AT HIGH TEMPERATURE.

2. CONTACT RATINGS FOR THERMOSTATS: 120-600 VAC, 720 VA

N. C. THERMOSTATS

NOTE: THERMOSTATS LEADS MAY BE LOCATED IN EITHER THE MAIN OUTLET BOX OR IF SO EQUIPPED, AN AUXILIARY BOX.

				ACCESSORY LIS	STING
				QTY-3 N.C. THERMOS	TATS
	REVISION DESCRIPTION FOR: MISC STL0211 - UPDATED FORMAT .	SCALE NONE IN TOLERANCES ON DIMENSIONS (UNLESS OTHERWISE SPECIFIED)		CUSTOMER ECTION DIAGRAM	NIDEC MOTOR CORPORATION
	MATERIAL:	INCHES <u>mm</u>	ISSUED BY R. KI	NG C. CADE	REVISION DATE 24-FEB-11
NIDEC CONFIDENTIAL NIDEC MOTOR CORPORATION 24-Feb-11	 MUST BE COMPLIANT TO RoHS DIRECTIVE EU 2002/95/IEC AND REGULATION EC 1907/2006 (REACH) AS AMENDED	ANGLES X°=±1°	CODE D'	0834066	G 1 OF 1 A
MCA (JAN-2011)			-		SOLIDEDGE

RENEWAL PARTS

FRAME 400 TYPES: RU, RUE, RUEI, RUS, RUSI

BEARINGS: Refer to motor nameplate for the bearing numbers.

PRICES: Parts stocking distributors: refer to renewal parts numerical index. All Others: refer to your nearest parts distributor.

reference: Renewal Parts Section 700 - 270

RENEWAL PARTS

FRAME 400 TYPES: RU, RUE, RUEI, RUS, RUSI

BEARINGS: Refer to motor nameplate for the bearing numbers.

PRICES: Parts stocking distributors: refer to renewal parts numerical index. All Others: refer to your nearest parts distributor.

reference: Renewal Parts Section 700 - 270

RENEWAL PARTS

ITEM NO.	QTY.	NAME OF PART	ITEM NO.	QTY	NAME OF PART
1	1	Lower Bracket	21	1	Upper Bracket
2	1	Water Deflector	22	1	Oil Fill Plug (Expanding)
3	1	Pipe Plug	23	1	Upper Plug (Oil Drain)
4	1	Zerk Fitting Grease	24	1	O-Ring Sight Gauge Window
5	1	Spacer Washer	25	1	Deflector Sight Gauge Window
6	1	Snap Ring	26	1	Glass Sight Gauge Window
7	1	Lower Bearing	27	1	Cover Sight Gauge Window
8	1	Lower Bearing Cap	28	-	Upper Bearing (Qty 1 or 2)
9	1	Rotor Assembly	29	1	Bearing Mount
10	1	Кеу	30	1	Upper Lockwasher
11	1	Lower Screen Intake (External)	31	1	Upper Lock Nut
12	1	Lower Screen Intake (Internal)	32	1	Dust Cover (Only on Units Without Ratchet)
13	1	Lower Air Deflector	33	1	Ratchet Adaptor (Only on Units With Ratchet)
14	1	Stator Assembly	34	1	Stationary Ratchet (Only on Units With Ratchet)
15	1	Gasket Outlet Box (Frame and Box)	35	1	Ratchet Ball (Only on Units With Ratchet)
16	1	Outlet Base	36	1	Ball Retaining Ring (Only on Units With Ratchet)
17	1	Gasket Outlet Box (Base and Cover)	37	1	Thrust Coupling (Only on Hollowshaft)
18	1	Cover Outlet Box	38	1	Gib Key (Only on Hollowshaft)
19	1	Upper Air Deflector	39	1	Upper Baffle
20	1	Upper Screen	40	1	Canopy Cap

FRAME 400 TYPES: RU, RUE, RUEI, RUS, RUSI

BEARINGS: Refer to motor nameplate for the bearing numbers.

PRICES: Parts stocking distributors: refer to renewal parts numerical index. All Others: refer to your nearest parts distributor.

reference: Renewal Parts Section 700 - 270

Copyright $\textcircled{\mbox{\scriptsize c}}$ 2020 Nidec Motor Corporation. All rights reserved.

Vertical HOLLOSHAFT Coupling Dimensions

Standard Coupling Dimensions

Coupling Part Number	707806
BX Nominal	1 1/4
Actual Bore	1.251
BY	1/4-20
BZ	1 3/4
ХВ	3 13/32
XD	13/32
XE	3 1/8
XF	3 1/8
SQ. KEY	1/4

Notes:

- 1. All Rough casting dimensions may vary by 0.25" due to casting variations.
- 2. All tapped holes are Unified National Course, Right Hand thread.
- 3. Coupling bore dimension "BX" is machined with a tolerance of .000", +.001" up to 1.50" bore inclusive. Larger bores: -.000", +.002".

Copyright © 2010 Nidec Motor Corporation. All rights reserved.

TYPICAL REED CRITICAL FREQUENCY DATA

<u>Note</u>: Motor RCF Test Data can be provided at time of motor shipment through special test. Please contact your Nidec Motor Corporation representative for more information.

MODEL NO: NA CATALOG NO: NA

Frame: 404TP Type: RUI

REED CRITICAL FREQUENCY:	54	ΗZ
CENTER OF GRAVITY:	18	IN
DEFLECTION @ CENTER OF GRAVITY:	0.00348	IN
UNIT WEIGHT:	1110	LBS
BASE DIAMETER:	ALL	IN
TOLERANCE ON RCF VALUE:	10%	
DATE:	7/20/2022	

Copyright © 2010 Nidec Motor Corporation. All rights reserved.

DIRECTION OF ROTATION

This motor is unidirectional and can <u>only be operated in</u> <u>one direction</u> to ensure proper cooling.

The motor will be supplied with the industry standard CCW (counter clockwise) rotation as shown below. CW rotation is available upon request.

NIDEC MOTOR CORPORATION ST. LOUIS, MISSOURI

9700

Thermal Protector for Motor/Fluorescent ballasts and Temperature Sensing Controls

•:•: Sensata

Technologies

The Klixon® 9700 protector is a field proven miniature protector developed to protect shaded pole and permanent split capacitor motors, fluorescent ballasts, solenoids, transformers and other electrical equipment against overheating.

In addition to being small and lightweight, the unit is both temperature and current sensitive. Since the 9700 is sealed to withstand varnish dipping, it can be mounted directly in windings where it can best sense the true temperature of the electrical equipment. As a result, over-temperature protection is assured.

Since the case is not electrically insulated, the protector is furnished with a durable Mylar insulating sleeve. Shrinkable and non-shrinkable sleeves are available.

Technical Characteristics

Purpose of control:

Contact capacity:

Temperature range:

Tolerance on Open temp: Automatic action:

Operating time: Pollution situation: Extent of sensing element: PTI of the insulation: Enclosure protection degree: thermal motor protector (TMP) thermal ballast protector (TBP) thermal cut-out (TCO) 250VAC 13A for TCO 250VAC 2A for TBP 60°C to 150°C for TCO and TMP 60°C to 135°C for TBP +/- 5K or +/- 8K Type 3C for TMP Type 2C for TBP and TCO Continuous Normal Whole control 175 IP00

KEY BENEFITS

Miniature size-compact design assures ease of installation

Precision Calibration-temperature calibrated and inspected in controlled ambients for dependable consistent performace

Snapaction-positive make and break assured with proven Klixon® strip disc...contact pressure at open temperature eliminates nuisance trips due to vibration

Sealed steel case-withstands impregnation and baking...maybe varnish dipped...prevents changes in calibration during installation
Sensata **Technologies**

Sensata **Technologies**

TECHNICAL / SALES SUPPORT

Holland Phone +31 546 879560 Fax +31 546 879204 Italy Phone +39 039 6568310 Fax +39 039 6568316 Internet: www.sensata.com

Email: info-cpe@list.sensata.com

Current in Amps

Current in Amp.

Important Notice: The products and services of Sensata Technologies and its subsidiaries described herein are sold subject to Sensata's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about Sensata products and services before placing orders. Sensata assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute Sensata's approval, warranty or endorsement thereof.

AEGIS® Shaft Grounding Rings

VFD-Driven Motors Are at Risk of Electrical Bearing Damage!

Motors operated by variable frequency drives (VFD) are vulnerable to VFDinduced shaft voltage and bearing currents that can cause premature bearing failure - often in as little as 3 months!

VFDs induce destructive shaft voltage that can discharge through motor bearings, burning bearing grease and reducing its effectiveness. Through electrical discharge machining (EDM), these discharges can also cause pitting, frosting, and fluting damage to the motor's bearings and eventual bearing failure. The result is costly repairs, downtime, and lost production.

Protect Motor Bearings With AEGIS® Shaft Grounding Rings

By channeling harmful VFD-induced shaft current away from bearings and safely to ground, AEGIS[®] Shaft Grounding Rings protect motors from costly bearing damage.

Bearing Protection Best Practices

The AEGIS® Motor Repair Handbook details best practices for protecting VFD-driven motors from electrical bearing damage and preventing costly repairs, downtime and lost production.

Learn about:

- · Bearing currents and shaft voltage
- AEGIS[®] technology
- Shaft voltage testing
- Installation best practices

For detailed recommendations, refer to the AEGIS® Bearing Protection Handbook. An essential reference, the Handbook is available free at

Prevent EDM Pitting and Fluting Damage

AEGIS® Shaft Grounding Ring Options

Standard Mounting Clamps (-1)

Shaft diameters: 0.311" to 6.02" 3 to 4 mounting clamps, 6-32 x 1/4" cap screws and washers

Split Ring (-1A4)

Shaft diameter: 0.311" to 6.02" 4 to 6 mounting clamps, 6-32 x 1/4" cap screws and washers Installs without decoupling motor

Bolt Through Mounting (-3FH)

Shaft diameters: 0.311" to 6.02", 6-32 x 1/2" flat head screws 2 mounting holes up to shaft size 3.395" 4 mounting holes for larger sizes

Conductive Epoxy Mounting (-OAW, -OA4W) Shaft diameters: 0.311" to 6.02"

Solid and Split Ring Conductive Epoxy Included

Press Fit Mounting (-0A6)

Shaft diameters: 0.311" to 6.02" Clean dry 0.004" press fit Custom sizes available

uKIT with Universal Mounting Bracket Sized for NEMA and IEC frame motors Solid and Split Ring

Can be mounted with hardware or conductive epoxy

AEGIS® PRO Series

AEGIS® PROSL, PROSLR, PROMAX, PROMR

AEGIS[®] Shaft Voltage Tester™

100 MHz Digital Oscilloscope, 10:1 probe with SVP tip for measuring voltages on a rotating shaft AEGIS® One-Touch™ instant image capture

Accessories

HFGS - AEGIS® High-Frequency Ground Strap CS015 - AEGIS® Colloidal Silver Shaft Coating EP2400 - AEGIS® Conductive Epoxy

Motors up to and including 100 HP (75 kW)

Install AEGIS® Shaft Grounding Ring – either internally or externally – on drive end or the non-drive end of motor.

Product recommendation: AEGIS® SGR

- Drive End: Install AEGIS[®] Shaft Grounding Ring - Internally on the back of the bearing cap or externally on the motor end bracket.
- Non-Drive End: Isolate bearing housing with insulated sleeve or coating or use insulated ceramic or hybrid bearing to disrupt circulating currents.

Product recommendation: LV Motors up to 500HP: AEGIS® SGR LV Motors over 500HP: AEGIS® PRO Series MV Motors: AEGIS® PRO Series

Electro Static Technology

31 Winterbrook Road Mechanic Falls, ME 04256 USA Tel: (866) 738-1857 Tel: (207) 998-5140 E-Mail: sales@est-aegis.com

www.est-aegis.com

Standard Paint Specification

For

EM Gray

NIDEC MOTOR CORPORATION USEM DE MEXICO SA DE CV Apodaca, Nuevo León, México

<u>CONTENTS</u>

1.0	Scope
2.0	Unpainted Surfaces
3.0	Surface Preparation
4.0	Cast Aluminum
5.0	Motor Assembly
6.0	General
7.0	Finish Top Coating
8.0	Final Finish Inspection
9.0	Material Identification

1.0 <u>Scope</u>

Nidec Motor Corporation in Apodaca, Nuevo Leon. Has selected enamel paint from "OSEL." for its superior rust inhibitive qualities and durability. The paint also has excellent resistance to various chemicals. This specification covers surface preparation and application of protective coating on motors built in the Apodaca, Nuevo Leon facility.

2.0 Unpainted Surfaces

The following surfaces will not require protective coating:

ounding Pads
achined Surfaces
otor Leads
orcelain Enamel Finishes
lbber
ainless Steel
acuum Pressure Impregnated Parts

3.0 <u>Surface Preparation</u> (Cast Iron & Steel)

- A. The foundries are required to snag, remove all sand and slag from castings. This is to be immediately followed by primer paint to insure 100% coverage. Foundry to apply primer (approved by plant). Film Thickness: 1 to 3 mils.
- B. Prime all castings, in plant, if they have not been primed by the foundry.

Primer Dequimsa # DQ-PR-150

- C. All parts are to be cleaned prior to priming or finish painting as follows:
 - 1. If parts are dirty wash and rise in parts washer.
 - 2. If parts are dusty sandblast
 - 3. Thoroughly dry all parts prior to priming or finish painting. Primer must be applied immediately after cleaning and drying process.

4.0 Cast Aluminum.

Priming is not required on cast aluminum or fiberglass parts. Oxidation must be removed from aluminum parts with a solvent prior to finish painting.

5.0 Motor Assembly

After assembling the motor, there may be surfaces that require priming or touch-up prior to final painting. These surfaces are bracket-to-frame register fits, outlet box pads, etc. If surfaces are oily, wash with clean paint thinner using a clean rag to prevent contamination of other surfaces.

6.0 <u>General</u>

- A. Finished coating shall not be applied to wet or damp surfaces.
- B. All coatings shall be applied in a conscientious manner and in accordance with the written application instructions of the coating manufacturer.
- C. Re-application time between coats shall be in accordance with the coating manufacturer's recommendation corresponding to the conditions of temperature and humidity.
- D. Hardware trim and other items not requiring coating may be removed as required for proper application of coatings. Such items shall be replaced after completion of work.
- E. The dry film thickness of each coat, and of the entire system, shall follow the coating manufacturer's recommendation and this specification. The number of coats specified shall be a minimum number of coats to achieve the specified film thickness.
- F. Coverage rates, as calculated by the coating manufacturer, shall be considered as the maximum allowable.
- G. All spraying equipment shall be maintained in good working order, with daily inspection, and shall be in conformity with the coating manufacturer's most recent application specification.

7.0 Finish Top Coating

All motor products must be clean and free of any dirt, oil or grease on the primed surface prior to finish painting. Except where otherwise specified, thinners shall not be used. Motors will be painted with one coat unless otherwise noted. Film thickness: 2 to 4 mils.

8.0 Final Finish Inspection

Visual inspection of completed work shall be performed on the finished motor by the Quality Assurance Department. The final surface finish is to be in accordance with industry standards for comparable equipment. Any surfaces found in violation of this specification will be rejected and will require rework. Acceptance or rejection of final finish paint is the sole responsibility of the Quality Assurance Department.

9.0 Material Identification

A. Standard Primer: Foundry's

Alternate Primer Vendors:

AIR DRY PREMIER ROBINSON CHEMICAL COATINGS. 14-G-205

SHERWIN-WILLIAMS GRAY ALKYD B50AZ6 KEM KROMIK UNIVERSAL METAL PRIMER

B. Standard Finish Paint

NMC P/N 138538 EM GRAY VENDOR: PINTURAS OSEL FORMULA #4588-B GRAY (LOW GLOSS)

VOC: ~ 3.6 lbs per gallon

Rev. 07/21/20 NIDEC MOTOR CORPORATION 8050 W. Florissant Avenue | St Louis, MO 63136 www.nidec-motor.com | www.usmotors.com

IX. Lubrication

Motor must be at rest and electrical controls should be locked open to prevent energizing while being serviced. If motor is being taken out of storage, refer to **Section III "STORAGE", item 4** for instructions.

1. Oil lubricated bearings

Motors are tested with oil at our manufacturing facility then drained prior to shipment. A small amount of residual oil and rust inhibitor will remain on the oil sump. This residual oil and rust inhibitor is compatible with Turbine Type Mineral Oils and Synthetic, PAO (Poly Alpha Olefin) based oils listed in this manual. It is not necessary to drain this residual oil when adding new oil for operation.

Change oil once per year with normal service conditions. Frequent starting and stopping, damp or dusty environment, extreme temperature, or any other severe service conditions will warrant more frequent oil changes. If there is any question, consult Nidec Motor Corporation Product Service Department for recommended oil change intervals regarding your particular situation.

Determine required oil ISO Viscosity Grade (VG) and base oil type from Table 3, then see Table 4 for approved oils. Add oil into oil fill hole at each bearing housing until the oil level reaches between minimum and maximum marks located on the sight of the gauge window. It is important to wipe excess oil from the threads of the drain hole and to coat the plug threads with Gasoila^{®†} P/N SS08, manufactured by Federal Process Corporation or equivalent thread sealant before replacing the drain plug. Plug should be tightened to a minimum of 20 lb.-ft. using a torque wrench. See the motor nameplate or Table 5 for the approximate quantity of oil required.

2. Grease Lubricated Bearings

A. Relubrication of Units In Service

Grease lubricated bearings are pre-lubricated at the factory and normally do not require initial lubrication. Relubricating interval depends upon speed, type of bearing and service. Refer to Table 1 or suggested regreasing intervals and quantities. Note that operating environment and application may dictate more frequent lubrication. To relubricate bearings, remove the drain plug. Inspect grease drain and remove any blockage (caked grease or foreign particles) with a mechanical probe, taking care not to damage bearing.

Should a motor supplied with a self-release coupling become uncoupled, the motor and pump must be stationary and all power locked out before manually re-coupling.

Add new grease at the grease inlet. New grease must be compatible with the grease already in the motor (refer to table 2 for compatible greases).

Greases of different bases (lithium, polyurea, clay, etc.) may not be compatible when mixed. Mixing such greases can result in reduced lubricant life and premature bearing failure. Prevent such intermixing by disaasembling motor, removing all old grease and repacking with new grease per item B of this section. Refer to Table 2 for recommended greases. Run the motor for 15 to 30 minutes with the drain plug removed to allow purging of any excess grease. Shut off unit and replace the drain plug. Return motor to service.

Overgreasing can cause excessive bearing temperatures, premature lubricant breakdown and bearing failure. Care should be exercised against overgreasing.

B. Change of Lubricant

Motor must be disassembled as necessary to gain full access to bearing housing(s).

Remove all old grease from bearings and housings (including all grease fill and drain holes). Inspect and replace damaged bearings. Fill bearing housings both inboard and outboard of bearing approximately 30 percent full of new grease. Grease fill ports must be completely charged with new grease. Inject new grease into bearing between rolling elements to fill bearing. Remove excess grease extending beyond the edges of the bearing races and retainers.

Bearing Number		Grease Replensibment	Lubrication Interval		
62xx, 72xx	63xx, 73xx	Quantity (FI. Oz.)	1801 thru 3600 RPM	1201 thru 1800 RPM	1200 RPM and slower
03 thru 07	03 thru 06	0.2	1 Year	2 Years	2 Years
08 thru 12	07 thru 09	0.4	6 Months	1 Year	1 Year
13 thru 15	10 thru 11	0.6	6 Months	1 Year	1 Year
16 thru 20	12 thru 15	1.0	3 Months	6 Months	6 Months
21 thru 28	16 thru 20	1.8	3 Months	6 Months	6 Months

 Table 1

 Recommended Grease Replensihment Quantities & Lubrication Intervals

Refer to motor nameplate for bearings provided on a specific motor. For bearings not listed in Table 1, the amount of grease required may be calculated by the formula:

 $G = 0.11 \times D \times B$

Where: G = Quantity of grease in fluid ounces D = Outside diameter of bearing in inches B = Width of bearing in inches

Recommended Greases				
Motor Frame Size	Motor Enclosure	Grease Manufacturer	Grease (NLGI Grade 2)	
All Thru 447	All		Dolyroy EM	
449 and Up	Open Dripproof	Exxon Mobil	POlyrex-Elvi	
449 and Up	TEFC and Explosionproof		Mobilith SHC-100	

Table 2

The above greases are interchangeable with the grease provided in units supplied from the factory (unless stated otherwise on motor lubrication nameplate).

Lubrication

Table 3 Nidec Motor Corporation Recommended Oil Viscosities

Use chart below when "no" special lubrication plate is attached to the motor

Angular Contact Thrust Bearing (7XXX Series) (ABMA BT-Series)					
Motor Enclosure	Frame Size	Speed (RPM)	Ambient Temperature	ISO VG	Base Oil Type
Open Dripproof or	324 and larger		-15°C thru 40°C (5-104°F)	32	Mineral or Synthetic
Weather Protected		All	41°C thru 50°C (105-122°F)	68	Synthetic Only
Totally Enclosed or Explosion proof	404 thru 447		-15°C thru 40°C (5-104°F)	32	Mineral or Synthetic
			41°C thru 50°C (105-122°F)	68	Synthetic Only
	449 thru 5811	1801-3600	15°C tru 40°C (104°E)	32	Synthetic Only
		1800 & below	-15 C (10 40 C (104 F)	68	Synthetic Only
		All	41°C thru 50°C (105-122°F)	7	Refer to Office

Spherical Roller Thrust Bearing (29XXX Series) (ABMA TS-Series)					
Motor Enclosure	Frame Size	Speed (RPM)	Ambient Temperature	ISO VG	Base Oil Type
Open Dripproof or Weather Protected	444 and larger	1800 and below	-15°C thru 25°C (5-77°F)	68	Mineral or Synthetic
			6°C thru 40°C (42-104°F)	150	
			41°C thru 50°C (105-122°F)		Synthetic Only
Totally Enclosed or Explosion proof	449 and larger		-15°C thru 25°C (5-77°F)	68	Mineral or Synthetic
			6°C thru 40°C (42-104°F)	150	Synthetic Only
			41°C thru 50°C (105-122°F)	7	lefer to Office

Notes:

- 1. If lower guide bearing is oil lubricated, it should use the same oil as the thrust bearing.
- 2. If lower guide bearing is grease-lubricated, refer to TABLE 2 for recommended greases.
- 3. Refer to Nidec Motor Corporation for ambient temperatures other than those listed.

Table 4	
Nidec Motor Corporation Approved Oil Specifications For Use with Anti-Friction Bearing	ıgs

ISO VG 32			ISO \	ISO VG 68		ISO VG 150	
Oil	Viscosity: 130-165 SSU @ 100F		Viscosity: 284-347 SSU @100F		Viscosity: 620-765 SSU @ 100F		
Manufacturer	Mineral Base Oil	Synthetic Base Oil	Mineral Base Oil	Synthetic Base Oil	Mineral Base Oil	Synthetic Base Oil	
Chevron USA, Inc.	GST Turbine Oil 32	Cetus 32 Hipersyn	GST Turbine Oil 68	Cetus 32 Hipersyn	R & O Machine Oil 150	Cetus 32 Hipersyn	
Conoco Oil Co.	Hydroclear Turbine Oil 32	Syncon 32	Hydroclear Turbine Oil 32	Syncon 32	Hydroclear AW Hyd. Fluid 150	N/A	
ExxonMobil	DTE Oil Light, Teresstic 32	SHC 624	DTE Oil Heavy Medium, Teresstic 68	SHC 626	DTE Oil Extra Heavy, Teresstic 150	SHC 629	
Phillips Petroleum Co.	Magnus 32	Syndustrial "E" 32	Magnus 68	Syndustrial "E" 68	Magnus 150	N/A	
Shell Oil Co.	Tellus S2 MX 32	Tellus HD Oil AW SHF 32	Tellus S2 MX 68	Tellus HD Oil AW SHF 68	Morlina S3 BA 150	N/A	
Texaco Lubricants Co.	Regal 32	Cetus PAO 32	Regal 68	Cetus PAO 68	Regal 150	N/A	

Tabl	le 5		
Approximate Oil	Sump	Ca	oacities

	Motor Type Designation	Oil Capacity (Quarts)		
Frame Size	(See Motor Nameplate)	Upper Bearing	Lower Bearing	
180 - 280	AU, AV-4			
180 - 280	AV	Grease		
320 - 440	RV			
320 - 360	RV-4, RU	3		
400	RV-4, RU	5		
110	RV-4 (2 pole)	17		
440	RV-4, RU (4 pole & slower)	6		
180 - 440	TV-9, TV, LV-9, LV	Graans		
180 - 360	TV-4, TU, LV-4, LU	Grease	Graces	
400	TV-4, TU, LV-4, LU	6	Grease	
440	TV-4, TU, LV-4, LU	5		
	JU, JV-4	22		
449	HU, HV-4	12		
	JV-3, JV, HV			
	HV, EV, JV, RV	Grease		
5000	RU, RV-4	30		
	HU, HV-4 (4 pole & slower)	12		
	HV-4 (2 pole only)	20		
	EU, JU, EV-4, JV-4	22	5	
5808-5810	HU, HV-4	24	3	
5807-5811	EU, JU, EV-4, JV-4	37	4	
5812	JU, JV4	41	4	
5813	RU, RV-4	48	4	
6808-6810	HU, HV-4	70	3	
6808-6810	HV (Bow Thruster)	Grease	Grease	
6808-6810	HV (Other Than Bow Thruster)	70	3	
6812	JU, JV4	48	7	
6813	RU, RV4	45	7	
8000	RU, RV-4	70	6	
8000	RV	Grease	Grease	
0600	RU, RV-4	95	13	
9000	RV	Grease	Grease	
6812	JU, JV4	48	7	
6813	RU, RV4	41	7	

General Information for Integral Horsepower (IHP) Motors on Variable Frequency Drives (VFDs)

Variable Frequency Drives (VFD)

A VFD is a type of controller used to vary the speed of an electric motor. The VFD takes a fixed AC voltage and frequency and allows it to be adjusted in order to get different speeds from the motor. Motor speed can be varied by changing the frequency of the input power waveform. The equation below shows how the frequency affects the speed of a three phase induction motor.

> Speed = 120* Fundamental Input Frequency Number of Motor Poles

How does a VFD work?

A VFD takes the fixed frequency and voltage sine wave from the power grid or power station and puts it through a few steps in order to allow the VFD user to vary the frequency and in turn control the motor speed. First it rectifies the AC power into DC Power. Because of this step, a term commonly used instead of VFD is inverter. This only describes one step of what the VFD does to the power waveform. Once rectified into a DC voltage the drive sends the power through a set of transistors or switches. These switches can take the DC waveform and by opening and closing at certain speeds and durations can create an output waveform that mimics the sine wave that is required to drive a three phase electric motor. The output waveform is known as a Pulse Width Modulation (PWM) waveform because the waveform is created by multiple pulses of the switches at short intervals.

What variables should be considered when deciding whether to power a motor with a VFD?

VFD compatibility with motors is complex. As a result, many variables must be considered when determining the suitability of a particular motor for use with a VFD. These variables include:

- Torque requirements (Constant or Variable)
- Speed Range
- Line / System Voltage
- · Cable length between the VFD and the motor
- Drive switching (carrier) frequency
- Motor construction

- VFD dv/dt winding end turn differential in voltage versus differential in time
- · High temperatures or high humidity
- Grouding system

Wider speed ranges, higher voltages, higher switching frequencies, insufficient grounding and increased cable lengths all add to the severity of the application and, therefore, the potential for premature motor failure.

How does a VFD affect the motor?

There are many things to consider when a motor is powered using a VFD or PWM power. When a motor is powered by a PWM waveform the motor windings very often see a large differential voltage, either from phase to phase or turn to turn. When the voltage differential becomes large enough it creates a reaction at the molecular level that converts available oxygen into O3. This phenomenon is called partial discharge or corona. This reaction creates energy in the form of light and heat. This energy has a corrosive effect on the varnish used to protect the motor windings. PWM waveforms can also magnify shaft voltages which lead to arcing across the bearing and causing premature bearing failure. Corrective action must be taken to mitigate these issues that arise when using an electric motor with a VFD.

How do I protect the motor?

Nidec Motor Corporation (NMC) has developed specific motor designs to decrease the harmful affects that a VFD can have on a motor. NMC's INVERTER GRADE® insulation system is the first line of defense against corona and phase to phase faults that can be common when a motor is powered using a PWM waveform. The INVERTER GRADE[®] insulation system is standard on all of NMC's Inverter Duty products. Along with the INVERTER GRADE[®] insulation, thermostats are installed as a minimum protection against over heating the motor. Special consideration must also be given to bearings in motors powered by VFD's. In order to create a low resistance path to ground for built up shaft voltages a shaft grounding device can be used. On larger horsepower motors an insulated bearing system should be used in conjunction with the shaft grounding device when installed, to force the stray shaft voltages to ground. The bearing failures are more prominent on motors with thrust handling bearings. NMC has created an Inverter Duty vertical motor line that not only uses the INVERTER GRADE® insulation system, but that also comes standard with a shaft grounding device. On motors that are 100 HP and greater the thrust bearing is also insulated for additional protection.

What does "Inverter Duty" mean?

An Inverter Duty motor should describe a motor that helps mitigate potential failure modes of a motor that is powered by a VFD. Inverter duty motor windings should be able to withstand the voltage spikes per NEMA MG1 Part 31.4.4.2 and protect against overheating when the motor is run at slow speeds. On thrust handling bearings it is apparent that the bearings require additional protection. Inverter Duty vertical motors should have a shaft grounding device to protect the motor bearings from fluting due to voltage discharge through the bearing. On larger motors (100HP and larger) the shaft should also be electrically isolated from the frame in order to aid the shaft grounding ring in discharging the shaft voltages to ground.

*This information applies only to Integral Horsepower (IHP) motors as defined on the Agency Approval page, under UL®t & CSA®t listings where indicated.

Thermal Overloads and Single Phase Motors

Motors with thermal overloads installed may not operate properly on a VFD. The current carrying thermal overload is designed for sine wave power. Operation on a VFD may cause nuisance tripping or potentially not protect the motor as would be expected on line power. Thermostats or thermistors installed in the motor and connected properly to the VFD may provide suitable thermal overload protection when operating on a VFD. (consult codes for installation requirements)

Single phase motors and other fractional horsepower ratings are not designed to be operated on a VFD. Within Nidec Motor Corporation standard products, all motors NEMA®r 48 frame (5.5" diameter) and smaller are not suitable for VFD applications. Three phase 56 and 143/145 frame applications should be noted on the catalog price page; or if in doubt ask a Nidec Motor Corporation technical representative for recommendations on compatibility with a VFD.

Slow Speed Motors

Motors with a base design of slower than six poles require special consideration regarding VFD sizing and minimizing harmonic distortion created at the motor terminals due to cable installation characteristics. Additional external PWM waveform filters and shielded motor cables designed for PWM power may be required to provide acceptable motor life. Harmonic distortion on the output waveform should be kept to a minimum level (less than 10%) mismatch impedance.

690V Applications

Motors that are rated for 690VAC and that will be powered by 690VAC PWM VFDs require the use of an external filter to limit peak voltage spikes and the use of an INVERTER GRADE® motor. Where available, an alternative to using an output filter is to upgrade to a 2300V insulation system.

Low Voltage TITAN® Motors

When using 449 frame and larger motors on PWM type VFDs consider the use of an external filter and shielded motor cables designed for PWM power to minimize harmonic distortion and peak voltages at the motor terminals. Harmonic distortion on the output waveform should be kept to a minimum level (less than 10%).

Bearing Currents Related to PWM Waveforms

Protection of the motor bearings from shaft currents caused by common mode voltages is becoming a standard feature on Inverter Duty motor products. Some installations may be prone to a voltage discharge condition through the motor bearings called Electrical Discharge Machining (EDM) or fluting. Vertical HOLLOSHAFT and HOSTILE DUTY World Motor come with grounding devices installed as standard. EDM damage is related to characteristics of the PWM waveform, and the VFD programming, and installations factors.

Bearing Protection on Inverter Duty Vertical Motors

All U.S. MOTORS® brand "Inverter Duty" vertical products have a shaft grounding system that allows damaging shaft currents a low resistance path to ground. **Bearings on vertical motors fed by VFD power without this bearing protection are not covered under any warranty.** All other bearing failure is covered per NMC's standard warranty. An electric motor repair shop approved to service U.S. MOTORS® brand motors must verify that the cause of the bearing failure was not due to EDM damage.

Guideline For Insulated Anti-Friction Bearings

Bearing insulation is required to prevent circulating shaft currents which can damage bearings. Circulating shaft current can be caused by use of improper power and/or ground cables, improper grounding systems and higher switching frequencies. Finding and correcting the external condition(s) is the responsibility of the system designer or specifying engineer. To prevent circulating shaft current in motors with anti-friction bearings, Nidec Motor Corporation's standard practice is to insulate the non-drive end bearing.

Adjustable Speed Drives produce a common mode voltage condition. To interrupt common mode voltage on induction motors of all sizes, NEMA MG1-2018 Part 31 recommends insulating both bearings. In cases where both anti-friction bearings are insulated, the system designer or specifying engineer should determine whether to apply one or more of the following options to prevent or reduce shaft currents: sinewave filters, line reactors or mechanical devices, such as shaft grounding or an insulated half coupling. Motors with shaft grounding devices are not suitable for installation in hazardous locations unless housed in an enclosure suitable for the specified Division (or Zone), Class and Group(s).

Multiple Motors on a Single VFD

Special considerations are required when multiple motors are powered from a single VFD unit. Most VFD manufacturers can provide guidelines for proper motor thermal considerations and starting/stopping of motors. Cable runs from the VFD and each motor can create conditions that will cause extra stress on the motor winding. Filters may be required at the motor to provide maximum motor life.

Grounding and Cable Installation Guidelines

Proper output winding and grounding practices can be instrumental in minimizing motor related failures caused by PWM waveform characteristics and installation factors. VFD manufacturers typically provide detailed guidelines on the proper grounding of the motor to the VFD and output cable routing. Cabling manufacturers provide recommended cable types for PWM installations and critical information concerning output wiring impedance and capacitance to ground.

Integrated Motor and Inverter

By integrating the motor and inverter at NMC's manufacturing facility, many of the motor compatibility problems are minimized or eliminated. During the manufacturing process, the motor is matched to the inverter characteristics which ensures the winding temperature and torque levels meet the design specification. Since the inverter output wiring to the motor is nearly eliminated, bearing currents are rarely experienced. When the unit is properly grounded, reducing the output cable lengths in conjunction with an inverter grade insulation system and low factory setting of the switching frequency of the inverter drive, results in low risk of voltage peaks produced by the PWM waveform.

Vertical Motors on VFDs

Vertical motors operated on VFD power present unique conditions that may require consideration by the user or installation engineer:

- Locked rotor and drive tripping caused by non-reversing-ratchet operation at low motor speeds. It is not recommended to operate motors at less than 1/4 of synchronous speed. If slow speeds are required contact NMC engineering.
- Unexpected / unacceptable system vibration and or noise levels caused by the torque pulsation characteristics of the PWM waveform, a system critical frequency falling inside the variable speed range of the process or the added harmonic content of the PWM waveform exciting a system component
- Application related problems related to the controlled acceleration/deceleration and torque of the motor on VFD power and the building of system pressure/ load.
- The impact the reduction of pump speed has on the down thrust reflected to the pump motor and any minimum thrust requirements of the motor bearings
- · Water hammer during shutdown damaging the non-reversing ratchet

Humidity and Non-operational Conditions

The possible build-up of condensation inside the motor due to storage in an uncontrolled environment or non-operational periods in an installation, can lead to an increased rate of premature winding or bearing failures when combined with the stresses associated with PWM waveform characteristics. Moisture and condensation in and on the motor winding over time can provide tracking paths to ground, lower the resistance of the motor winding to ground, and lower the Corona Inception Voltage (CIV) level of the winding.

Proper storage and maintenance guidelines are important to minimize the potential of premature failures. Space heaters or trickle voltage heating methods are the common methods for drying out a winding that has low resistance readings. Damage caused by these factors are not covered by the limited warranty provided for the motor unless appropriate heating methods are properly utilized during non-operational periods and prior to motor start-up.

NEMA® Application Guide for AC Adjustable Speed Drive Systems: http://www. nema.org/stds/acadjustable.cfm#download

* This information applies only to Integral Horsepower (IHP) motors as defined on the Agency Approval page, under UL^{et} & CSA^{et} listings where indicated.

Warranty Guidelines

The information in the following section refers to the motor and drive application guidelines and limitations for warranty.

Hazardous Location Motors

Use of a variable frequency drive with the motors in this catalog, intended for use in hazardous locations, is only approved for Division1, Class I, Group D hazardous location motors with a T2B temperature code, with a limitation of 2:1 constant torque or 10:1 variable torque output. **No** other stock hazardous location motors are inherently suitable for operation with a variable frequency drive. If other requirements are needed, including non-listed Division 2, please contact your Nidec Motor Corporation territory manager to conduct an engineering inquiry.

575 Volt Motors

575 volt motors can be applied on Inverters when output filters are used. Contact the drive manufacturer for filter selection and installation requirements.

Applying INVERTER GRADE[®] Insulated Motors on Variable Frequency Drives (2, 4, 6 pole)

The products within this catalog labeled "Inverter Duty" or "Vector Duty" are considered INVERTER GRADE[®] insulated motors. INVERTER GRADE[®] motors exceed the NEMA^{®†} MG-1 Part 31 standard. Nidec Motor Corporation provides a three-year limited warranty on all NEMA^{®†} frame INVERTER GRADE[®] insulated motors and allows long cable runs between the motor and the VFD (limited to 400 feet without output filters). Cable distance can be further limited by hot and humid environments and VFD manufacturers cable limits. These motors may be appropriate for certain severe inverter applications or when the factors relating to the end use application are undefined (such as spares).

Nidec Motor Corporation's U.S. Motors® brand is available in the following INVERTER GRADE® insulated motors:

- Inverter Duty NEMA^{®†} frame motors good for 20:1 Variable Torque & 5:1 Constant Torque, including Vertical Type RUSI (10:1 V.T.)
- Inverter Duty motors rated for 20:1 Constant Torque
- \bullet ACCU-Torq® and Vector Duty Motors with full torque to 0 Speed or 5000:1
- 841 Plus® NEMA®† Frame Motors

Applying Premium Efficient motors (that do not have INVERTER GRADE[®] insulation) on Variable Frequency Drives (2, 4, 6 pole)

Premium efficient motors without INVERTER GRADE insulation meet minimum NEMA^{®†} MG-1, Section IV, Part 31.4.4.2. These motors can be used with Variable Frequency Drives (with a reduced warranty period) under the following parameters:

- On NEMA®† frame 447 and smaller motors, 20:1 speed rating on variable torque loads & 4:1 speed range on constant torque loads.
- On TITAN $^{\otimes}$ 449 and larger frame motors, 10:1 speed rating on variable torque loads.

 On TITAN[®] frame motors, inquiry required for suitability on constant torque loads.

Cable distances are for reference only and can be further limited by hot and humid environments (refer to Table 1). Refer to specific VFD

Table 1 - Cable Distances			
Maximum Ca	ble Distance	VFD to Moto)r
Switching Frequency	460 Volt	230 Volt	380 Volt
3 Khz	127 ft	400 ft	218 ft
6 Khz	90 ft	307 ft	154 ft
9 Khz	73 ft	251 ft	126 ft
12 Khz	64 ft	217 ft	109 ft
15 Khz	57 ft	194 ft	98 ft
20 Khz	49 ft	168 ft	85 ft

manufacturers cable limits. Refer to the Motor/ Inverter Compatibility page for special consideration of vertical motor bearings.

Warranty Period Clarifications and Exceptions

Standard Energy Efficient Exclusion

Applying Standard & Energy Efficient Motors on Variable Frequency Drives is not recommended. VFD related failures on standard and energy efficient motors will not be covered under warranty.

Vertical Motor Windings

Premium efficient vertical motors without INVERTER GRADE[®] insulation that are installed using the criteria described in this document and applied in the correct applications shall have a warranty while powered by a VFD for 12 months from date of installation or 18 months from date of manufacturing whichever comes first. See limited warranty page for horizontal motor warranty periods.

Bearing Exclusion for Thrust Handling Bearings

Bearings used in premium efficienct vertical motors, and all thrust handling bearings, that are powered by VFDs without shaft grounding devices or insulated bearings (when required) will not be covered under any warranty for damages caused from being powered by a VFD. All other bearing failure is covered per NMC's standard warranty. An electric motor repair shop approved to service U.S. MOTORS[®] brand motors must verify that the cause of the bearing failure was not due to Electrical Discharge Machining.

Medium Voltage and Slow Speed Considerations

Motors that are rated above 700 VAC or that are eight pole and slower require special consideration and installation and are not covered under the warranty guidelines in this document. Motors that are rated above 700VAC have special cable length and voltage differential issues that are specific to the VFD type and manufacture. The motor construction and cost may vary dramatically depending on the VFD topology and construction. Contact your NMC representative with VFD manufacturer name and model type for application and motor construction considerations. Motors that are designed eight pole and slower also require special installation and filters per the drive manufacturer.

* This information applies only to Integral Horsepower (IHP) motors as defined on the Agency Approval page, under UL®t & CSA®t listings where indicated.

SUBMITTAL DATA

JOB NAME:	Marsh Road Water Pump Station
	Hudson, NH
ENGINEER:	Weston & Sampson
	Reading, MA
REFERENCE:	Section 43 21 13.13, Pages 6-12, Part 2.02 – VFD's
	Pump #1 – 15 HP, Pump #2 & #3 – 50 HP, and Pump #4 – 100 HP
QUANTITY:	Four (4) VFD's

DESCRIPTION

	Dawfaaa	MODEL	
MANUFACIURER:	Dantoss	MODEL:	VLT Aqua Drive FC 202

1.) Drive Selections

P-1 – 15 HP – Size P11K – 21.0 amps P-2 & P-3 – 50 HP – Size P37K – 65.0 amps P-4 – 100 HP – Size P75K – 130.0 amps

2.) Drive Configuration

Each drive will be furnished with NEMA 12 wall mounted enclosure including:

- > Fused disconnect switch mounted on enclosure exterior
- > Amp ratings as specified per 43 21 13.14-7, 2.02.A.7
- > HIM keypad mounted on enclosure exterior
- Hand-off-auto selection via keypad pushbuttons
- Manual speed adjustment via keypad up/down pushbuttons
- Input for external 4-20 mA analog speed single from station SCADA controller
- Input for remote start-stop signal
- > Output contacts for remote indication of run status and VFD fault
- > Specified keypad display monitoring functions
- Specified VFD protection features

New generation VLT[®] AQUA Drive. World beating cost efficiency

100% dedicated to water applications from 0.25 kW to 2 MW.

In modern plants, energy savings are just part of the cost equation

Here in Aarhus, Denmark, this wastewater treatment plant has changed the energy picture, based on advanced process control and extensive use of the VLT® AQUA Drive. It is no longer a question of 60% energy savings, but rather of net production of energy from the whole plant.

The considerable daily load variation in water or wastewater treatment plants makes it economically attractive to install control handles on more or less all rotating equipment such as pumps and blowers. The new generation of the VLT® AQUA Drive is the ideal choice for the water industry, giving you precise control and a perfect match for all your applications. The benefits are obvious:

- Better water quality
- Better asset protection
- Less maintenance costs
- Reduced energy cost
- Higher plant reliability/ performance

Small investment – big returns Look at the lifetime savings

Over the last decades, the relative cost of Variable Speed Drives (VSDs) has dropped and energy prices have increased. This makes it more attractive to use VSDs on more or less all rotating equipment. Over the lifetime of the VSD, energy cost is the dominating economical factor. The energy efficiency of the VSD must therefore be a key selection parameter.

The new generation VLT® AQUA Drive's 0.5 to 2% better installed energy efficiency compared with traditional drives is on same level as savings gained by moving from an IE2 to an IE3 motor.

Nothing beats know how and experience The new generation VLT® AQUA Drive built from the bottom up To deliver the ultimate cost efficiency

The new generation VLT® AQUA Drive is built on a solid foundation of knowhow and experience – combine this with Danfoss quality and our global network of local 24/7 service and you get rock solid reliability.

Fits all motors

Danfoss is the world's largest dedicated and motor independent VSD supplier. By keeping at the forefront of control algorithms for new motor technologies, we can always offer you a free choice between motor suppliers.

A powerful combination

Three pillars raise the performance of the VLT® AQUA Drive to new heights: It's our unique combination of energy savings, reduced installation costs and a solid dedication to all your water applications that sets the new generation VLT® AQUA Drive above the competition when it comes to overall lifetime savings.

Up to 30% first-year cost savings

With a combination of powerful new features and functions, the new generation VLT® AQUA Drive can realistically offer first-year cost savings between 10 – 30%, relative to the investment made in the drives, compared to traditional drive solutions.

Market leading energy efficiency Save up to 25% of investment first year

Our tight focus on energy efficiency at every stage of development including the net efficiency when the new generation VLT® AQUA Drive is installed means that you get a drive that delivers cost savings of up to 25% of investment in the drive in its first year, when compared to traditional VSD solutions. That's the equivalent to the savings gained by choosing an IE 3 motor instead of an IE 2.

Efficiency

- 1. Energy efficient VSD design
- 2. Intelligent heat management
- 3. Automatic adaption to application
- 4. Energy efficient harmonic mitigation
- 5. Optimal control of all motors

Energy efficient design The new generation VLT® AQUA Drive's control algorithm and design focuses on reducing heat loss, to maximise energy efficiency.

2. Intelligent heat management

An unique back channel cooling concept transfers up to 90% of heat away from the room. This results in large energy savings on unnecessary air conditioning.

Go to www.danfoss.com for video.

3. Automatic adaption to application

Around 90% of all motors are oversized by more than 10%. AEO functionality can deliver energy savings of around 2% at the 90% load, with typical savings up to 5% over the whole range.

4. Energy efficient harmonic mitigation

Our unique VLT[®] Low Harmonic Drive with integrated AAF filter delivers an energy efficiency that is 2-3 % better than traditional VSD with Active Front End technology. Sleep function at low load secures further energy savings.

5. Optimal control of all motors

The VLT® AQUA Drive's capability to efficiently operate the diff erent motor types in the market, secures you a free choice between motor suppliers. One of the latest developments is for high speed PM motors.

The unique Danfoss VVC+ control technology is ideal for high speed turbo blowers using PM motors, offering from 0.5 to 3 % additional installed energy savings compared with using traditional VSDs.

Installation savings and user friendliness Save up to 20%

Based on our lengthy experience with the first ever dedicated water and wastewater drive on the market, the new generation VLT® AQUA Drive offers very efficient installation and commissioning solutions which, compared to traditional VSDs, off er cost saving of between 10-20%.

Simplicity

Reasons to choose new VLT[®] AQUA Drive

1. Less panel space

- 2. Direct outdoor installation
- 3. Long cable capability as standard
- 4. Reduce air conditioning investment
- 5. Integrated harmonic mitigation
- 6. Printed circuit board protection as standard
- 7. Easy commissioning
- 8. Minimum 10 years' lifetime

1. Less panel space

The unique combination of Danfoss VLT® Low Harmonic Drive with integrated AAF filters, the ability to install the new generation VLT® AQUA Drive side by side and its compact design offer a very space-friendly package when the complete solution is installed.

2. Direct outdoor installation

As standard, Danfoss offers VSD in IP 66/NEMA4X. In addition to the convenience of having the VSD close to the pump, for example, this typically reduces cable costs, removes the need for air condition capacity and lowers control room costs.

3. Long cable capability as standard

Without the need for additional components, the VLT® AQUA Drive provides trouble free operation with cable lengths up to 150 m screened and 300 m unscreened.

4. Air conditioning investment reduced by 90%

Unique Danfoss back channel cooling system offers up to 90% reduction in investment for air cooling systems to remove heat from the VSDs.

5. Integrated harmonic mitigation

The VLT® AQUA Drive is delivered with integrated harmonic mitigation solutions to a THDi level of 40% as standard. This saves space and costs while making installation easier.

6. Printed circuit boards protection as standard

From 90 kW the VLT® AQUA Drive comes as standard with 3C3 PCB coating to ensure long lifetime even in harsh wastewater environments.

7. Easy commissioning Whether it's a 0.25 kW or 2 MW drive

you get the same control panel with local language, the new SmartStart function and many other time saving features.

8. Designed for a minimum 10 years' lifetime

With the VLT® AQUA Drive's high quality components, maximum 80% load on components and intelligent heat management reducing dust on PCB's, the need for routine scheduled parts replacements, such as electrolytic capacitors and fans has been removed.

ENGINEERING TOMORROW

Selection Guide 0.25 kW - 1.4 MW

Aures area area

VLT[®] AQUA Drive FC 202 series for a Masterclass Performance

∖▼∦ 🖿 ∣

VLT® AQUA Drive technical data

Basic unit without extensions

Supply voltage $1 \times 200 - 240 \lor AC$ $\times 75 - 37 kW3 \times 200 - 240 \lor AC\odot 0.25 - 45 kW3 \times 200 - 240 \lor AC\odot 0.25 - 45 kW3 \times 380 - 480 \lor AC\odot 0.25 - 45 kW3 \times 525 - 600 \lor AC\odot 0.75 - 90 kW3 \times 525 - 600 \lor AC\odot 0.75 - 90 kW3 \times 525 - 600 \lor AC\odot 0.75 - 90 kW3 \times 525 - 600 \lor AC\odot 0.98Supply frequencyDisplacement power factor(cos \phi) near unity> 0.98True power factor (A)> 0.98> 0.98Switching on input supply1, 1, 2, 131-2 times/min.Harmonic disturbanceMeets EN 61000-3-12* Up to 2000 kW available on requestOOutput dtata (U, V, W)Output voltage0 - 100\% of supply voltageOutput voltage0 - 200\% KU1 - 3600 sec.Note: VLT* AQUA Drive can provide 110\%, 150\% or 160\% current for 1 minute,derihered by oversizing the drive.Digital inputsChangeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 - 24 \lor DCNaximum voltage on input1 (put resistance, RiApprox.4 k\OmegaScan intervalScan intervalScan interval2MaloginputsAcuracy of an$	Main supply (L1, L2, L3)	
Supply frequency50/60 HzDisplacement power factor (cos ϕ) near unity> 0.98True power factor (λ)> 0.9Switching on input supply L1, L2, L31-2 times/min.Harmonic disturbanceMeets EN 61000-3-12* Up to 2000 kW available on requestOutput data (U, V, W)Output toltage0 - 100% of supply voltageOutput toltage0 - 100% of supply voltageOutput frequency (dependent on power size)0.590 HzSwitching on outputUnlimitedRamp times0.1 - 3600 sec.Note: VLT* AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is achieved by oversizing the drive.Digital inputs6*Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 - 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kQScan interval5 ms* Two of the inputs can be used as digital outputs.Analogue inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Voltage level0 - 24 V DC (PNP positive logic)Pulse inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Analogue inputs2*Voltage level0 -	Supply voltage	1 x 200 - 240 V AC
Displacement power factor (cos ϕ) near unity> 0.98True power factor (λ) \geq 0.9Switching on input supply L1, L2, L31–2 times/min.Harmonic disturbanceMeets EN 61000-3-12* Up to 2000 kW available on requestOutput data (U, V, W)Output toltage0 – 100% of supply voltageOutput toltage0 – 100% of supply voltageOutput frequency (dependent on power size)0-590 HzSwitching on outputUnlimitedRamp times0.1 - 3600 sec.Note: VLT* AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is achieved by oversizing the drive.Digital inputs6*Changeable to digital inputs6*Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kQScan interval5 ms* Two of the inputs can be used as digital outputs.Analogu inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Voltage level0 – 24 V DC (PNP positive logic)Pulse inputs2Analogue inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog	Supply frequency	50/60 Hz
True power factor (λ) ≥ 0.9 Switching on input supply L1, L2, L3 $1-2$ times/min.Harmonic disturbanceMeets EN 61000-3-12* Up to 2000 kW available on requestOutput data (U, V, W)Output voltage $0-100\%$ of supply voltageOutput requency (dependent on power size) 0.590 HzSwitching on outputUnlimitedRamp times $0.1-3600$ sec.Note: VLT* AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is achieved by oversizing the drive.Digital inputs6*Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level $0-24$ V DCMaximum voltage on input28 V DCInput resistance, Ri Approx. 4 kQ5 ms* Two of the inputs can be used as digital outputs.5 msAnalogue inputs2ModesVoltage or currentVoltage level0/4 to 20 mA (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Voltage level0 - 24 V DC (PNP positive logic)Pulse inputs2ModesVoltage or currentVoltage level0/4 to 20 mA (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Voltage level0 - 24 V DC (PNP positive logic)Pulse inputs2*Voltage level0 - 24 V DC (PNP positive logic)Pulse input accuracy0/4 to 20 mA (s	Displacement power factor (cos φ) near unity	> 0.98
Switching on input supply L1, L2, L31–2 times/min.Harmonic disturbanceMeets EN 61000-3-12* Up to 2000 kW available on requestOutput data (U, V, W)0Output voltage0 – 100% of supply voltageOutput frequency (dependent on power size)0-590 HzSwitching on outputUnlimitedRamp times0.1 – 3600 sec.Note: VLT* AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is 	True power factor (λ)	≥ 0.9
Harmonic disturbanceMeets EN 61000-3-12* Up to 2000 kW available on requestOutput data (U, V, W)Output voltage0 – 100% of supply voltageOutput frequency (dependent on power size)0-590 HzSwitching on outputUnlimitedRamp times0.1 – 3600 sec.Note: VLT* AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is achieved by oversizing the drive.Digital inputs6*Programmable digital inputs6*Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.Analog inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Voltage level0 – 24 V DC (PNP positive logic)Pulse inputs2*Voltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Voltage level0 – 24 V DC (PNP positive logic)Pulse inputs2*Voltage level0 – 24 V DC (PNP positive logic)Pulse inputs2*Output accuracy (0,1 – 1 kHz)0.1 – 360 full scale	Switching on input supply L1, L2, L3	1–2 times/min.
* Up to 2000 kW available on request Output data (U, V, W) Output voltage 0 – 100% of supply voltage Output frequency (dependent on power size) 0-590 Hz Switching on output Unlimited Ramp times 0.1 – 3600 sec. Note: VLT* AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is achieved by oversizing the drive. Digital inputs 6* Changeable to digital output 2 (terminal 27, 29) Logic PNP or NPN Voltage level 0 – 24 V DC Maximum voltage on input 28 V DC Input resistance, Ri Approx. 4 kΩ Scan interval 5 ms * Two of the inputs can be used as digital outputs. Analogue inputs 2 Modes Voltage or current Voltage level 0 to +10 V (scaleable) Current level 0/4 to 20 mA (scaleable) Accuracy of analog inputs 2* Programmable pulse inputs 2* Voltage level 0 – 24 V DC (PNP positive logic) Pulse inputs 2*	Harmonic disturbance	Meets EN 61000-3-12
Output data (U, V, W)Output voltage0 – 100% of supply voltageOutput frequency (dependent on power size)0-590 HzSwitching on outputUnlimitedRamp times0.1 – 3600 sec.Note: VLT* AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is achieved by oversizing the drive.Digital inputs6*Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Programmable pulse inputs2*Voltage level0 – 24 V DCMax. error: 0.1% of full scale	* Up to 2000 kW available on reque	st
Output voltage0 – 100% of supply voltageOutput frequency (dependent on power size)0-590 HzSwitching on outputUnlimitedRamp times0.1 – 3600 sec.Note: VLT® AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is achieved by oversizing the drive.Digital inputs6*Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Programmable pulse inputs2*Voltage level0 – 24 V DCMax. error: 0.1% of full scalePulse inputs2*	Output data (U, V, W)	
Output frequency (dependent on power size)0-590 HzSwitching on outputUnlimitedRamp times0.1 – 3600 sec.Note: VLT® AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is achieved by oversizing the drive.Digital inputs6*Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Programmable pulse inputs2*Voltage level0 – 24 V DCMax. error: 0.1% of full scalePulse inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Voltage level0 – 24 V DC (PNP positive logic)Pulse inputs2*Voltage level0 – 24 V DC (PNP positive logic)Pulse input accuracyMax. error: 0.1% of full scale	Output voltage	0 – 100% of supply voltage
Switching on outputUnlimitedRamp times0.1 – 3600 sec.Note: VLT* AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is achieved by oversizing the drive.Digital inputsProgrammable digital inputsChangeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Programmable pulse inputs2*Voltage level0 – 24 V DCMax. error: 0.1% of full scalePulse inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Voltage level0 – 24 V DC (PNP positive logic)Pulse inputs2*	Output frequency (dependent on power size)	0-590 Hz
Ramp times0.1 – 3600 sec.Note: VLT* AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is achieved by oversizing the drive.Digital inputs6*Programmable digital inputs6*Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Programmable pulse inputs2*Voltage level0 – 24 V DCMax. error: 0.1% of full scalePulse input accuracy (0.1 – 1 kHz)0.4 cror: 0.1% of full scale	Switching on output	Unlimited
Note: VLT® AQUA Drive can provide 110%, 150% or 160% current for 1 minute, dependent on power size and parameter settings. Higher overload rating is achieved by oversizing the drive.Digital inputsProgrammable digital inputs6*Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.Analog inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Programmable pulse inputs2*Voltage level0 – 24 V DC (PNP positive logic)Pulse inputs2*Modes0 – 24 V DC (PNP positive logic)Pulse input accuracy (0.1 – 1 KHz)0.4 currer: 0.1% of full scale	Ramp times	0.1 – 3600 sec.
Digital inputsProgrammable digital inputs6*Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.Analog inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Programmable pulse inputs2*Voltage level0 – 24 V DC (PNP positive logic)Pulse input accuracy (0.1 – 1 KHz)Max. error: 0.1% of full scale	Note: VLT® AQUA Drive can provide dependent on power size and para achieved by oversizing the drive.	110%, 150% or 160% current for 1 minute, meter settings. Higher overload rating is
Programmable digital inputs6*Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.Analog inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Programmable pulse inputs2*Voltage level0 - 24 V DC (PNP positive logic)Pulse input accuracy (0.1 - 1 KHz)Max. error: 0.1% of full scale	Digital inputs	
Changeable to digital output2 (terminal 27, 29)LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.Analog inputsAnalogue inputsVoltage levelVoltage levelO to +10 V (scaleable)Current levelO/4 to 20 mA (scaleable)Accuracy of analog inputsProgrammable pulse inputs2*Voltage level0 - 24 V DC (PNP positive logic)Pulse input accuracy (0.1 - 1 KHz)Max. error: 0.1% of full scale	Programmable digital inputs	6*
LogicPNP or NPNVoltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.Analog inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Programmable pulse inputs2*Voltage level0 - 24 V DC (PNP positive logic)Pulse input accuracy (0.1 - 1 KHz)Max. error: 0.1% of full scale	Changeable to digital output	2 (terminal 27, 29)
Voltage level0 – 24 V DCMaximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.Analog inputsAnalogue inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputs2*Programmable pulse inputs2*Voltage level0 – 24 V DC (PNP positive logic)Pulse input accuracy (0.1 – 1 KHz)Max. error: 0.1% of full scale	Logic	PNP or NPN
Maximum voltage on input28 V DCInput resistance, RiApprox. 4 kΩScan interval5 ms* Two of the inputs can be used as digital outputs.Analog inputsAnalogue inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputsMax. error: 0.5% of full scalePulse inputs2*Voltage level0 - 24 V DC (PNP positive logic)Pulse input accuracyMax. error: 0.1% of full scale	Voltage level	0 – 24 V DC
Input resistance, Ri Approx. 4 kΩ Scan interval 5 ms * Two of the inputs can be used as digital outputs. Analog inputs Analogue inputs Analogue inputs Odes Voltage level O to +10 V (scaleable) Current level O/4 to 20 mA (scaleable) Accuracy of analog inputs Programmable pulse inputs Programmable pulse inputs Q Voltage level 0 - 24 V DC (PNP positive logic) Pulse input accuracy (0.1 - 1 kHz)	Maximum voltage on input	28 V DC
Scan interval 5 ms * Two of the inputs can be used as digital outputs. Analog inputs Analogue inputs Analogue inputs Analogue inputs Voltage or current Voltage level 0 to +10 V (scaleable) Current level 0/4 to 20 mA (scaleable) Accuracy of analog inputs Max. error: 0.5% of full scale Pulse inputs 2* Voltage level 0 – 24 V DC (PNP positive logic) Pulse input accuracy Max. error: 0.1% of full scale	Input resistance, Ri	Approx. 4 kΩ
* Two of the inputs can be used as digital outputs. Analog inputs Analogue inputs Analogue inputs Analogue inputs Yoltage or current Voltage level 0 to +10 V (scaleable) Current level 0/4 to 20 mA (scaleable) Accuracy of analog inputs Max. error: 0.5% of full scale Pulse inputs Programmable pulse inputs Voltage level 0 – 24 V DC (PNP positive logic) Pulse input accuracy Max. error: 0.1% of full scale	Scan interval	5 ms
Analog inputsAnalogue inputs2ModesVoltage or currentVoltage level0 to +10 V (scaleable)Current level0/4 to 20 mA (scaleable)Accuracy of analog inputsMax. error: 0.5% of full scalePulse inputs2*Voltage level0 – 24 V DC (PNP positive logic)Pulse input accuracyMax. error: 0.1% of full scale	* Two of the inputs can be used as a	liaital outputs.
Analogue inputs 2 Modes Voltage or current Voltage level 0 to +10 V (scaleable) Current level 0/4 to 20 mA (scaleable) Accuracy of analog inputs Max. error: 0.5% of full scale Pulse inputs 2* Voltage level 0 – 24 V DC (PNP positive logic) Pulse input accuracy Max. error: 0.1% of full scale	A sector structure	
Modes Voltage of current Voltage level 0 to +10 V (scaleable) Current level 0/4 to 20 mA (scaleable) Accuracy of analog inputs Max. error: 0.5% of full scale Pulse inputs 2* Voltage level 0 – 24 V DC (PNP positive logic) Pulse input accuracy (0.1 – 1 kHz) Max. error: 0.1% of full scale	Analog inputs	2
Current level 0/4 to 20 mA (scaleable) Accuracy of analog inputs Max. error: 0.5% of full scale Pulse inputs 2* Voltage level 0 – 24 V DC (PNP positive logic) Pulse input accuracy Max. error: 0.1% of full scale	Analog inputs Analogue inputs	2
Current reven Or 4 to 20 mA (scaleable) Accuracy of analog inputs Max. error: 0.5% of full scale Pulse inputs 2* Voltage level 0 – 24 V DC (PNP positive logic) Pulse input accuracy (0.1 – 1 kHz) Max. error: 0.1% of full scale	Analog inputs Analogue inputs Modes	2 Voltage or current
Pulse inputs 2* Voltage level 0 – 24 V DC (PNP positive logic) Pulse input accuracy (0.1 – 1 kHz) Max. error: 0.1% of full scale	Analog inputs Analogue inputs Modes Voltage level	2 Voltage or current 0 to ± 10 V (scaleable) 0/4 to 20 mA (scaleable)
Programmable pulse inputs 2* Voltage level 0 – 24 V DC (PNP positive logic) Pulse input accuracy Max. error: 0.1% of full scale	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale
Voltage level 0 – 24 V DC (PNP positive logic) Pulse input accuracy Max. error: 0.1% of full scale	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale
Pulse input accuracy (0.1 - 1 kHz) Max. error: 0.1% of full scale	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale
(0.1 – 1 kHz) Max. error: 0.1% of full scale	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2* 0 = 24 V DC (PNP positive logic)
* Two of the digital inputs can be used for pulse inputs	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2* 0 – 24 V DC (PNP positive logic)
Digital outputs	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz)	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2* 0 – 24 V DC (PNP positive logic) Max. error: 0.1% of full scale
Programmable	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2* 0 – 24 V DC (PNP positive logic) Max. error: 0.1% of full scale
digital/pulse outputs 2	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2* 0 – 24 V DC (PNP positive logic) Max. error: 0.1% of full scale sed for pulse inputs.
digital/frequency output 0 – 24 V DC	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2* 0 – 24 V DC (PNP positive logic) Max. error: 0.1% of full scale sed for pulse inputs.
	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale end for pulse inputs. 2 0 - 24 V DC
Max. output current (sink or source) 40 mA	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source)	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale ed for pulse inputs. 2 0 - 24 V DC 40 mA
Max. output current (sink or source)40 mAMaximum output frequency at frequency output0 to 32 kHz	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 - 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency at frequency output	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale 2 0 - 24 V DC 40 mA 0 to 32 kHz
Max. output current (sink or source)40 mAMaximum output frequency at frequency output0 to 32 kHzAccuracy on frequency outputMax. error: 0.1% of full scale	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 - 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency Accuracy on frequency output	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale 2 0 - 24 V DC 40 mA 0 to 32 kHz Max. error: 0.1% of full scale
Max. output current (sink or source)40 mAMaximum output frequency at frequency output0 to 32 kHzAccuracy on frequency outputMax. error: 0.1% of full scaleAnalogue outputEndowed Control of Scale	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 - 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency at frequency output Accuracy on frequency output Accuracy on frequency output	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale 2 0 - 24 V DC 40 mA 0 to 32 kHz Max. error: 0.1% of full scale
Max. output current (sink or source)40 mAMaximum output frequency at frequency output0 to 32 kHzAccuracy on frequency outputMax. error: 0.1% of full scaleAnalogue outputProgrammable analogue outputs	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be use Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency at frequency output Accuracy on frequency output Accuracy on grequency output Programmable analogue outputs	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale 2 0 - 24 V DC 40 mA 0 to 32 kHz Max. error: 0.1% of full scale
Max. output current (sink or source)40 mAMaximum output frequency at frequency output0 to 32 kHzAccuracy on frequency outputMax. error: 0.1% of full scaleAnalogue output1Programmable analogue output1Current range at analogue output0/4 - 20 mA	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be use Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency at frequency output Accuracy on frequency output Accuracy on graph analogue outputs Current range at analogue output	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale 2 0 - 24 V DC 40 mA 0 to 32 kHz Max. error: 0.1% of full scale 1 0/4 - 20 mA
Max. output current (sink or source)40 mAMaximum output frequency at frequency output0 to 32 kHzAccuracy on frequency outputMax. error: 0.1% of full scaleAnalogue outputMax. error: 0.1% of full scaleProgrammable analogue outputs1Current range at analogue output0/4 - 20 mAMax. load to common at analogue output (clamp 30)500 Ω	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be use Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency at frequency output Accuracy on frequency output Analogue outputs Current range at analogue output Max. load to common at analogue output (clamp 30)	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale 2 0 - 24 V DC 40 mA 0 to 32 kHz Max. error: 0.1% of full scale 1 0/4 - 20 mA 500 Ω
Max. output current 40 mA	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (ink or source)	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale ed for pulse inputs. 2 0 - 24 V DC 40 mA
Max. output current 40 mA (sink or source)	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source)	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale ed for pulse inputs. 2 0 - 24 V DC 40 mA
Max. output current (sink or source) 40 mA Maximum output frequency	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale 2 d o - 24 V DC 40 mA
Max. output current (sink or source) 40 mA Maximum output frequency at frequency output 0 to 32 kHz	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency at frequency output	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale sed for pulse inputs. 2 0 - 24 V DC 40 mA 0 to 32 kHz
Max. output current (sink or source) 40 mA Maximum output frequency at frequency output 0 to 32 kHz Accuracy on frequency output Max. error: 0.1% of full scale Analogue output	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max output current (sink or source) Maximum output frequency at frequency output Accuracy on frequency output Analogue output	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale 2 0 - 24 V DC 40 mA 0 to 32 kHz Max. error: 0.1% of full scale
Max. output current (sink or source)40 mAMaximum output frequency at frequency output0 to 32 kHzAccuracy on frequency outputMax. error: 0.1% of full scaleAnalogue outputProgrammable analogue output1	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency at frequency output Accuracy on frequency output Accuracy on frequency output Programmable analogue output Programmable analogue output Programmable	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale ed for pulse inputs. 2 0 - 24 V DC 40 mA 0 to 32 kHz Max. error: 0.1% of full scale
Max. output current (sink or source)40 mAMaximum output frequency at frequency output0 to 32 kHzAccuracy on frequency outputMax. error: 0.1% of full scaleAnalogue outputProgrammable analogue outputs1Current range at analogue output	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency at frequency output Accuracy on frequency output Accuracy on frequency output Accuracy on frequency output Accuracy on frequency output Current range at analogue outputs	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale ed for pulse inputs. 2 0 - 24 V DC 40 mA 0 to 32 kHz Max. error: 0.1% of full scale 1 0/4 - 20 mA
Max. output current (sink or source)40 mAMaximum output frequency at frequency output0 to 32 kHzAccuracy on frequency outputMax. error: 0.1% of full scaleAnalogue outputMax. error: 0.1% of full scaleProgrammable analogue outputs1Current range at analogue output0/4 - 20 mAMax. load to common at analogue output (clamp 30)500 Ω	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be us Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency at frequency output Accuracy on frequency output Accuracy on frequency output Programmable analogue output Max. load to common at analogue output (clamp 30)	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale 2 0 - 24 V DC 40 mA 0 to 32 kHz Max. error: 0.1% of full scale 1 0/4 - 20 mA 500 Ω
Max. output current (sink or source)40 mAMaximum output frequency at frequency output0 to 32 kHzAccuracy on frequency outputMax. error: 0.1% of full scaleAnalogue outputMax. error: 0.1% of full scaleProgrammable analogue outputs1Current range at analogue output0/4 - 20 mAMax. load to common at analogue output (clamp 30)500 ΩAccuracy on analogue outputMax. error: 1% of full scale	Analog inputs Analogue inputs Modes Voltage level Current level Accuracy of analog inputs Pulse inputs Programmable pulse inputs Voltage level Pulse input accuracy (0.1 – 1 kHz) * Two of the digital inputs can be use Digital outputs Programmable digital/pulse outputs Voltage level at digital/frequency output Max. output current (sink or source) Maximum output frequency at frequency output Accuracy on frequency output Accuracy on frequency output Analogue outputs Current range at analogue output Max. load to common at analogue output (clamp 30) Accuracy on analogue output	2 Voltage or current 0 to +10 V (scaleable) 0/4 to 20 mA (scaleable) Max. error: 0.5% of full scale 2^* 0 - 24 V DC (PNP positive logic) Max. error: 0.1% of full scale 2 0 - 24 V DC 40 mA 0 to 32 kHz Max. error: 0.1% of full scale 1 0/4 - 20 mA 500 Ω Max. error: 1% of full scale

Control card	
USB interface	1.1 (Full Speed)
USB plug	Type "B"
RS485 interface	Up to 115 kBaud
Max. load (10 V)	15 mA
Max. load (24 V)	200 mA
Relay output	
Programmable relay outputs	2
Max. terminal load (AC) on 1-3 (break), 1-2 (make), 4-6 (break) power card	240 V AC, 2 A
Max. terminal load (AC) on 4-5 (make) power card	400 V AC, 2 A
Min. terminal load on 1-3 (break), 1-2 (make), 4-6 (break), 4-5 (make) power card	24 V DC 10 mA, 24 V AC 20 mA
Surroundings/external	
Enclosure	IP: 00/20/21/54/55/66 UI Type: Chassis/1/12/4x Outdoor
Vibration test	1.0 g (D, E & F-enclosures: 0.7 g)
Max. relative humidity	5% – 95% (IEC 721-3-3; Class 3K3 (non-condensing) during operation
Ambient temperature	Up to 55° C (50°C without derating; D-frame 45°C)
Galvanic isolation of all	I/O supplies according to PELV
Aggressive environment	Designed for coated/uncoated 3C3/3C2 (IEC 60721-3-3)
Fieldbus communication	
Standard built-in: FC Protocol Modbus RTU	Optional: VLT® PROFIBUS DP V1 MCA 101 VLT® DeviceNet MCA 104 VLT® PROFINET MCA 120 VLT® EtherNet/IP MCA 121 VLT® Modbus TCP MCA 122
Ambient temperature	
- Electronic thermal motor prot	ection against overload
– Up to 55° C (50°C without der	ating; D-frame 45°C)
 Temperature monitoring of th converter trips in case of over 	e heatsink ensures that the frequency temperature
 The frequency converter is protein terminals U, V, W 	otected against short-circuits on motor
 The frequency converter is pre terminals U, V, W 	otected against earth faults on motor
- Protection against mains phase	se loss
Application options	
Extend the functionality of the • VLT® General Purpose I/O MCE • VLT® Extended Cascade Contr • VLT® Advanced Cascade Contr • VLT® Sensor Input MCB 114 • VLT® PTC Thermistor Card MCC • VLT® Extended Relay Card MCC • VLT® 24 V External Supply MCE	drive with integrated options: 3 101 oller MCO 101 roller MCO 102 3 112 B 113 3 107
Relay and analogue I/O option	n
 VLI[®] Relay Card MCB 105 VLT[®] Analog I/O MCB109) 	
Power options	
Choose from a wide range of ex drive in critical networks or app • VLT® Low Harmonic Drive • VLT® Advanced Active Filter • VLT® Advanced Harmonic Filte • VLT® dU/dt filter • VLT® Sine wave filter (LC filter)	cternal power options for use with our lications: er
High power options	
See the VLT® High Power Drive S	Selection Guide for a complete list.
PC software tools	

- VLT® Energy Box
 VLT® Motion Control Tool MCT 31

\$

PRODUCT DETAILS - 131F1417 / EAN: 5702427408388 VLT[®] AQUA DRIVE FC 202 FC-202P11KT4E55H1XGX1XXSXXXAXBXCXXXXDX Danfoss VLT® AQUA Drive is dedicated to water and wastewater applications. With a wide range of powerful standard and optional features, the $\mathsf{VLT}^{\circledast}$ AQUA Drive provides the lowest overall cost of ownership for water and wastewater applications.

✓ BACK TO CONFIGURATION ✓ RETURN TO: CONFIGURATOR HOME

General Information	Configuration Details	Efficiency Data	DrivePro®	Documents	Accessories	Services
CHARACTERISTIC	VALUE					
Product Group	VLT® AQUA Drive FC-					
Series	202					
Power Rating	(P11K) 11 KW / 15 HP					
Phase	Three phase					
Mains Voltage	380 - 480 VAC					
Enclosure	IP55 / Type 12					
RFI Filter	(H1) RFI Class A1/B (C1)					
Brake - Safe Stop	No brake chopper					
LCP	Graphical Loc. Cont. Par	nel				
Coating PCB	Not coated PCB					
Mains Option	Mains Disconnect					
Adaptation A	Standard Cable Entries					
Adaptation B	No adaptation					
Software Release	Latest release std. SW.					
Software Language Pack	 Standard Language Pac 	k				
A Option	No A Option					
B Option	No B Option					
C0 Option MCO	No C0 option					

C Option Software	No software option
D Option	No D option
Frame Size	B1
Typecode Part 1	FC-202P11KT4E55H1XGX
Typecode Part 2	1XXSXXXAXBXCXXXXDX
Product Catalog	Global (Standard)
Power 160% (HO) [KW]	7.5
Power 110% (NO) [KW]	11
Height [mm]	480,0
Width w/ no C options [mm]	242,0
Depth [mm]	260,0
Depth with Option A/B [mm]	260,0
kVA	16.6
Power Loss NO [W]	392
Power Loss NO [W]	392
Power Loss HO [W]	291
Power Loss HO [W]	291
Continuous Current (NO) [A]	24
Intermittent Current (NO) [A]	26.4
Continuous Current (NO) [A]	21
Intermittent Current (NO) [A]	23.1
Continuous Current (HO) [A]	16
Intermittent Current (HO) [A]	25.6
Continuous Current (HO) [A]	14.5
Intermittent Current (HO) [A]	23.2
Calculated Gross Weight	21.800
Calculated Net Weight [kg]	21.500
Vendor	Cannot Determine Vendor
Modelcode01	FC-202P11KT4E55H1XGX
Modelcode02	1XXSXXXAXBXCXXXXDX

[T4] 3 x 380-480 V AC – normal overload

		1	Normal ov	erload (110%	6 1 min/10	min)			Enclosure size					
Type		Output	current		Typica	l shaft	Continu-	Estimated	Р	rotection r	ating [IEC/UI	1		
code	(3 x 38	30-440 V)	(3 x 44	1-500 V)	output	power	ous input current	power loss	IP20/21	IP21	IP55	IP66		
FC-202	Con. I _N	Inter. I _{MAX} (60 s)	Con. I _N	Inter. I _{MAX} (60 s)	kW @ 400 V	Hp @ 460 V	[A] @ 400 V	[W]	Chassis	Type 1	Type 12	Type 4X		
PK37	1.3	1.4	1.2	1.3	0.37	0.5	1.2	35	A2	A2*	A4/A5**	A4/A5**		
PK55	1.8	2	1.6	1.8	0.55	0.75	1.6	42	A2	A2*	A4/A5**	A4/A5**		
PK75	2.4	2.6	2.1	2.3	0.75	1	2.2	46	A2	A2*	A4/A5**	A4/A5**		
P1K1	3	3.3	2.7	3	1.1	1.5	2.7	58	A2	A2*	A4/A5**	A4/A5**		
P1K5	4.1	4.5	3.4	3.7	1.5	2	3.7	62	A2	A2*	A4/A5**	A4/A5**		
P2K2	5.6	6.2	4.8	5.3	2.2	3	5.0	88	A2	A2*	A4/A5**	A4/A5**		
P3K0	7.2	7.9	6.3	6.9	3	4	6.5	116	A2	A2*	A4/A5**	A4/A5**		
P4K0	10	11	8.2	9	4	5	9.0	124	A2	A2*	A4/A5**	A4/A5**		
P5K5	13	14.3	11	12.1	5.5	7.5	11.7	187	A3	A3*	A5	A5		
P7K5	16	17.6	14.5	16	7.5	10	14.4	225	A3	A3*	A5	A5		
P11K	24	26.4	21	23.1	11	15	22	392	B3	B1	B1	B1		
DIEK	27	25.7	27	20.7	15	20	20	200	DO	D1	D1	D1		
P18K	37.5	41.3	34	37.4	18.5	25	34	465	B3	B1	B1	B1		
P22K	44	48.4	40	44	22	30	40	525	B4	B2	B2	B2		
P30K	61	67.1	52	61.6	30	40	55	739	B4	B2	B2	B2		
P37K	73	80.3	65	71.5	37	50	66	698	B4	C1	C1	C1		
P45K	90	99	80	88	45	60	82	843	C3	C1	C1	C1		
P55K	106	117	105	116	55	75	96	1083	C3	C1	C1	C1		
P75K	147	162	130	143	75	100	133	1384	C4	C2	C2	C2		
P90K	177	195	160	176	90	125	161	1474	C4	C2	C2	C2		

* Requires an IP21/Type 1 kit. Available in North America only. ** A4 does not accept any C options

[T4] 3 x 380-480 V AC – high overload

			High over	rload (160%	1 min/10 r	nin)			Enclosure size				
Type		Output	current		Typica	l shaft	Continu-	Estimated	Р	rotection ra	ting [IEC/UI	L]	
code	(3 x 38	30-440 V)	(3 x 44	41-500 V)	output	power	ous input current	power loss	IP20/21	IP21	IP55	IP66	
FC-202	Con. I _N	Inter. I _{MAX} (60 s)	$\operatorname{Con.I}_{\scriptscriptstyle N}$	Inter. I _{MAX} (60 s)	kW @ 400 V	Hp @ 460 V	[A] @ 400 V	[W]	Chassis	Type 1	Type 12	Type 4X	
PK37	1.3	2	1.2	1.8	0.37	0.5	1.2	35	A2	A2*	A4/A5**	A4/A5**	
PK55	1.8	2.7	1.6	2.4	0.55	0.75	1.6	42	A2	A2*	A4/A5**	A4/A5**	
PK75	2.4	3.6	2.1	3.2	0.75	1	2.2	46	A2	A2*	A4/A5**	A4/A5**	
P1K1	3	4.5	2.7	4.1	1.1	1.5	2.7	58	A2	A2*	A4/A5**	A4/A5**	
P1K5	4.1	6.2	3.4	5.1	1.5	2	3.7	62	A2	A2*	A4/A5**	A4/A5**	
P2K2	5.6	8.4	4.8	7.2	2.2	3	5.0	88	A2	A2*	A4/A5**	A4/A5**	
P3K0	7.2	10.8	6.3	9.5	3	4	6.5	116	A2	A2*	A4/A5**	A4/A5**	
P4K0	10	15	8.2	12.3	4	5	9.0	124	A2	A2*	A4/A5**	A4/A5**	
P5K5	13	19.5	11	16.5	5.5	7.5	11.7	187	A3	A3*	A5	A5	
P7K5	16	24	14.5	21.8	7.5	10	14.4	225	A3	A3*	A5	A5	
P11K	16	25.6	14.5	23.2	7.5	10	14	291	B3	B1	B1	B1	
P15K	24	38.4	21	33.6	11	15	22	291	B3	B1	B1	B1	
P18K	32	51.2	27	43.2	15	20	29	379	B3	B1	B1	B1	
P22K	37.5	60	34	54.4	18.5	25	34	444	B4	B2	B2	B2	
P30K	44	70.4	40	64	22	30	40	547	B4	B2	B2	B2	
P37K	61	91.5	52	78	30	40	55	570	B4	C1	C1	C1	
P45K	73	110	65	97.5	37	50	66	697	C3	C1	C1	C1	
P55K	90	135	80	120	45	60	82	891	C3	C1	C1	C1	
P75K	106	159	105	158	55	75	96	1022	C4	C2	C2	C2	
P90K	147	221	130	195	75	100	133	1232	C4	C2	C2	C2	

* Requires an IP21/Type 1 kit. Available in North America only. ** A4 does not accept any C options

Dimensions enclosure sizes A, B and C

								VLT® AQ	UA Drive						
Enclosu	re size	A	2	A	\3	A4	A5	B1	B2	B3	B4	C1	C2	C3	C4
Protect	ion rating [IEC/UL]	IP20 Chassis	P20 IP21 IP20 IP21 IP55/Type 12 hassis Type 1 Chassis Type 1 IP66/Type 4X		IP21/ ¹ IP55/T IP66/T	IP21/Type 1 IP55/Type 12 IP66/Type 4X IP20/Chassis		Chassis	IP21/ IP55/T IP66/T	Type 1 Type 12 Type 4X	IP20/	Chassis			
	Height	268	375	268	375	390	420	480	020	399	520	680	770	550	660
	Height with decoupling plate	374	-	374	-	-	-	-	-	420	595	-	-	630	800
	Width	90	90	130	130	200	242	242	242	165	230	308	370	308	370
[mm]	Width with one C option	130	130	170	170	-	242	242	242	205	230	308	370	308	370
	Depth	205	207	205	207	175	200	260	260	249	242	310	335	333	333
	Depth with A, B option	220	222	220	222	175	200	260	260	262	242	310	335	333	333
	Depth with mains disconnect	-	-	-	-	206	224	289	290	-	-	344	378	-	-
[kg]	Weight	4.9	5.3	6	7	9.7	14.2	23	27	12	23.5	45	64	35	50
	Height	10.6	14.8	10.6	14.8	15.4	16.6	<mark>18.9</mark>	25.6	15.8	20.5	26.8	30.4	21.7	26
	Height with decoupling plate	14.8	-	14.8	-	-	-	-	-	16.6	23.5	-	-	24.8	31.5
	Width	3.6	3.6	5.2	5.2	7.9	9.6	<mark>9.6</mark>	9.6	6.5	9.1	12.2	14.6	12.2	14.6
[in]	Width with one C option	5.2	5.2	6.7	6.7	-	9.6	9.6	9.6	8.1	9.1	12.2	14.6	12.2	14.6
	Depth	8.1	18.2	8.1	8.2	6.9	7.9	10.3	10.3	9.8	9.6	12.3	13.2	13	13
	Depth with mains disconnect	-	-	-	-	8.2	8.9	11.4	11.5	-	-	13.6	14.9	-	-
	Depth with A, B option	8.7	8.8	8.7	8.8	6.9	7.9	10.3	10.3	10.4	9.6	12.3	13.2	13	13
[lb]	Weight	10.8	11.7	14.6	15.5	21.5	31.5	50.7	59.6	26.5	52	99.3	143.3	77.2	110.2

A3 IP20/Chassis with decoupling plate

A3 IP20 with option C

A3 with IP21/Type 12 NEMA 1 Kit

A4 IP55 with mains disconnect

C3 IP20

\$

PRODUCT DETAILS - 131F2053 / EAN: 5702427415669 VLT[®] AQUA DRIVE FC 202 FC-202P37KT4E55H1XGX1XXSXXXAXBXCXXXXDX Danfoss VLT® AQUA Drive is dedicated to water and wastewater applications. With a wide range of powerful standard and optional features, the VLT® AQUA Drive provides the lowest overall cost of ownership for water and wastewater applications.

✓ BACK TO CONFIGURATION ✓ RETURN TO: CONFIGURATOR HOME

General Information	Configuration Details	Efficiency Data	DrivePro®	Documents	Accessories	Services
CHARACTERISTIC	VALUE					
Product Group	VLT® AQUA Drive FC-					
Series	202					
Power Rating	(P37K) 37 KW / 50 HP					
Phase	Three phase					
Mains Voltage	380 - 480 VAC					
Enclosure	IP55 / Type 12					
RFI Filter	(H1) RFI Class A1/B (C1)					
Brake - Safe Stop	No brake chopper					
LCP	Graphical Loc. Cont. Par	nel				
Coating PCB	Not coated PCB					
Mains Option	Mains Disconnect					
Adaptation A	Standard Cable Entries					
Adaptation B	No adaptation					
Software Release	Latest release std. SW.					
Software Language Pacl	 Standard Language Pac 	k				
A Option	No A Option					
B Option	No B Option					
C0 Option MCO	No C0 option					

C Option Software	No software option
D Option	No D option
Frame Size	C1
Typecode Part 1	FC-202P37KT4E55H1XGX
Typecode Part 2	1XXSXXXAXBXCXXXXDX
Product Catalog	Global (Standard)
Power 150% (HO) [KW]	30
Power 110% (NO) [KW]	37
Height [mm]	680,0
Width w/ no C options [mm]	308,0
Depth [mm]	310,0
Depth with Option A/B [mm]	310,0
kVA	50.6
Power Loss NO [W]	698
Power Loss NO [W]	698
Power Loss HO [W]	570
Power Loss HO [W]	570
Continuous Current (NO) [A]	73
Intermittent Current (NO) [A]	80.3
Continuous Current (NO) [A]	65
Intermittent Current (NO) [A]	71.5
Continuous Current (HO) [A]	61
Intermittent Current (HO) [A]	91.5
Continuous Current (HO) [A]	52
Intermittent Current (HO) [A]	78
Calculated Gross Weight	40.300
Calculated Net Weight [kg]	40.000
Vendor	Cannot Determine Vendor
Modelcode01	FC-202P37KT4E55H1XGX
Modelcode02	1XXSXXXAXBXCXXXXDX

[T4] 3 x 380-480 V AC – normal overload

		1	Normal ov	erload (110%	6 1 min/10	min)				Enclos	ure size	
Type		Output	current		Typica	l shaft	Continu-	Estimated	Р	rotection r	ting [IEC/III	
code	(3 x 38	30-440 V)	(3 x 44	1-500 V)	output	power	ous input current	power loss	IP20/21	IP21	IP55	IP66
FC-202	Con. I _N	Inter. I _{MAX} (60 s)	Con. I _N	Inter. I _{MAX} (60 s)	kW @ 400 V	Hp @ 460 V	[A] @ 400 V	[W]	Chassis	Type 1	Type 12	Type 4X
PK37	1.3	1.4	1.2	1.3	0.37	0.5	1.2	35	A2	A2*	A4/A5**	A4/A5**
PK55	1.8	2	1.6	1.8	0.55	0.75	1.6	42	A2	A2*	A4/A5**	A4/A5**
PK75	2.4	2.6	2.1	2.3	0.75	1	2.2	46	A2	A2*	A4/A5**	A4/A5**
P1K1	3	3.3	2.7	3	1.1	1.5	2.7	58	A2	A2*	A4/A5**	A4/A5**
P1K5	4.1	4.5	3.4	3.7	1.5	2	3.7	62	A2	A2*	A4/A5**	A4/A5**
P2K2	5.6	6.2	4.8	5.3	2.2	3	5.0	88	A2	A2*	A4/A5**	A4/A5**
P3K0	7.2	7.9	6.3	6.9	3	4	6.5	116	A2	A2*	A4/A5**	A4/A5**
P4K0	10	11	8.2	9	4	5	9.0	124	A2	A2*	A4/A5**	A4/A5**
P5K5	13	14.3	11	12.1	5.5	7.5	11.7	187	A3	A3*	A5	A5
P7K5	16	17.6	14.5	16	7.5	10	14.4	225	A3	A3*	A5	A5
P11K	24	26.4	21	23.1	11	15	22	392	B3	B1	B1	B1
P15K	32	35.2	27	29.7	15	20	29	392	B3	B1	B1	B1
P18K	37.5	41.3	34	37.4	18.5	25	34	465	B3	B1	B1	B1
P22K	44	48.4	40	44	22	30	40	525	B4	B2	B2	B2
POUR	01	07.1	52	01.0	50	40	55	/ 39	D4	DZ	DZ	DZ
P37K	73	80.3	65	71.5	37	50	66	698	B4	C1	C1	C1
DIEK	00	00	20		45	60	82	943	<u></u>	C1	C1	C1
P55K	106	117	105	116	55	75	96	1083	C3	C1	C1	C1
P75K	147	162	130	143	75	100	133	1384	C4	C2	C2	C2
P90K	177	195	160	176	90	125	161	1474	C4	C2	C2	C2

* Requires an IP21/Type 1 kit. Available in North America only. ** A4 does not accept any C options

[T4] 3 x 380-480 V AC – high overload

			High over	rload (160%	1 min/10 r	nin)			Enclosure size				
Type		Output	current		Typica	l shaft	Continu-	Estimated	Р	rotection ra	ting [IEC/UI	L]	
code	(3 x 38	30-440 V)	(3 x 44	41-500 V)	output	power	ous input current	power loss	IP20/21	IP21	IP55	IP66	
FC-202	Con. I _N	Inter. I _{MAX} (60 s)	$\operatorname{Con.I}_{\scriptscriptstyle N}$	Inter. I _{MAX} (60 s)	kW @ 400 V	Hp @ 460 V	[A] @ 400 V	[W]	Chassis	Type 1	Type 12	Type 4X	
PK37	1.3	2	1.2	1.8	0.37	0.5	1.2	35	A2	A2*	A4/A5**	A4/A5**	
PK55	1.8	2.7	1.6	2.4	0.55	0.75	1.6	42	A2	A2*	A4/A5**	A4/A5**	
PK75	2.4	3.6	2.1	3.2	0.75	1	2.2	46	A2	A2*	A4/A5**	A4/A5**	
P1K1	3	4.5	2.7	4.1	1.1	1.5	2.7	58	A2	A2*	A4/A5**	A4/A5**	
P1K5	4.1	6.2	3.4	5.1	1.5	2	3.7	62	A2	A2*	A4/A5**	A4/A5**	
P2K2	5.6	8.4	4.8	7.2	2.2	3	5.0	88	A2	A2*	A4/A5**	A4/A5**	
P3K0	7.2	10.8	6.3	9.5	3	4	6.5	116	A2	A2*	A4/A5**	A4/A5**	
P4K0	10	15	8.2	12.3	4	5	9.0	124	A2	A2*	A4/A5**	A4/A5**	
P5K5	13	19.5	11	16.5	5.5	7.5	11.7	187	A3	A3*	A5	A5	
P7K5	16	24	14.5	21.8	7.5	10	14.4	225	A3	A3*	A5	A5	
P11K	16	25.6	14.5	23.2	7.5	10	14	291	B3	B1	B1	B1	
P15K	24	38.4	21	33.6	11	15	22	291	B3	B1	B1	B1	
P18K	32	51.2	27	43.2	15	20	29	379	B3	B1	B1	B1	
P22K	37.5	60	34	54.4	18.5	25	34	444	B4	B2	B2	B2	
P30K	44	70.4	40	64	22	30	40	547	B4	B2	B2	B2	
P37K	61	91.5	52	78	30	40	55	570	B4	C1	C1	C1	
P45K	73	110	65	97.5	37	50	66	697	C3	C1	C1	C1	
P55K	90	135	80	120	45	60	82	891	C3	C1	C1	C1	
P75K	106	159	105	158	55	75	96	1022	C4	C2	C2	C2	
P90K	147	221	130	195	75	100	133	1232	C4	C2	C2	C2	

* Requires an IP21/Type 1 kit. Available in North America only. ** A4 does not accept any C options

Dimensions enclosure sizes A, B and C

Enclosure size		A2		A3		A4	A5	B1	B2	B3	B4	C1	C2	C3	C4
Protection rating [IEC/UL]		IP20 Chassis	IP21 Type 1	IP20 Chassis	IP21 Type 1	P21 IP55/Type 12 ype 1 IP66/Type 4X		IP21/Type 1 IP55/Type 12 IP66/Type 4X		IP20/Chassis		IP21/Type 1 IP55/Type 12 IP66/Type 4X		IP20/Chassis	
	Height	268	375	268	375	390	420	480	650	399	520	680	770	550	660
	Height with decoupling plate	374	-	374	-	-	-	-	-	420	595	-	-	630	800
	Width	90	90	130	130	200	242	242	242	165	230	308	370	308	370
[mm]	Width with one C option	130	130	170	170	-	242	242	242	205	230	308	370	308	370
	Depth	205	207	205	207	175	200	260	260	249	242	310	335	333	333
	Depth with A, B option	220	222	220	222	175	200	260	260	262	242	310	335	333	333
	Depth with mains disconnect	-	-	-	-	206	224	289	290	-	-	344	378	-	-
[kg]	Weight	4.9	5.3	6	7	9.7	14.2	23	27	12	23.5	45	64	35	50
	Height	10.6	1/1.9	10.6	1/1.8	15.4	16.6	18.0	25.6	15.8	20.5	26.8	30.4	21.7	26
	Height with decoupling plate	14.8	-	14.8	-	-	-	-	-	16.6	23.5	-	-	24.8	31.5
	Width	3.6	3.6	5.2	5.2	7.9	9.6	9.6	9.6	6.5	9.1	12.2	14.6	12.2	14.6
[in]	Width with one C option	5.2	5.2	6.7	6.7	-	9.6	9.6	9.6	8.1	9.1	12.2	14.6	12.2	14.6
	Depth	8.1	18.2	8.1	8.2	6.9	7.9	10.3	10.3	9.8	9.6	12.3	13.2	13	13
	Depth with mains disconnect	-	-	-	-	8.2	8.9	11.4	11.5	-	-	<mark>13.6</mark>	14.9	-	-
	Depth with A, B option	8.7	8.8	8.7	8.8	6.9	7.9	10.3	10.3	10.4	9.6	12.3	13.2	13	13
[lb]	Weight	10.8	11.7	14.6	15.5	21.5	31.5	50.7	59.6	26.5	52	99.3	143.3	77.2	110.2

A3 IP20/Chassis with decoupling plate

A3 IP20 with option C

A3 with IP21/Type 12 NEMA 1 Kit

A4 IP55 with mains disconnect

C3 IP20

\$

PRODUCT DETAILS - 131F2056 / EAN: 5702427415690 VLT[®] AQUA DRIVE FC 202 FC-202P75KT4E55H1XGX1XXSXXXAXBXCXXXXDX Danfoss VLT® AQUA Drive is dedicated to water and wastewater applications. With a wide range of powerful standard and optional features, the $\mathsf{VLT}^{\circledast}$ AQUA Drive provides the lowest overall cost of ownership for water and wastewater applications.

General Information	Configuration Details	Efficiency Data	DrivePro®	Documents	Accessories	Services	
CHARACTERISTIC	VALUE						
Product Group	VLT® AQUA Drive FC-						
Series	202						
Power Rating	(P75K) 75 KW / 100 HP						
Phase	Three phase						
Mains Voltage	380 - 480 VAC						
Enclosure	IP55 / Type 12						
RFI Filter	(H1) RFI Class A1/B (C1)						
Brake - Safe Stop	No brake chopper						
LCP	Graphical Loc. Cont. Pan	el					
Coating PCB	Not coated PCB						
Mains Option	Mains Disconnect						
Adaptation A	Standard Cable Entries						
Adaptation B	No adaptation						
Software Release	Latest release std. SW.						
Software Language Pack	standard Language Pack	K					
A Option	No A Option						
B Option	No B Option						
C0 Option MCO	No C0 option						

C Option Software	No software option
D Option	No D option
Frame Size	C2
Typecode Part 1	FC-202P75KT4E55H1XGX
Typecode Part 2	1XXSXXXAXBXCXXXXDX
Product Catalog	Global (Standard)
Power 150% (HO) [KW]	55
Power 110% (NO) [KW]	75
Height [mm]	770,0
Width w/ no C options [mm]	370,0
Depth [mm]	335,0
Depth with Option A/B [mm]	335,0
kVA	102
Power Loss NO [W]	1384
Power Loss NO [W]	1384
Power Loss HO [W]	1022
Power Loss HO [W]	1022
Continuous Current (NO) [A]	147
Intermittent Current (NO) [A]	162
Continuous Current (NO) [A]	130
Intermittent Current (NO) [A]	143
Continuous Current (HO) [A]	106
Intermittent Current (HO) [A]	159
Continuous Current (HO) [A]	105
Intermittent Current (HO) [A]	158
Calculated Gross Weight	61.300
Calculated Net Weight [kg]	61.000
Vendor	Cannot Determine Vendor
Modelcode01	FC-202P75KT4E55H1XGX
Modelcode02	1XXSXXXAXBXCXXXXDX

[T4] 3 x 380-480 V AC – normal overload

		٦	Normal ov	erload (110%	5 1 min/10	min)				Enclos	ure size	
Type		Output	current		Typica	l shaft	Continu-	Estimated	Р	rotection r	ating [IEC/LII	1
code	(3 x 38	80-440 V)	(3 x 441-500 V)		output power		ous input current	power loss	IP20/21	IP21	IP55	IP66
FC-202	Con. I _N	Inter. I _{MAX} (60 s)	Con. I _N	Inter. I _{MAX} (60 s)	kW @ 400 V	Hp @ 460 V	[A] @ 400 V	[W]	Chassis	Type 1	Type 12	Type 4X
PK37	1.3	1.4	1.2	1.3	0.37	0.5	1.2	35	A2	A2*	A4/A5**	A4/A5**
PK55	1.8	2	1.6	1.8	0.55	0.75	1.6	42	A2	A2*	A4/A5**	A4/A5**
PK75	2.4	2.6	2.1	2.3	0.75	1	2.2	46	A2	A2*	A4/A5**	A4/A5**
P1K1	3	3.3	2.7	3	1.1	1.5	2.7	58	A2	A2*	A4/A5**	A4/A5**
P1K5	4.1	4.5	3.4	3.7	1.5	2	3.7	62	A2	A2*	A4/A5**	A4/A5**
P2K2	5.6	6.2	4.8	5.3	2.2	3	5.0	88	A2	A2*	A4/A5**	A4/A5**
P3K0	7.2	7.9	6.3	6.9	3	4	6.5	116	A2	A2*	A4/A5**	A4/A5**
P4K0	10	11	8.2	9	4	5	9.0	124	A2	A2*	A4/A5**	A4/A5**
P5K5	13	14.3	11	12.1	5.5	7.5	11.7	187	A3	A3*	A5	A5
P7K5	16	17.6	14.5	16	7.5	10	14.4	225	A3	A3*	A5	A5
P11K	24	26.4	21	23.1	11	15	22	392	B3	B1	B1	B1
P15K	32	35.2	27	29.7	15	20	29	392	B3	B1	B1	B1
P18K	37.5	41.3	34	37.4	18.5	25	34	465	B3	B1	B1	B1
P22K	44	48.4	40	44	22	30	40	525	B4	B2	B2	B2
P30K	61	67.1	52	61.6	30	40	55	739	B4	B2	B2	B2
P37K	73	80.3	65	71.5	37	50	66	698	B4	C1	C1	C1
P45K	90	99	80	88	45	60	82	843	C3	C1	C1	C1
DEEK	100	117	105	116	55	75	96	1003	C	C1	C1	C1
P75K	147	162	130	143	75	100	133	1384	C4	C2	C2	C2
Pook	177	195	160	176	- 90	125	161	1474	<u>C1</u>		<u></u>	

* Requires an IP21/Type 1 kit. Available in North America only. ** A4 does not accept any C options

[T4] 3 x 380-480 V AC – high overload

High overload (160% 1 min/10 min)								Enclosure size						
Type		Output	current		Typical shaft		Continu-	Estimated	Protection rating [IEC/UL]					
code	(3 x 38	80-440 V)	(3 x 441-500 V)		output power		ous input current	power loss	IP20/21	IP21	IP55	IP66		
FC-202	Con. I _N	Inter. I _{MAX} (60 s)	Con. I _N	Inter. I _{MAX} (60 s)	kW @ 400 V	Hp @ 460 V	[A] @ 400 V	[W]	Chassis	Type 1	Type 12	Type 4X		
PK37	1.3	2	1.2	1.8	0.37	0.5	1.2	35	A2	A2*	A4/A5**	A4/A5**		
PK55	1.8	2.7	1.6	2.4	0.55	0.75	1.6	42	A2	A2*	A4/A5**	A4/A5**		
PK75	2.4	3.6	2.1	3.2	0.75	1	2.2	46	A2	A2*	A4/A5**	A4/A5**		
P1K1	3	4.5	2.7	4.1	1.1	1.5	2.7	58	A2	A2*	A4/A5**	A4/A5**		
P1K5	4.1	6.2	3.4	5.1	1.5	2	3.7	62	A2	A2*	A4/A5**	A4/A5**		
P2K2	5.6	8.4	4.8	7.2	2.2	3	5.0	88	A2	A2*	A4/A5**	A4/A5**		
P3K0	7.2	10.8	6.3	9.5	3	4	6.5	116	A2	A2*	A4/A5**	A4/A5**		
P4K0	10	15	8.2	12.3	4	5	9.0	124	A2	A2*	A4/A5**	A4/A5**		
P5K5	13	19.5	11	16.5	5.5	7.5	11.7	187	A3	A3*	A5	A5		
P7K5	16	24	14.5	21.8	7.5	10	14.4	225	A3	A3*	A5	A5		
P11K	16	25.6	14.5	23.2	7.5	10	14	291	B3	B1	B1	B1		
P15K	24	38.4	21	33.6	11	15	22	291	B3	B1	B1	B1		
P18K	32	51.2	27	43.2	15	20	29	379	B3	B1	B1	B1		
P22K	37.5	60	34	54.4	18.5	25	34	444	B4	B2	B2	B2		
P30K	44	70.4	40	64	22	30	40	547	B4	B2	B2	B2		
P37K	61	91.5	52	78	30	40	55	570	B4	C1	C1	C1		
P45K	73	110	65	97.5	37	50	66	697	C3	C1	C1	C1		
P55K	90	135	80	120	45	60	82	891	C3	C1	C1	C1		
P75K	106	159	105	158	55	75	96	1022	C4	C2	C2	C2		
P90K	147	221	130	195	75	100	133	1232	C4	C2	C2	C2		

* Requires an IP21/Type 1 kit. Available in North America only. ** A4 does not accept any C options

Dimensions enclosure sizes A, B and C

	VLT® AQUA Drive														
Enclosure size		A2		A3		A4	A5	B1	B2	B3	B4	C1	C2	C3	C4
Protection rating [IEC/UL]		IP20 Chassis	IP21 Type 1	IP20 Chassis	IP21 Type 1	IP55/Type 12 IP66/Type 4X		IP21/Type 1 IP55/Type 12 IP66/Type 4X		IP20/Chassis		IP21/Type 1 IP55/Type 12 IP66/Type 4X		IP20/Chassis	
	Height	268	375	268	375	390	420	480	650	399	520	000	770	550	660
	Height with decoupling plate	374	-	374	-	-	-	-	-	420	595	-	-	630	800
	Width	90	90	130	130	200	242	242	242	165	230	308	370	308	370
[mm]	Width with one C option	130	130	170	170	-	242	242	242	205	230	308	370	308	370
	Depth	205	207	205	207	175	200	260	260	249	242	310	335	333	333
	Depth with A, B option	220	222	220	222	175	200	260	260	262	242	310	335	333	333
	Depth with mains disconnect	-	-	-	-	206	224	289	290	-	-	344	378	-	-
[kg]	Weight	4.9	5.3	6	7	9.7	14.2	23	27	12	23.5	45	64	35	50
	Height	10.6	14.8	10.6	14.8	15.4	16.6	18.9	25.6	15.8	20.5	26.8	30.4	21.7	26
	Height with decoupling plate	14.8	-	14.8	-	-	-	-	-	16.6	23.5	-	-	24.8	31.5
	Width	3.6	3.6	5.2	5.2	7.9	9.6	9.6	9.6	6.5	9.1	12.2	14.6	12.2	14.6
[in]	Width with one C option	5.2	5.2	6.7	6.7	-	9.6	9.6	9.6	8.1	9.1	12.2	14.6	12.2	14.6
	Depth	8.1	18.2	8.1	8.2	6.9	7.9	10.3	10.3	9.8	9.6	12.3	13.2	13	13
	Depth with mains disconnect	-	-	-	-	8.2	8.9	11.4	11.5	-	-	13.6	<mark>14.9</mark>	-	-
	Depth with A, B option	8.7	8.8	8.7	8.8	6.9	7.9	10.3	10.3	10.4	9.6	12.3	13.2	13	13
[lb]	Weight	10.8	11.7	14.6	15.5	21.5	31.5	50.7	59.6	26.5	52	99.3	143.3	77.2	110.2

A3 IP20/Chassis with decoupling plate

A3 IP20 with option C

A3 with IP21/Type 12 NEMA 1 Kit

A4 IP55 with mains disconnect

C3 IP20

October 25, 2022

Mr. Elvis Dhima Town of Hudson 12 Scholl Street Hudson, NH 03051

REFERENCE: Marsh Road Water Pump Station Hudson, NH Pentair Fairbanks Submittals 0913483SR0 & 0913484SR0 Submittal Review Comments

Dear Elvis:

The following are responses to the submittal review comments in your E mail dated 7/28/2022:

1.) Dimensions

Pump and can lengths have been modified to reflect 5 FT - 6 IN dimension from the bottom of the slab to the centerline of the suction inlet as shown on Contract Drawing M001.

2.) Lineshaft Size

Lineshafts have been changed to 1-3/16" diameter.

3.) Discharge Pressure Gauges

Discharge flange is drilled & tapped for pressure gauge connection. Pressure gauges and fittings are not included in our scope of supply. Colonial Instruments in Nashua, NH is a recommended vendor/supplier for these.

4.) Warranty

Warranty provisions detailing one (1) coverage period from date of start-up will be included in O & M documentation.

5.) <u>O & M Manuals</u>

As built O & M manuals will be provided following shipment.

6.) Field Service

Field service for installation inspection, start-up, testing, and training will be provided following installation. The anticipated 2-year time frame is noted.

7.) Factory Performance Test Reports

Pump and motor test results will be submitted for approval prior to shipment.

Please forward this information on to the engineers for review and final approval.

HAYES PUMP, INC.

J. Craig Huff III Vice President Contract Sales

	Fairbanks Nijhuis Submittal Data For Marsh Road Water Pump Station Hudson, NH
Supplier:	Hayes Pump Inc. 66 Old Power Mill Rd. West Concord, MA 01742
Manufacturer:	
Pump:	Fairbanks Nijhuis 3601 Fairbanks Ave. Kansas City, Kansas 66106-0906 (913) 371-5000
Project Number:	0913483
Sales Order Number:	53113132
Quantity:	2
Pump Size & Model:	10M 7000AW
Motor:	Nidec P. O. Box 3946 St. Louis, MO 63136 (314) 553-2878

1. **Comment:** Setting Plan to include the 6" height of the concrete slab. The total length from the centerline of the discharge to the centerline of the suction should be 8.0 FT with dimension from top of can to centerline of the suction 87.5"

Response: Confirmed, See Revised Submittal

 Comment: I'm missed this requirement during the order entry process, per but the contract drawing M001, the distance from the bottom of the pump station slab to the centerline of the suction can inlet needs to be 5'-6". (See below screenshot of section view.) This translates to distance of 81.5" from top of can to the suction centerline, and 8.0 FT from discharge connection centerline to suction inlet centerline. Please adjust overall can lengths for both project #'s 0913483 & 0913484 as needrd to accommodate this suction inlet location, and revise the setting plans and can dimensional drawings accordingly.

Response: Confirmed, See Revised Submittal

2. **Comment:** For the Project 0913483 10M- 50 HP pumps, please change the lineshaft diameter to 1-3/16".

Response: Confirmed, See Revised Submittal

3. **Comment:** Please advise if the type CT and/or type D discharge heads are provided with pressure gauge tap, either at the top of the flange or other location

Response: Confirmed, Pressure Gauge tap is Provided on the Discharge Head

Fairbanks Nijhuis Included Features

- Potable Water Application None NSF Certified
- Variable Speed Operation
- 14" Suction Can
- Pump Shipped Assembled
- 10M, 6 Stage Flanged Bowl Assembly
- Suction Bell & Threaded Discharge Case
- Dynamically Balanced 316 Stainless Steel Impellers
- 416 Stainless Steel Collet Impeller Fasteners
- 316 Stainless Steel Impeller Wear Ring
- Stainless Steel Bowl Wear Ring
- 6" Threaded Column with 1-3/16" Open Line Shaft
- 416 Stainless Steel Line Shaft and Coupling
- 304 Stainless Steel Top Shaft Sleeve
- 16-1/2 x 6 Type "CT" Above Ground Discharge Head
- 175 Lb. Seal Box
- Mechanical Seal John Crane 5610
- 416 Stainless Steel Drive Shaft
- 416 Stainless Steel Pump Shaft
- Certified Non-Witness Performance Test
- Curve Approval Required Prior to Shipment
- Test Logs Required
- Critical Speed Calculations

	Fairbanks Nijhuis Submittal Data For Marsh Road Water Pump Station Hudson, NH
Supplier:	Hayes Pump, Inc. 66 Old Power Mill Road West Concord, MA 01742
Manufacturer:	
Pump:	Fairbanks Nijhuis 3601 Fairbanks Ave. Kansas City, Kansas 66106-0906 (913) 371-5000
Project Number:	0913484
Sales Order Number:	53113215
Quantity:	1
Pump Size & Model:	12E 7100AW
Motor:	Nidec P. O. Box 3946 St. Louis, MO 63136 (314) 553-2878

1. **Comment:** Setting Plan to include the 6" height of the concrete slab. The total length from the centerline of the discharge to the centerline of the suction should be 8.0 FT with dimension from top of can to centerline of the suction 87.5"

Response: Confirmed, See Revised Submittal

 Comment: I'm missed this requirement during the order entry process, per but the contract drawing M001, the distance from the bottom of the pump station slab to the centerline of the suction can inlet needs to be 5'-6". (See below screenshot of section view.) This translates to distance of 81.5" from top of can to the suction centerline, and 8.0 FT from discharge connection centerline to suction inlet centerline. Please adjust overall can lengths for both project #'s 0913483 & 0913484 as needrd to accommodate this suction inlet location, and revise the setting plans and can dimensional drawings accordingly.

Response: Confirmed, See Revised Submittal

2. **Comment:** Please advise if the type CT and/or type D discharge heads are provided with pressure gauge tap, either at the top of the flange or other location

Response: Confirmed, Pressure Gauge tap is Provided on the Discharge Head

Fairbanks Nijhuis Included Features

- Potable Water Application None NSF Certified
- Variable Speed Operation
- Suction Can
- Pump Shipped Assembled
- 12E, 6 Stage Flanged Bowl Assembly
- Suction Bell & Threaded Discharge Case
- Dynamically Balanced 316 Stainless Steel Impellers
- 416 Stainless Steel Collet Impeller Fasteners
- 316 Stainless Steel Impeller Wear Ring
- Stainless Steel Bowl Wear Ring
- 8" Flanged Column with 1-3/16" Open Line Shaft
- 416 Stainless Steel Line Shaft and Coupling
- 304 Stainless Steel Top Shaft Sleeve
- 16-1/2 x 6 Type "D" Above Ground Discharge Head
- 175 Lb. Seal Box
- Mechanical Seal John Crane 5610
- 416 Stainless Steel Drive Shaft
- 416 Stainless Steel Pump Shaft
- Certified Non-Witness Performance Test
- Curve Approval Required Prior to Shipment
- Test Logs Required

SUBMITTAL DATA

JOB NAME:	Marsh Road Water Pump Station
	Hudson, NH
ENGINEER:	Weston & Sampson
	Reading, MA
REFERENCE:	Contract Drawing M001 – Process Plan
	Pump Schedule – Pump #1 – Jockey Pump
QUANTITY:	One (1) Pump/Motor Unit

PUMP DESCRIPTION

MANUFACTURER:	Pentair Aurora	MODEL:	PVMX20-5	SIZE:	2" x 2"
FLOW (GPM):	120	TDH (FT):	240	SPEED:	3500
CONSTRUCTION:	Cast Iron/Stainless Steel		STUFFING BOX:	Mechanical Seal	
BASEPLATE:	Integral Cast Iron		COUPLING:	Split Rigi	d Type
OTHER:	See Next Page for Details				

MOTOR DESCRIPTION

HORSEPOWER:	15	SP	EED (RPM):	3600	ENCLOSURE:	TEFC
VOLTAGE:	3/60/230-460 FRAME:		215TC	MANUFACTURER:	Baldor	
OTHER:	See Next Page for Details					

ORDER INFORMATION

SOLD TO:	Town of Hudson	P. O. NUMBER	7103-002
	12 School Street		
	Hudson, NH 03051		

HAYES ORDER #: Not Assigned Yet	BY: Craig Huff	DATE: 10/24/2022
---------------------------------	----------------	------------------

MATERIALS OF CONSTRUCTION

Motor Mounting Bracket	Cast Iron ASTM 65-45-12
Impellers	Stainless Steel AISI 316
Pump Shaft	Stainless Steel AISI 316
Outer Sleeves	Stainless Steel AISI 316
Chambers	Stainless Steel AISI 316
Mechanical Seal	Silicon Carbide vs. Silicon Carbide Faces

SPECIAL REQUIREMENTS

1.) Operating Conditions

Submittal includes Pump Data Sheets detailing operating parameters for design conditions of 120 GPM @ 240 FT TDH with nominal efficiency rating of 68.0%.

2.) Pump Configuration

Pump will have inline suction and discharge connections with 2" ANSI 250 lb. flanges. Integral base has four (4) 0.56" anchor bolt holes for mounting purposes.

3.) Mechanical Seal

Stuffing box will be equipped with cartridge type single inside mechanical seal with face materials as listed above.

4.) Coupling

Standard pump motor coupling is two-piece rigid type.

5.) <u>Motor</u>

Pump motors will be Baldor catalog #VEM3713T NEMA Premium efficiency, inverter duty rated, TEFC enclosure, vertical with class F insulation.

6.) Shop Applied Exterior Coating

Ferrous metal components will be coated with Pentair Aurora standard gloss blue water borne air-dry enamel. Motors will be painted with manufacturer's standard finish.

7.) Field Service

An authorized field service representative will perform installation inspection, start-up, testing, and training.

8.) O & M Manuals

Installation, operation, and maintenance manuals will be submitted for review and approval following pump approval.

9.) Accessories Items

We are providing pump/motor unit ONLY as detailed in this submittal. Other items including anchor bolts, pressure gauges, piping and valves, electrical controls, conduit, wiring, and other appurtenances are **NOT INCLUDED in our scope of supply. These are to be provided BY CONTRACTOR.**

AURORA® PVM(X) SERIES VERTICAL MULTISTAGE PUMPS

PVM(X)1 through PVM(X)150 316 SST Iodels Only

60 Hz CATALOG

www.AuroraPump.com

PVM and PVMX pumps have different size and various numbers of stages to provide the flow and pressure required.

VERTICAL MULTISTAGE PUMPS

<u>ADDED VALUES:</u>

TEFC Motors

Increased protection against weather, dirt and moisture

Cartridge mechanical seal It can be replaced easily without dismantling the pump

Stainless Steel construction Impellers and diffusers in AISI 304 (PVM) or AISI 316 (PVMX)

Multiple Connection Options Flanged, grooved or NPT connections

MADE TO SUPPLY WATER

The PVM and PVMX are vertical in-line multistage pumps with stainless steel stage construction. PVM models are available with flanged/NPT or grooved connections. PVMX models are available in flanged, grooved or NPT connections.

Premium efficiency motors are standard for 230/460V, EPACT efficiency for all other voltages.

Pump shafts are directly coupled to NEMA standard motors.

PENTAIR PVM - TECHNICAL DATA

- Flow: up to 800 GPMHeads: up to 960 ft
- Liquid temp: 5°F to 248°F
- Flanges connection: ANSI Class 150 & Class 250
- Cartridge mechanical seal: SiC/SiC/EPDM or Viton[®]

APPLICATION

- Water supply
- Pressure boosting systems
- Water treatment/ filtration

- Motor: 50/60 Hz
- EPACT and premium efficient motors available
- > 200 to 575 Volts
- TEFC enclosures standard for PVM(X)1 – PVM(X)33
- Up to 100 hp
- Irrigation
- High pressure washes
- Liquid transfer
- Boiler feed
- Jockey pumps

Fairbanks Nijhuis®

3501 Fairbanks Avenue, Kansas City, Kansas 66106 • Tel. 913-371-5000 www.FairbanksNijhuis.com

Customer : Town of Hudson, NH

Encompass 2.0 - 22.3.0

Project name : Hudson, NH - Marsh Road Water Pump Station

Item number	Pump #1	Size / Stages	/ 5
Quote number	Hudson, NH	Pump speed	3500 rpm

Pump

Qty De	escription
--------	------------

1 PVM(X)20-5

Configuration Pump information

Parameters

Product Brand: Aurora Flow: 120 GPM Head: 240 FT TDH Stages: 5

Materials of Construction

Potable water NSF 372/61 compliant Pump material: 316 stainless steel Pump connection type: Flanged

Driver

Phase: 3 Frequency: 60Hz Voltage: 230/460 Motor Frame: 215TC Type: NEMA Premium Enclosure: TEFC

Customer : Town of Hudson, NH

Project name : Hudson, NH - Marsh Road Water Pump Station

Item number Service Quantity Quote number	: Pump #1 : Jockey Pump : 1 : Hudson, NH	Size Stages Stages Sased on curve number State Saved State Saved State S	: PVM(X)20-5 : 5 : PVM(X)20-5 : 09 Oct 2022 4:02 PM
Operating Conditions		Liquid	
Flow, rated Differential head / pressure, rated (reques Differential head / pressure, rated (actual) Suction pressure, rated / max NPSH available, rated Site Supply Frequency Performance Speed criteria	: 120.0 USgpm ted) : 240.0 ft : 263.7 ft : 0.00 / 0.00 psi.g : Ample : 60 Hz : Synchronous	Liquid type Additional liquid description Solids diameter, max Solids diameter limit Solids concentration, by volume Temperature, max Fluid density, rated / max Viscosity, rated	: Water : : 0.00 in : 0.00 in : 0.00 % : 68.00 deg F : 1.000 / 1.000 SG : 1.00 cP
Speed, rated Impeller diameter, rated	: 3500 rpm : PVM(I/X)20-5	Vapor pressure, rated Material	: 0.34 psi.a
Impeller diameter, maximum Impeller diameter, minimum	: PVM(I/X)20-5 : PVM(I/X)20-5	Material selected Pressure Data	: Auto
Efficiency NPSH required / margin required nq (imp. eye flow) / S (imp. eye flow) Minimum Continuous Stable Flow Head, maximum, rated diameter	: 68.66 % : 15.17 / 0.00 ft : 33 / 105 Metric units : 11.00 USgpm : 359.9 ft	Maximum working pressure Maximum allowable working pressur Maximum allowable suction pressur Hydrostatic test pressure Driver & Power Data (@Max dens	: 155.8 psi.g re : 360.0 psi.g re : N/A : N/A
Flead rise to shutoff Flow, best eff. point Flow ratio, rated / BEP Diameter ratio (rated / max) Head ratio (rated dia / max dia) Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010] Selection status	: 36.49 % : 105.9 USgpm : 113.33 % : 100.00 % : 100.00 % : 1.00 / 1.00 / 1.00 / 1.00 : Acceptable	Driver sizing specification Margin over specification Service factor Power, hydraulic Power, rated Power, maximum, rated diameter Motor rating	: Max Power : 0.00 % : 1.15 (used) : 7.99 hp : 11.63 hp : 12.86 hp : 15.00 hp / 11.19 kW (Fixed)

Curve efficiencies are typical.

Customer : Town of Hudson, NH

Pump Performance - Additional Data Encompass 2.0 - 22.3.0

Project name : Hudson, NH - Marsh Road Water Pump Station

Item number	: Pump #1	Size	: P	VM(X)20-5		
Service	: Jockey Pump	Stages : 5		5		
Quantity	:1	Speed, rated	Speed, rated : 35		3500 rpm	
Quote number	: Hudson, NH	Frame size	:			
		Date last saved	: 09	9 Oct 2022 4:02 PM		
Performance Data		Stage, Speed and	1 Solids Limits			
Head maximum diamater, rated flow	. 262 7 #	Stage, opeca un		· E		
Head, minimum diameter, rated flow	: 263.7 ft	Stages, maximum		.5		
Head, minimum diameter, rated now	. 203.7 It	Dump apood limit	movimum	. 3	· · · ·	
Efficiency adjustment factor, total	. 359.9 It	Pump speed limit,	minimum	. 3000	pm	
Efficiency adjustment factor, total	: 1.00	Pump speed limit,	minimum	. 1800	pm	
Power adjustment, total	: 0.00 hp	Curve speed limit,	maximum	: 3600	pm	
	. 1.00	Curve speed limit,		. 1800 1	рш	
Flow adjustment factor, total	: 1.00	Variable speed lin	nit, maximum	: - . E ana an		
NPSH3 adjustment factor, total	: 1.00	Variable speed lift	nit, minimum	: 5 rpm	_	
NPSH margin dictated by pump supplier	: 0.00 ft	Solids diameter lin	nit	: 0.00 II	1	
NPSH margin dictated by user	: 0.00 ft	Typical Driver Da	ita			
NPSH margin used (added to 'required' va	alues) : 0.00 ft	Driver speed, full I	oad	: 3525	rpm	
Mechanical Limits		Driver speed, rate	d load	: 3542	rpm	
Torque, rated power, rated speed	: 0.33 hp/100 rpm	Driver efficiency, 1	100% load	: 90.20	%	
Torque, maximum power, rated speed	: 0.37 hp/100 rpm	Driver efficiency, 7	75% load	: 89.90	%	
Torque, driver power, full load speed	: 0.43 hp/100 rpm	Driver efficiency, 5	50% load	: 88.30	%	
Torque, driver power, rated speed	: 0.43 hp/100 rpm					
Torque, pump shaft limit	: 30.00 hp/100 rpm					
Radial load, worst case	: -					
Radial load limit	: -					
Impeller peripheral speed, rated	:-					
Impeller peripheral speed limit	:-					
Various Performance Data	Flow (USgpm)	Head (ft) Ef	fficiency (%)	NPSH3 (ft)	Power (hp)	
Shutoff, rated	0.00	359.9	-	-	4.75	
Shutoff, maximum	0.00	359.9	-	-	4.75	
Minimum Continuous Stable Flow	11.00	356.0	18.56	10.44	5.33	
Rated flow, minimum	120.0	263.7	68.66	-	11.63	
Rated flow, maximum	120.0	263.7	68.66	-	11.63	
BEP flow, rated	105.9	289.5	69.79	12.51	11.09	
120% rated flow, rated	144.0	206.0	59.75	23.11	12.54	
End of curve, rated	150.0	188.8	55.58	25.92	12.86	
End of curve, minimum	150.0	188.8	55.58	25.92	12.86	
End of curve, maximum	150.0	188.8	55.58	25.92	12.86	
Maximum value, rated	-	359.9	69.79	-	12.86	
Maximum value, maximum	-	-	69.79	-	12.86	
System differential pressure		@ Dens	ity, rated	@ Dens	ity, max	
Differential pressure, rated flow, rated (ps	i)	11	4.1	114.1		
Differential pressure, shutoff, rated (psi)		155.8 155.8		5.8		
Differential pressure, shutoff, maximum (p	osi)	155.8 155.8		5.8		
Discharge pressure		@ Suction pressure, rated	@ Suction pressure, max	@ Suction pressure, rated	@ Suction pressure, max	
Discharge pressure, rated flow, rated (psi	.a)	114 1	114 1	114 1	114 1	
Discharge pressure, shutoff, rated (psi.g)	0,	155.8	155.8	155.8	155.8	
Discharge pressure, shutoff, maximum (p	si.a)	155.8	155.8	155.8	155.8	
Ratios	- 37	100.0	100.0	100.0	100.0	
Maximum flow / rated flow rated	125.00 %	Hood rated diama	ter / head minimu	um diameter rated fl	ow : 100 00 %	

16

: Town of Hudson, NH

Encompass 2.0 - 22.3.0

Project name

: Hudson, NH - Marsh Road Water Pump Station

Curve efficiencies are typical.

General Arrangement Drawing

Α	В	С	D	E	F
24.10	20.03	12.94	3.75	47.88	12.94

NOTES:

All dimensions are in inches.

Dimensions shown may vary ± due to normal manufacturing tolerances.

Not for construction, installation, or application purposes unless certified.

Measurements represent the largest number possible for each model using standard efficiency motors.

Pump Data										
Model		PVM	(X)20-5							
Stages		5								
Flow		120.0) USgpm							
Head			240.0 ft							
Rotation		Right	Right							
Liquid Type		Wate	r							
Suc/Disch Size		2								
Actual Pressure		114.3	3 psi.g							
Ambient Temperat	ure	68.00) deg F							
Max Ambient Tem	perature	32.00) deg F							
Liquid Temperature	э	68.00) deg F							
Liquid Temp Rating	g	68.00) deg F							
Connection Suc/Di	sch	250								
		Moto	r Data							
Power		15.00) hp							
Phase		3								
Hertz		60 H	Z							
Volts		230/460								
RPM		3500 rpm								
Frame Size		215T	C							
Efficiency Rating		NEMA Premium								
Enclosure		TEFC								
	Pur	np Ma	terial Data							
Pump Material		stain	less steel							
Elastomer		EPD	М							
	Est	timate	d Weights							
Pump		370.9) Ib							
	Cer	tificati	on Correct							
Customer Town of Huds			NH							
Customer Quote # 1788017										
Job Name	Hudson, N	H - Ma	arsh Road Water Pu	mp Station						
Market	Municipal		I							
			Quote Item #	Pump #1						
PENIAR			Quote Date	09 Oct 2022						

HIGH HYDRAULIC EFFICIENCY, MOTOR DESIGNED TO NEMA STANDARDS

The PVM and PVMX are vertical multistage pumps with flanged/NPT or grooved connections.

Stage construction with stainless steel impellers, chambers and pressure casing. Pump shaft and motor shaft of the NEMA-standard motor are directly close coupled. All pumps are equipped with a cartridge type mechanical seal for easy maintenance.

PVM and PVMX pumps have different pump sizes and various numbers of stages to provide the flow and the pressure required.

APPLICATIONS

- Water supply
- Pressure boosting systems
- Water treatment/filtration
- Irrigation

- High pressure washes
- Liquid transfer
- Firefighting systems
- Boiler feed

MOTOR

- TEFC motor with enclosed stator and external ventilation
- Main dimensions are in accordance with NEMA standards
- Class B or better insulation
- Maximum environmental temperature 40°C
- Speed of rotation 3500 rpm

Motor Type: 2-pole											
HP	Phase	Voltage	Frame Size	Phase	Voltage	Frame Size					
0.5	1	115V/208-230V	56C	3	208-230V/460V	56C					
0.75	1	115V/208-230V	56C	3	208-230V/460V	56C					
1	1	115V/208-230V	56C	3	208-230V/460V	56C					
1.5	1	115V/208-230V	56C	3	208-230V/460V	56C					
2	1	115V/208-230V	56C	3	208-230V/460V	56C					
3	1	115V/208-230V	182TC	3	208-230V/460V	182TC					
5	1	208-230V	213TC	3	208-230V/460V	184TC					
7.5	1	208-230V	213TC	3	208-2307/4407	213TC					
10	1	208-230V	215TC	3	208-230V/460V	215TC					
15	N/A	N/A	N/A	2	208 2201///401/	25/TC					
20	N/A	N/A	N/A	3	230V/460V	254TC					
25	N/A	N/A	N/A	3	230V/460V	284TSC					
30	N/A	N/A	N/A	3	230V/460V	284TSC					
40	N/A	N/A	N/A	3	230V/460V	284TSC					
50	N/A	N/A	N/A	3	230V/460V	326TSC (TEFC)					
60	N/A	N/A	N/A	3	230V/460V	364TSC (TEFC)					
75	N/A	N/A	N/A	3	230V/460V	365TSC (TEFC)					
100	N/A	N/A	N/A	3	230V/460V	405TSC (TEFC)					

(0)										
60Hz	1	3	5	10	15	20				
Nominal Flow – US gpm	10.4	16	30	55	97	106				
Flow Range – US gpm	1-20	1.5-30	3-60	5.5-95	9.5-150	11-170				
Max. Pressure – psi (ft)	360 (832)	360 (832)	360 (832)	360 (832)	360 (832)	360 (832)				
Fluid Temperature – °F (°C)			5°F to + 250°F (-	15°C to + 120°C)						
Motor Power – hp	0.5-3	0.5-5	0.75-7.5	0.75-15	2-25	3-25				
Version										
PVM: Cast Iron EN 1.4301/AISI 304"	•	•	•	•	•	•				
PVMX: Stainless Steel EN 1.4401/AISI 316"	•	•	•	•	•	•				
Motor										
Main Connection		208-23	Usable 30V/460 (0.5-15 hp	at 208V); 230V/460V (20-1	100 hp)					
Insulation class			E	3						
Ambient temperature			40	°C						
PVM Pipe Connection										
Flange/NPT	1-1/4" ANSI 250#/1-1/4" NPT Female	1-1/4" ANSI 250#/1-1/4" NPT Female	1-1/4" ANSI 250#/1-1/4" NPT Female	2" ANSI 250#/2" NPT Female	2" ANSI 250#/2" NPT Female	2" ANSI 250#/2" NPT Female				
PVMX Pipe Connection										
Flange	1-1/4 ANSI 250#	1-1/4 ANSI 250#	1-1/4 ANSI 250#	2" ANSI 250#	2" ANSI 250#	2" ANSI 250#				
Grooved connection	R¼ DN32	R¼ DN32	R¼ DN32	R2 DN50	R2 DN50	R2 DN50				
Mechanical Seals										
SiC/SiC			Stan	dard						
Seals										
EPDM			Stan	dard						
Viton	Optional									

PUMP CONSTRUCTION

POS.	NAME	MATERIAL	• PVM 1, 3, 5, 10, 15, 20	PVMX 1, 3, 5, 10, 15, 20		
36	Pump head	Cast iron	FN-GJL-200 ; ASTM 255	EN-GJS-450-10 ; ASTM 65-45-12		
56	Pump head cover	Stainless steel	-	1.4401; AISI 316		
18	Impeller	Stainless steel	14301; AISI 394	1.4401; AISI 316		
37	Shaft	Stainless steel	1.4157 ; AISI 431	1.4401; AISI 316		
48	Outer sleeve	Stainless steel	1.430 .; A/SI 304	1.4401; AISI 316		
82	O-ring for outer sleeve	Epdm or viton	X	-		
12	Chamber	Stainless steel	1.4307;AISI 304	1.4401; AISI 316		
24	Neck Ring	PTFE	-	-		
59	Base	Cast iron	EN-6JL-200 ; ASTN 25B	-		
		Stainless steel	-	1.4401; AISI 316		
62	Base plate	Cast iron	-	EN-GJL-200 ; ASTM 25B		
44	Coupling	Fe-Cu-C	SINT C11; MPIF FC0525	SINT C11; MPIF FC0525		
57	57 Mechanical seal Cartridge type Sic/Sic Faces with AISI 304 & 316 compo					

PVMX - 1, 3, 5, 10, 15, 20

PUMP DIMENSIONS – STANDARD

									PVM	l Cast	Iron		/			P١	/MX S	tainle	ss Ste	el	
							Dime	ension	s in ir	nches		Weight	i Lbs		Dime	ension	s in ir	nches		Weigh	t in Lbs
Model Number	Motor HP	Motor Service Factor	Phase	Voltage	Motor Frame	Α	в	с	D	E	F	Pump End Or y	Pump & Motor	A	в	с	D	E	F	Pump End Only	Pump & Motor
PVM20-1	3	1.15	1	115V/208-230V	182TC	16.8	15.4	8.9	2.6	34.8	8.9	66	154	16.8	15.4	8.7	2.6	34.8	8.7	55	143
PVM20-1	3	1.15	3	208-230V/460V	182TC	16.8	13.9	8.7	2.6	33.4	8.9	66	134	16.8	13.9	8.7	2.6	33.4	8.7	55	123
PVM20-2	5	1.15	1	208-230V	213TC	17.0	15.5	9.6	3.1	35.6	9.0	76	193	17.0	15.5	9.6	3.1	35.6	9.6	65	182
PVM20-2	5	1.15	3	208-230V/460V	184TC	17.0	13.9	8.9	2.0	33.6	8.9	76	144	17.0	13.9	8.9	2.6	33.6	8.9	65	133
PVM20-3	7.5	1.15	1	208-230V	213TC	18.8	15.5	8.7	3.1	V7.4	8.7	86	203	18.8	15.5	8.7	3.1	37.4	8.7	75	192
PVM20-3	7.5	1.15	3	208-230V/460V	213TC	18.8	15.5	9.6	3.1	37.5	9.6	86	184	18.8	15.5	9.6	3.1	37.5	9.6	75	173
PVM20-4	10	1.15	1	208-230V	215TC	20.5	16.6	9.6	3	40.2	2,6	96	231	20.5	16.6	9.6	3.1	40.2	9.6	85	220
DVM20 /	10	1.15	2	200_220\////0\/	21ETC	20.5	15.5	9.6	3.1	39.2	9.6	96	221	20.5	15.5	9.6	0.1	20.2	9.6	05	210
PVM20-5	15	1.15	3	208-230V/460V	25470	24.1	20.0	12	3.8	47.9	12.9	107	382	24.1	20.0	12.9	3.8	47.9	12.9	96	371
ΡΥΜΖΟ-6	15	1.15	វ	ZU8-ZJUV/46UV	2541U	25.9	20.0	12.9	3.8	49.7	12.9	117	392	Z5.9	ZU.U	12.9	J.Ö	49.7	12.9	106	JÖİ
PVM20-7	20	1.15	3	230V/460V	254TC	27.7	16	10.3	3.8	48.3	10.3	127	352	27.7	16.9	10.3	3.8	48.3	10.3	116	341
PVM20-8	20	1.15	3	230V/460V	254TC	29.5	.6.9	10.3	3.8	50.1	10.3	137	362	29.5	16.9	10.3	3.8	50.1	10.3	126	351
PVM20-10	25	1.15	3	230V/460V	284TSC	35.0	20.0	12.9	3.0	58.0	12.9	157	47	35.0	20.0	12.9	3.0	58.0	12.9	146	467

Dual 2" NPT/ 2" ANSI 250# Flanges

ΡΥΜΧ

Ø 6.50

NOTE: G1/2 per ISO-228

1

HYDRAULIC PERFORMANCE

Curve PVM(X) 20 Date 10/01/14 Nominal rpm: 3500 Based on fresh water @ 68° F Maximum working pressure: 360 psi

800 AIRPORT ROAD, NORTH AURORA, ILLINOIS • PH: 630-859-7000 • www.AuroraPump.com Because we are continuously improving our products and services, Pentair reserves the right to change specifications without prior notice.

A-02-1078 (11/10/15)

NEMA MOTORS

Product overview

BALDOR · RELIANCE

 \oplus

Industry's broadest line of NEMA low voltage motors

For nearly 100 years, we have strived to provide customers with the best value and reliability in industrial electric motors. ABB has what it takes to help every industry and application reach new levels of efficiency and energy savings even under the most demanding conditions. Baldor-Reliance® motors are designed to operate reliably no matter how challenging the process or application, and to have low life cycle costs.

Whether it's a motor for harsh, outdoor conditions at a petrochemical plant, or for continuous duty in a distribution center, customers have a variety of choices either from stock or designed to fit specific requirements. We know there are many options when it comes to buying the products you need. To help maintain your competitive edge, we offer the latest technologies to improve process reliability while driving operating costs to a minimum.

Industry's best product information. ABB offers customers easy and fast access to product information and support via the web, with in-depth product literature, specific model number information packets; complete with spare parts lists, drawings, speed/torques curves and connection diagrams. You may also talk with a customer service representative at your local sales office.

BALDOR • RELIANCE

Product Information Packet

VEM3713T 52M 2P TEFC VER 215TC SUPER E

Copyright © All product information within this document is subject to ABB Motors and Mechanical Inc. copyright © protection, unless otherwise noted.

BALDOR • RELIANCE Product Information Packet: VEM3713T - 52M 2P TEFC VER 215TC SUPER E

Part Detail										
Revision:	D	Status:	PRD/A	Change #:		Proprietary:	No			
Туре:	AC	Elec. Spec:	37WGR228	CD Diagram:	CD0180	Mfg Plant:				
Mech. Spec:	37H329	Layout:	37LYH329	Poles:	02	Created Date:	03-14-2019			
Base:	Ν	Eff. Date:	08-11-2022	Leads:	9#14					

Specs			
Catalog Number:	VEM3713T	Heater Indicator:	No Heater
Enclosure:	TEFC	Insulation Class:	F
Frame:	215TC	Inverter Code:	Inverter Ready
Frame Material:	Steel	KVA Code:	L
Motor Letter Type:	Three Phase	Lifting Lugs:	Standard Lifting Lugs
Output @ Frequency:	15.000 HP @ 60 HZ	Locked Bearing Indicator:	Locked Bearing
Synchronous Speed @ Frequency:	3600 RPM @ 60 HZ	Motor Lead Quantity/Wire Size:	9 @ 14 AWG
Voltage @ Frequency:	230.0 V @ 60 HZ	Motor Lead Exit:	Ко Вох
	460.0 V @ 60 HZ	Motor Lead Termination:	Flying Leads
XP Class and Group:	None	Motor Type:	3752M
XP Division:	Not Applicable	Mounting Arrangement:	F1
Agency Approvals:	CSA	Power Factor:	89
	CSA EEV	Product Family:	General Purpose
	UR	Pulley End Bearing Type:	Ball
Auxillary Box:	No Auxillary Box	Pulley Face Code:	C-Face
Auxillary Box Lead Termination:	None	Pulley Shaft Indicator:	Standard
Base Indicator:	No Mounting	Rodent Screen:	None
Bearing Grease Type:	Polyrex EM (-20F +300F)	RoHS Status:	ROHS COMPLIANT

Blower:	None	Shaft Extension Location:	Pulley End
Current @ Voltage:	36.800 A @ 208.0 V	Shaft Ground Indicator:	No Shaft Grounding
	34.000 A @ 230.0 V	Shaft Rotation:	Reversible
	17.000 A @ 460.0 V	Shaft Slinger Indicator:	No Slinger
Design Code:	А	Speed Code:	Single Speed
Drip Cover:	No Drip Cover	Motor Standards:	NEMA
Duty Rating:	CONT	Starting Method:	Direct on line
Electrically Isolated Bearing:	Not Electrically Isolated	Thermal Device - Bearing:	None
Feedback Device:	NO FEEDBACK	Thermal Device - Winding:	None
Front Face Code:	Standard	Vibration Sensor Indicator:	No Vibration Sensor
Front Shaft Indicator:	None	Winding Thermal 1:	None
		Winding Thermal 2:	None
BALDOR • RELIANCE Product Information Packet: VEM3713T - 52M 2P TEFC VER 215TC SUPER E

Nameplate NP3441LUA						
CAT.NO.	VEM3713T					
SPEC	37H329R228G1					
HP	15					
VOLTS	230/460					
AMPS	34/17					
RPM	3500					
FRAME	215TC HZ 60 PH 3					
SF	1.15 CODE J DES A CLASS F					
NEMA NOM. EFF	91 PF 89					
RATING	40C AMB-CONT					
CC	010A USABLE AT 208V 36.8					
ENCL	TEFC SER					
DE	6307 ODE 6206					
VPWM INVERTER READY	,					
CT6-60H(10:1)VT3-60H(20:1						
50HZ 15HP 190/380V 40.8/20.4A						

AC Induction Motor Performance Data

Record # 53380

Typical performance - not guaranteed values

Winding: 37WGR228-R023 Type:		3752M	Enclosure: TEFC	
Nameplate Data			460 V, 60 Hz: High Voltage Connection	
Rated Output (HP)		15	Full Load Torque	22.12 LB-FT
Volts		230/460	Start Configuration	direct on line
Full Load Amps		34/17	Breakdown Torque	103 LB-FT
R.P.M.		3500	Pull-up Torque	40.16 LB-FT
Hz	60 Phase	3	Locked-rotor Torque	57.59 LB-FT
NEMA Design Code	A KVA Code	J	Starting Current	150 A
Service Factor (S.F.)		1.15	No-load Current	5.55 A
NEMA Nom. Eff.	91 Power Factor	89	Line-line Res. @ 25ºC	0.47 Ω
Rating - Duty		40C AMB-CONT	Temp. Rise @ Rated Load	68°C
S.F. Amps			Temp. Rise @ S.F. Load	79°C
			Locked-rotor Power Factor	30.9
			Rotor inertia	0.474 LB-FT2

Load Characteristics 460 V, 60 Hz, 15 HP

% of Rated Load	25	50	75	100	125	150	S.F.
Power Factor	56	78	85	89	90	90	89
Efficiency	86.8	91	91.9	91.4	90.8	89.8	91.3
Speed	3579	3557	3534	3500	3484	3456	3495
Line amperes	6.7	9.57	13.19	17.03	21.12	25.61	19.5

Performance Graph at 460V, 60Hz, 15.0HP Typical performance - Not guaranteed values

