TRAFFIC IMPACT AND ACCESS STUDY

112 AND 114 GREELEY STREET Hudson, New Hampshire

June 22, 2021

Prepared for Keach-Nordstrom Associates, Inc.

TRAFFIC IMPACT AND ACCESS STUDY

112 AND 114 GREELEY STREET Hudson, New Hampshire

June 22, 2021

Prepared for Keach-Nordstrom Associates, Inc.

CONTENTS

SUMMARY1
Project Description 1
Study Scope 1
Trip Generation 1
Capacity Analysis 1
Traffic Impacts 2
INTRODUCTION 3
Project Description 3
Study Approach 3
EXISTING CONDITIONS 5
Introduction 5
Physical Conditions 5
Traffic Volumes 6
Vehicle Speeds 7
Sight Distances. 7
FUTURE CONDITIONS 9
Introduction 9
Planned Road Improvements 9
Background-Traffic Growth 9
No-Build Traffic Volumes 9
Site Traffic 10
Trip Distribution and Network Assignment 11
Build Traffic Volumes 11
Traffic-Volume Changes 11
CAPACITY ANALYSIS 16
Introduction 16
Methods 16
Results 17
CONCLUSION 21
Project Description 21
Trip Generation 21
Capacity Analysis 21
Traffic Impacts 21
APPENDIX
Appendix A: Project Plan
Appendix B: Traffic Counts
Appendix C: Monthly Traffic Volumes
Appendix D: Vehicle Speeds9
Appendix E: Capacity-Analysis Worksheets

TABLES

Table 1. 2021 existing traffic volumes 6
Table 2. Vehicle speeds. 7
Table 3. Sight distances. 8
Table 4. No-build traffic volumes. 10
Table 5. Calculated vehicle-trip generation 10
Table 6. Trip distribution and network assignment. 11
Table 7. Traffic-volume changes. 15
Table 8. Level-of-service criteria for intersections 17
Table 9. Capacity-analysis summary. 19

FIGURES

Figure 1. Site location 4
Figure 2. Site traffic volumes 12
Figure 4. 2022 build traffic volumes. 13
Figure 5. 2032 build traffic volumes. 14

SUMMARY

PROJECT DESCRIPTION

Keach-Nordstrom Associates, Inc. (KNA) has retained TEPP LLC to prepare this traffic impact and access study (TIAS) for a proposed residential redevelopment in the Town of Hudson, New Hampshire.

The proposed redevelopment will:

- be at 112 and 114 Greeley Street
- replace one existing single-family-detached housing units with 47 proposed senior-adultdetached housing units
- have one driveway to the west side of Greeley Street

STUDY SCOPE

The TIAS study area includes the Greeley Street/proposed road intersection.
This TIAS analyzes the following conditions:

- 2021 existing
- 2022 and 2032 no-build, with background-traffic growth
- 2022 and 2032 build, with background-traffic growth and the proposed redevelopment

TRIP GENERATION

Calculated vehicle-trips due to the proposed redevelopment are:

- weekday daily, 201 (total of in and out)
- weekday AM-street-peak hour, 23 (8 in and 15 out)
- weekday PM-street-peak hour, 27 (16 in and 11 out)

CAPACITY ANALYSIS

Capacity analysis shows low delays at the Greeley Street/proposed driveway intersection.

TRAFFIC IMPACTS

Analysis indicates no significant area impact due to the proposed redevelopment.

INTRODUCTION

PROJECT DESCRIPTION

KNA has retained TEPP LLC to prepare this TIAS for a proposed residential redevelopment in the Town of Hudson, New Hampshire.

The proposed redevelopment will:

- be at 112 and 114 Greeley Street
- replace one existing single-family-detached housing units with 47 proposed senior-adultdetached housing units
- have one driveway to the west side of Greeley Street

Figure 1 shows site location. The project plan is in Appendix A.

STUDY APPROACH

This TIAS assesses traffic impacts and access for the proposed redevelopment.
The TIAS study area includes the Greeley Street/proposed road intersection.
This TIAS analyzes traffic operations for the following hours as applicable:

- weekday AM street-peak hour
- weekday PM street-peak hour

This TIAS analyzes the following conditions:

- 2021 existing
- 2022 and 2032 no-build, with background-traffic growth
- 2022 and 2032 build, with background-traffic growth and the proposed redevelopment

Figure 1. Site location.

EXISTING CONDITIONS

INTRODUCTION

Existing conditions include:

- physical conditions of the transportation network, roads, and intersections
- traffic volumes
- other relevant information

PHYSICAL CONDITIONS

Figure 1 shows the transportation network.
Greeley Street:

- is oriented approximately north-south
- functions as an arterial street
- to the south, connects with New Hampshire Route 111 (NH 111), an arterial highway, and the Town Center
- to the north, provides a connection to and from NH 102, an arterial highway
- has a horizontal alignment that is tangent at the proposed driveway location and includes a minor horizontal curve north of the proposed driveway location
- has a vertical alignment that includes a minor southbound downgrade near the proposed driveway location
- has a two-lane cross-section with one travel lane per direction
- has asphaltic-cement concrete (ACC) pavement in overall good condition
- includes utility poles along the east side
- has a posted speed limit of 30 miles per hour (mph)
- has nearby wooded land
- is under the jurisdiction of the Town

TRAFFIC COUNTS

TEPP LLC obtained an automatic traffic counter (ATR) count:

- on Greeley Street along the site frontage
- from Tuesday, April 13, to Wednesday, April 14, 2021

The ATR data are in Appendix B.

MONTHLY ADJUSTMENT

The April 2021 traffic volumes were adjusted considering NHDOT 2019 monthly traffic volumes for Group 4 (Urban Highways) averages in Appendix C.

Adjustments reflected:

- peak-month conditions
- an increase of 9 percent

RESULTS

Table 1 shows 2021 existing traffic volumes.

Table 1. 2021 existing traffic volumes.

Location and Time Period	Vehicles $^{\mathrm{a}}$	K-factor $^{\mathrm{b}}$	Percent Direction
Greeley Street near Site Frontage			
Weekday Daily	4,589	---	---
Weekday AM-Street-Peak Hour	408	8.9	54 Southbound
Weekday PM-Street-Peak Hour	447	8.9	57 Northbound

a Two-way-total volumes.
${ }^{\mathrm{b}} \mathrm{K}=$ hour volume as a percent of daily volume.

Greeley Street along the site frontage showed about:

- 4,589 weekday-daily vehicles
- 408 vehicles during the weekday AM street-peak hour, predominantly southbound
- 447 vehicles during the weekday PM street-peak hour, predominantly northbound

TEPP LLC checked the 2021 existing weekday daily traffic volume against pre-pandemic conditions. NHDOT count station 82229084, on Greeley Street north of Highland Street, showed a weekday daily volume of 4,489 vehicles (total of both directions) for August 2018. August reflects peak-month conditions for Group 4 (Urban Highways).

VEHICLE SPEEDS

The ATR collected vehicle speeds:

- on Greeley Street along the site frontage
- from Tuesday, April 13, to Wednesday, April 14, 2021

The data are in Appendix D and are summarized in Table 2.
Table 2 indicates that on Greeley Street:

Table 2. Vehicle speeds.			
	Speeds (mph)		
Location and Direction	Speed Limit	Mean $^{\mathrm{a}}$	$85^{\text {th }}$ Percentile $^{\mathrm{a}}$
Greeley Street along Site Frontage			
Northbound	30		
Southbound	30	37.5	41.5

${ }^{\text {a }}$ From ATR conducted from Tuesday, April 13, to Wednesday, April 14, 2021

- the posted speed limit was 30 mph
- the northbound the mean speed was 37.5 mph and the $85^{\text {th }}$ percentile speed was 41.5 mph
- for southbound the mean speed was 37.5 mph and the $85^{\text {th }}$ percentile speed was 41.5 mph

SIGHT DISTANCES

The American Association of State Highway and Transportation Officials (AASHTO) has established authoritative policy for sight distances at unsignalized intersections ${ }^{1}$ in terms of:

[^0]- stopping sight distance (SSD)
- optional intersection sight distance (ISD)

SSD: ${ }^{2}$

- provides for safety
- enables a driver, on the major road, to perceive and react accordingly to a vehicle entering the major road from a minor road
- is conservative because it encompasses a wide range of brake-reaction times and deceleration rates

Optional ISD: ${ }^{3}$

- is ordinarily greater than SSD and may enhance traffic operations
- is not required for safety

Table 3 shows relevant available sight distances that are at least 400 ft , per NHDOT practice, and are adequate.

Table 3. Sight distances.

Intersection, Movements, and View	Available Sight Distance (ft)	Speeds (miles per hour)			
	Limit	SSD Provides For	ISD Provides For		
Portland Street to/from South		400	30	$45+$	$36+$
Portland Street to/from North	400	30	$45+$	$36+$	

${ }^{\mathrm{a}}$ With appropriate roadside and vegetation maintenance.

[^1]
INTRODUCTION

Future conditions include:

- planned road improvements independent of the proposed redevelopment
- future no-build traffic volumes, with background-traffic growth and without the proposed redevelopment
- future build traffic volumes, with background-traffic growth and with the proposed redevelopment

PLANNED ROAD IMPROVEMENTS

TEPP LLC identified no significant planned road improvement in the study area independent of the project.

BACKGROUND-TRAFFIC GROWTH

Background-traffic growth:

- is independent of the proposed redevelopment
- is related to land development in the immediate area, population and economic development in the region and changes in travel patterns in the region
- typically considers two factors: a general traffic-growth rate and specific planned land developments in the immediate area

This TIAS uses a 1.0-percent annual growth rate. This yields about 11.6-percent growth between 2021 and 2031.

NO-BUILD TRAFFIC VOLUMES

The background-traffic growth described above was applied to 2021 existing traffic volumes. Table 4 shows 2022 and 2032 no-build traffic volumes.

Location, Condition, and Time Period	Vehicles Per Hour		
	Total	Northbound	Southbound
Greeley Street near Site Frontage, 2021 Existing			
Weekday AM-Street-Peak Hour	408	188	220
Weekday PM-Street-Peak Hour	447	257	190
Greeley Street near Site Frontage, 2022 No-Build			
Weekday AM-Street-Peak Hour	412	190	222
Weekday PM-Street-Peak Hour	451	259	192
Greeley Street near Site Frontage, 2032 No-Build			
Weekday AM-Street-Peak Hour	455	210	245
Weekday PM-Street-Peak Hour	499	287	212

SITE TRAFFIC

TRIP GENERATION

The Institute of Transportation Engineers (ITE) compiles and publishes trip-generation information for a variety of land uses in Trip Generation Manual. ${ }^{4}$ This authoritative guide for site traffic includes senior-adult-detached housing, land use 251, based on dwelling units. ${ }^{5}$

Table 5 shows calculated vehicle-trips due to the proposed redevelopment as:

Table 5. Calculated vehicle-trip generation			
	Calculated Vehicle-Trips		
Time Period	Total	In	Out
Weekday Daily $^{\text {a }}$	201	100	101
Weekday AM-Street-Peak Hour	23	8	15
Weekday PM-Street-Peak Hour	27	16	11

Based on ITE, Trip Generation Manual, senior-adult-detached housing, land use 251, 103 dwelling units.

[^2]- weekday daily, 201 (total of in and out)
- weekday AM-street-peak hour, 23 (8 in and 15 out)
- weekday PM-street-peak hour, 27 (16 in and 11 out)

Table 5 conservatively does show deduction of trips related to the existing single-familydetached dwelling unit.

TRIP DISTRIBUTION AND NETWORK ASSIGNMENT

Trip distribution and network assignment of vehicle-trips to and from the site may consider such factors as existing site distribution, travel patterns, population, regional land development and site access. Trip distribution and network assignment for this TIAS considered the 2021 existing volumes.

Table 6 shows trip distribution and network assignment. Figure 2 shows site traffic volumes.

BUILD TRAFFIC VOLUMES

Site traffic volumes were superimposed on the no-build traffic volumes to estimate build traffic volumes. Figures 3 and 4 show the resulting 2022 and 2032 build traffic volumes.

TRAFFIC-VOLUME CHANGES

Table 7 presents calculated traffic-volume changes due to the proposed redevelopment for the:

- weekday AM-street-peak hour
- weekday PM-street-peak hour

Table 7 shows peak-hour-traffic-volume increases:

Weekday AM-Street-Peak Hour

Figure 2. Site traffic volumes.

Weekday AM-Street-Peak Hour

Weekday PM-Street-Peak Hour

Figure 4. 2022 build traffic volumes.

Weekday AM-Street-Peak Hour

Figure 5. 2032 build traffic volumes.

Table 7. Traffic-volume changes.

Location and Time Period	2022 Traffic Volumes (vph) ${ }^{\text {a }}$			2032 Traffic Volumes (vph)		
	No-Build	Build	Change	No-Build	Build	Change
Greeley Street North of Proposed Driveway						
Weekday AM-Street-Peak Hour	412	421	9	455	464	9
Weekday PM-Street-Peak Hour	451	461	10	499	509	10
Greeley Street South of Proposed Driveway						
Weekday AM-Street-Peak Hour	412	426	14	455	469	14
Weekday PM-Street-Peak Hour	451	468	17	499	516	17

${ }^{\text {a }}$ Two-way total volumes.

- of 9 to 17 vehicle-trips
- constituting about one vehicle-trip per three to seven minutes
- that are further split by northbound and southbound direction on Greeley Street

INTRODUCTION

This TIAS has quantified existing, future-no-build and future-build traffic volumes. Capacity analysis models the quality of traffic operations. Comparing build conditions to the no-build conditions indicates impacts of the proposed redevelopment on quality of traffic operations.

METHODS

Capacity analysis calculates LOS for transportation facilities. LOS indicates the quality of traffic operations based on delay and other measures. The six LOS are designated A to F. LOS A represents the best or highest operating conditions. LOS F is the lowest, but does not necessarily connote failure.

LOS is a function of traffic volumes and traffic control. Because these volumes can vary, LOS of a transportation facility can differ by time of day, day of the week, or month. For example, a transportation facility with a low LOS during peak hours may have a high LOS during other hours. The operational analysis methods of the Transportation Research Board (TRB) ${ }^{6}$ models LOS for intersections based on calculated delay per vehicle, as shown in Table 8. Synchro analysis software was used.

Method inputs include:

- intersection geometry
- traffic control, such as YIELD sign, two-way STOP sign, all-way STOP sign, roundabout, or signal (including phasing, timing, and progression)
- traffic volumes
- vehicle composition, such as passenger cars and trucks

The methods are all approximate. In particular, the method for two-way STOP-sign control can be conservative, with observed delays and queuing shorter than those modeled.

[^3]Table 8. Level-of-service criteria for intersections.
Control Delay (seconds/vehicle)

Level of Service	Unsignalized Intersections $^{\mathrm{a}}$	Signalized Intersections
A	≤ 10.0	≤ 10.0
B	>10.0 and ≤ 15.0	>10.0 and ≤ 20.0
C	>15.0 and ≤ 25.0	>20.0 and ≤ 35.0
D	>25.0 and ≤ 35.0	>35.0 and ≤ 55.0
E	>35.0 and ≤ 50.0	>55.0 and ≤ 80.0
F	>50	>80

From Transportation Research Board, Highway Capacity Manual 2010 (Washington D.C., 2010).
${ }^{\text {a }}$ For YIELD sign, two-way STOP sign or all-way STOP sign, control delay defines LOS. For roundabout approaches and overall intersection, control delay defines LOS. For roundabout lanes with volume/capacity ratio ≤ 1.0, control delay defines LOS. For roundabout lanes with volume/capacity ratio >1.0, LOS is F regardless of control delay.

RESULTS

Table 9 shows computed LOS, delays, and queues at study-area intersections for the:

- weekday AM-street-peak hour
- weekday PM-street-peak hour

The analysis is under the following conditions:

- 2021 existing
- 2022 and 2032 no build
- 2022 and 2032 build

Capacity-analysis worksheets that give detail and explanation are in Appendix E.
Table 9 shows low delays at Greeley Street/proposed driveway intersection.

${ }^{\mathrm{a}}$ LOS $=$ level of service.
${ }^{\mathrm{b}}$ Delay $=$ average delay in seconds per vehicle.
${ }^{\mathrm{c}} \mathrm{V} / \mathrm{C}=$ volume/capacity ratio.
$\mathrm{d} 95^{\text {th }}$ percentile queue in vehicles.
$\mathrm{EB}=$ eastbound, $\mathrm{WB}=$ westbound, $\mathrm{SB}=$ southbound, $\mathrm{NB}=$ northbound, $\mathrm{L}=$ left, $\mathrm{T}=$ through, $\mathrm{R}=$ right.

CONCLUSION

PROJECT DESCRIPTION

The proposed redevelopment will:

- be at 112 and 114 Greeley Street
- replace one existing single-family-detached housing units with 47 proposed senior-adultdetached housing units
- have one driveway to the west side of Greeley Street

TRIP GENERATION

Calculated vehicle-trips due to the proposed redevelopment are:

- weekday daily, 201 (total of in and out)
- weekday AM-street-peak hour, 23 (8 in and 15 out)
- weekday PM-street-peak hour, 27 (16 in and 11 out)

CAPACITY ANALYSIS

Capacity analysis shows low delays at the Greeley Street/proposed driveway intersection.

TRAFFIC IMPACTS

Analysis indicates no significant area impact due to the proposed redevelopment.

APPENDIX

Appendix A: Project Plan

Appendix B: Traffic Counts

4/12/2021	Monday			Tuesday		Wednesday		Thursday				Friday			Saturday				Sunday				Week Average	
Time	NB,		SB,	NB,	SB,	NB,	SB,	NB,		SB,		NB,		SB,	NB,		SB,		NB,		SB,		NB,	SB,
12:00 AM		*	*	5	8	9	2		*		*		*	*				*		*		*	7	5
1:00		*	*	1	1	1	0		*		*		*	*		*		*		*		*	1	0
2:00		*	*	6	0	2	1		*		*		*	*		*		*		*		*	4	0
3:00		*	*	1	2	2	0		*		*		*	*		*		*		*		*	2	1
4:00		*	*	11	18	10	16		*		*		*	*		*		*		*		*	10	17
5:00		*	*	32	50	31	50		*		*		*	*		*		*		*		*	32	50
6:00		*	*	86	98	94	106		*		*		*	*		*		*		*		*	90	102
7:00		*	*	171	216	174	187		*		*		*	*		*		*		*		*	172	202
8:00		*	*	129	148	141	131		*		*		*	*		*		*		*		*	135	140
9:00		*	*	76	103	94	121		*		*		*	*		*		*		*		*	85	112
10:00		*	*	83	96	93	101		*		*		*	*		*		*		*		*	88	98
11:00		*	*	90	85	91	92		*		*		*	*		*		*		*		*	90	88
12:00 PM		*	*	133	122	119	115		*		*		*	*		*		*		*		*	126	118
1:00		*	*	114	108	130	102		*		*		*	*		*		*		*		*	122	105
2:00		*	*	156	172	172	186		*		*		*	*		*		*		*		*	164	179
3:00		*	*	221	188	192	168		*		*		*	*		*		*		*		*	206	178
4:00		*	*	219	163	254	185		*		*		*	*		*		*		*		*	236	174
5:00		*	*	190	180	225	164		*		*		*	*		*		*		*		*	208	172
6:00		*	*	136	107	137	146		*		*		*	*		*		*		*		*	136	126
7:00		*	*	82	72	84	101		*		*		*	*		*		*		*		*	83	86
8:00		*	*	59	66	56	76		*		*		*	*		*		*		*		*	58	71
9:00		*	*	33	32	34	49		*		*		*	*		*		*		*		*	34	40
10:00		*	*	23	21	21	11		*		*		*	*		*		*		*		*	22	16
11:00		*	*	11	7	13	8		*		*		*	*		*		*		*		*	12	8
Total		0	0	2068	2063	2179	2118		0		0		0	0		0		0		0		0	2123	2088
Day		0		4131		4297			0			0			0				0				4211	
AM Peak				7:00	7:00	7:00	7:00																7:00	7:00
Volume				171	216	174	187																172	202
PM Peak				3:00	3:00	4:00	2:00																4:00	2:00
Volume				221	188	254	186																236	179
Comb Total	0			4131 AADT: 4,214				0				0			0				0				4211	
ADT	ADT: 4,214					4297																		

Appendix C: Monthly Traffic Volumes

Year 2019 Monthly Data

Group 4 Averages:

Month	ADT	Adjustment to Average	Adjustmen to Peak
January	11,431	1.12	1.23
February	11,848	1.08	1.18
March	12,141	1.06	1.15
April	12,860	1.00	1.09
May	13,551	0.95	1.03
June	13,785	0.93	1.02
July	13,942	0.92	1.01
August	14,016	0.92	1.00
September	13,379	0.96	1.05
October	13,339	0.96	1.05
November	12,265	1.05	1.14
December	11,496	1.12	1.22

Urban Highways

Adjustment Adjustment
o Average to Peak
1.23
1.15
1.09
1.03
1.01
1.00
1.05
1.22

Average ADT: 12,838
Peak ADT: 14,016

Appendix D: Vehicle Speeds

City/State: Hudson, NH

Location : Near 112-114 Greeley St
City/State: Hudson, NH

Direction: NB,														
4/14/2021	0-15	$\begin{gathered} >15- \\ 20 \mathrm{MPH} \end{gathered}$	$\begin{gathered} >20- \\ 25 \mathrm{MPH} \end{gathered}$	$\begin{gathered} >25- \\ 30 \mathrm{MPH} \end{gathered}$	$\begin{gathered} >30- \\ 35 \mathrm{MPH} \end{gathered}$	$\begin{gathered} >35- \\ 40 \mathrm{MPH} \end{gathered}$	$\begin{gathered} >40- \\ 45 \mathrm{MPH} \end{gathered}$	$\begin{gathered} >45- \\ 50 \mathrm{MPH} \end{gathered}$	$\begin{gathered} >50- \\ 55 \mathrm{MPH} \end{gathered}$	$\begin{gathered} >55- \\ 60 \mathrm{MPH} \end{gathered}$	$\begin{gathered} >60- \\ 65 \mathrm{MPH} \end{gathered}$	$\begin{gathered} >65- \\ 70 \mathrm{MPH} \end{gathered}$	$\begin{aligned} & >70 \\ & \mathrm{MPH} \end{aligned}$	Total
Time	MPH													
12:00 AM	0	0	0	0	3	3	1	0	2	0	0	0	0	9
1:00	0	0	0	0	0	0	1	0	0	0	0	0	0	1
2:00	0	0	0	1	0	0	1	0	0	0	0	0	0	2
3:00	0	0	0	1	0	0	0	0	0	1	0	0	0	2
4:00	0	0	0	0	3	5	2	0	0	0	0	0	0	10
5:00	0	0	0	0	8	13	7	1	2	0	0	0	0	31
6:00	0	0	0	2	22	51	15	4	0	0	0	0	0	94
7:00	1	0	0	1	53	87	28	3	1	0	0	0	0	174
8:00	0	0	1	8	27	72	24	9	0	0	0	0	0	141
9:00	0	0	1	13	57	20	3	0	0	0	0	0	0	94
10:00	0	0	0	2	28	42	20	1	0	0	0	0	0	93
11:00	0	0	0	12	26	33	20	0	0	0	0	0	0	91
12:00 PM	1	0	0	1	22	55	34	6	0	0	0	0	0	119
1:00	0	0	0	7	29	69	20	3	2	0	0	0	0	130
2:00	0	0	1	7	41	93	26	3	0	1	0	0	0	172
3:00	0	0	0	7	51	70	56	5	3	0	0	0	0	192
4:00	0	0	0	1	38	137	72	6	0	0	0	0	0	254
5:00	0	0	0	4	30	121	59	8	3	0	0	0	0	225
6:00	0	0	0	5	31	62	33	4	2	0	0	0	0	137
7:00	0	0	0	4	15	43	20	2	0	0	0	0	0	84
8:00	0	0	0	2	11	31	10	2	0	0	0	0	0	56
9:00	0	0	0	0	15	15	2	2	0	0	0	0	0	34
10:00	0	0	0	0	6	10	2	3	0	0	0	0	0	21
11:00	0	0	0	0	5	3	4	0	1	0	0	0	0	13
Total	2	0	3	78	521	1035	460	62	16	2	0	0	0	2179
			Percentile	15th	50th	85th	95th							
			Speed	32.8	37.2	41.5	44							
		n Speed	Average)	37.4										
		MPH Pa	ce Speed	31-40										
		Numbe	r in Pace	1545										
		Percen	t in Pace	70.9%										
		Number >	45 MPH	80										
		Percent $>$	45 MPH	3.7\%										
Grand Total	2	0	7	162	973	2006	926	141	25	3	0	2	0	4247
Stats			Percentile	15th	50th	85th	95th							
			Speed	32.8	37.2	41.5	44.6							
		Speed	Average)	37.5										
		MPH Pa	ce Speed	31-40										
		Numb	r in Pace	2971										
		Percen	in in Pace	70.0\%										
		Number >	45 MPH	171										
		Percent $>$	45 MPH	4.0\%										

City/State: Hudson, NH

City/State: Hudson, NH

Direction: SB,														
4/14/2021	0-15	$>15-$20 MPH	> 20 -	> 25 -	> $30-$	> 35 -	> 40 -	> 45 -	> $50-$	> $55-$	> 60 -	> 65 -	> 70	
Time	MPH		25 MPH	30 MPH	35 MPH	40 MPH	45 MPH	50 MPH	55 MPH	60 MPH	65 MPH	70 MPH	MPH	Total
12:00 AM	0	0	0	0	0	1	1	0	0	0	0	0	0	2
1:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00	0	0	0	0	0	0	0	0	1	0	0	0	0	1
3:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00	0	0	0	0	2	10	2	1	1	0	0	0	0	16
5:00	0	0	0	1	16	21	11	1	0	0	0	0	0	50
6:00	0	0	0	1	22	47	30	5	1	0	0	0	0	106
7:00	0	0	3	6	31	100	38	8	1	0	0	0	0	187
8:00	0	0	0	3	29	71	25	3	0	0	0	0	0	131
9:00	0	0	2	35	58	21	5	0	0	0	0	0	0	121
10:00	0	0	1	1	18	48	30	3	0	0	0	0	0	101
11:00	0	0	0	7	33	39	13	0	0	0	0	0	0	92
12:00 PM	0	0	0	4	25	54	24	6	1	1	0	0	0	115
1:00	0	0	0	4	24	55	14	4	1	0	0	0	0	102
2:00	1	1	0	7	38	92	43	3	1	0	0	0	0	186
3:00	1	1	0	5	48	72	37	4	0	0	0	0	0	168
4:00	0	2	0	10	27	88	52	6	0	0	0	0	0	185
5:00	0	0	0	4	26	91	35	7	1	0	0	0	0	164
6:00	0	0	0	3	32	73	31	6	0	1	0	0	0	146
7:00	0	0	1	1	24	50	21	4	0	0	0	0	0	101
8:00	,	0	0	2	24	31	14	4	0	0	0	0	0	76
9:00	0	0	0	2	10	24	10	3	0	0	0	0	0	49
10:00	0	0	0	0	4	3	3	0	1	0	0	0	0	11
11:00	0	0	0	0	0	6	2	0	0	0	0	0	0	8
Total	3	4	7	96	491	997	441	68	9	2	0	0	0	2118
Percentile				15th	50th	85th	95th							
Mean Speed (Average)				32.8	37.2	41.5	44							
				37.3										
	10 MPH Pace Speed			31-40										
	Number in Pace			1479										
	Percent in Pace			69.8%										
	Number > 45 MPH			79										
Percent > 45 MPH				3.7\%										
Grand Total	6	10	22	148	943	1941	916	172	20	3	0	0	0	4181
Stats	Percentile			15th	50th	85th	95th							
	Speed			32.8	37.2	41.5	44.6							
	Mean Speed (Average)			37.5										
	10 MPH Pace Speed			31-40										
	Number in Pace			2879										
	Percent in Pace			68.9\%										
	$\text { Number > } 45 \mathrm{MPH}$			195										
	Percent > 45 MPH			4.7\%										

Appendix E: Capacity-Analysis Worksheets

Major/Minor	Minor2		Major1	Major2			
Conflicting Flow All	472	249	250	0	-	0	
Stage 1	249		-	-	-	-	
Stage 2	223		-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	551	790	1316	-	-	-	
Stage 1	792	-	-	-	-	-	
Stage 2	814	-	-	-	-	-	
Platoon blocked, \%				-	-	-	-
Mov Cap-1 Maneuver	548	790	1316	-	-	-	
Mov Cap-2 Maneuver	548	-	-	-	-	-	
Stage 1	788	-	-	-	-	-	
Stage 2	814	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	10.5	0.2	0

```
HCMLOS B
```

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1316	-671	-	-
HCM Lane V/C Ratio	0.004	-0.025	-	-
HCM Control Delay (s)	7.7	0	10.5	-
HCM Lane LOS	A	A	B	-
HCM 95th \%tile Q(veh)	0	-	0.1	-
(v)		-		

Intersection						

Major/Minor	Minor2		Major1	Major2			
Conflicting Flow All	527	217	220	0	-	0	
Stage 1	217		-	-	-	-	
Stage 2	310		-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	512	823	1349	-	-	-	
Stage 1	819	-	-	-	-	-	
Stage 2	744	-	-	-	-	-	
Platoon blocked, \%				-	-	-	-
Mov Cap-1 Maneuver	507	823	1349	-	-	-	
Mov Cap-2 Maneuver	507	-	-	-	-	-	
Stage 1	811	-	-	-	-	-	
Stage 2	744	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	10.5	0.3	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1349	-671	-	-	
HCM Lane V/C Ratio	0.008	-0.018	-	-	
HCM Control Delay (s)	7.7	0	10.5	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.1	-	-

Intersection						

Approach	EB	NB	SB
HCM Control Delay, s	10.8	0.2	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1288	-640	-	-	
HCM Lane V/C Ratio	0.004	-0.026	-	-	
HCM Control Delay (s)	7.8	0	10.8	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.1	-	-

Intersection						

Approach	EB	NB	SB
HCM Control Delay, s	10.8	0.3	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1323	-638	-	-	
HCM Lane V/C Ratio	0.008	-0.019	-	-	
HCM Control Delay (s)	7.7	0	10.8	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.1	-	-

[^0]: ${ }^{1}$ AASHTO, A Policy on Geometric Design of Highways and Streets, 6th Edition (Washington, DC, 2011), pages 928 to 9-29.

[^1]: ${ }^{2}$ AASHTO, pages 3-2 to 3-6.
 ${ }^{3}$ AASHTO, pages 9-22 to 9-55.

[^2]: ${ }^{4}$ ITE, Trip Generation Manual, $10_{\text {th }}$ edition (Washington DC, September 2017).
 ${ }^{5}$ ITE, Trip Generation Manual, Volume 2, Data, Residential (Land Uses 200-299), pages 337 to 351.

[^3]: ${ }^{6}$ TRB, Highway Capacity Manual 2000 (Washington DC 2000) and Highway Capacity Manual 2010 (Washington DC, 2010).

