Alteration of Terrain Application

BLUEBIRD SELF STORAGE

Map 176; Lots 21,22, & 23 196-202 Central Street Hudson, New Hampshire

December 20, 2021

KNA Project No. 21-0709-3

- Prepared For: Bluebird Self Storage, LLC 125 Ocean Road Greenland, New Hampshire 03840
- Prepared By: Keach-Nordstrom Associates, Inc. 10 Commerce Park North, Suite 3 Bedford, New Hampshire 03110 (603) 627-2881 (603) 627-2915 (fax)

Table of Contents

- 1. SIGNED OWNER AND APPLICANT AFFIDAVIT
- 2. AOT APPLICATION
- 3. AOT APPLICATION CHECKLIST
- 4. COPY OF AOT APPLICATION CHECK
- 5. MUNICIPAL SUBMISSION: TOWN OF HUDSON
- 6. USGS LOCATION MAP
- 7. PROJECT NARRATIVE
- 8. SURFACE WATER IMPAIRMENTS
- 9. WEB GIS FIGURES
- 10. NEW HAMPSHIRE NATURAL HERITAGE INVENTORY DATABASE CHECK
- 11. WEB SOIL SURVEY
- **12. AERIAL PHOTOGRAPH**
- **13. SITE PHOTOGRAPHS**
- 14. GRV CALCULATION
- **15. BMP WORKSHEETS**
- **16. EXTREME PRECIPITATION TABLES**
- 17. HYDROCAD DRAINAGE ANALYSIS
- **18. RIP RAP APRON CALCULATIONS**
- **19. SITE SPECIFIC SOIL SURVEY REPORT**
- 20. INFILTRATION FEASIBILITY REPORT
- 21. OPERATION and MAINTENANCE PLAN with CHECKLIST
- 22. PLANS

SUBDIVISION PLAN SET (22"x34" – Colorless) PRE-DEVELOPMENT DRAIN AREA PLAN (22"x34" – Colorless) POST-DEVELOPMENT DRAIN AREA PLANS (22"x34" – Colorless) PRE-DEVELOPMENT DRAIN AREA PLAN (22"x34" – with Color) POST-DEVELOPMENT DRAIN AREA PLANS (22"x34" – with Color)

1. SIGNED OWNER AND APPLICANT AFFIDAVIT

I, BRIAN H. CRAVEN, TRUSTEE, authorized representative of Bluebird Self Storage, LLC, owner for the property, Tax Map 176 Lots 21, 22 and 23, referenced at 196 Central Street in Hudson, New Hampshire, hereby verify that I have authorized Keach-Nordstrom Associates, Inc. to submit on my behalf, any and all applicable State and local permit applications as they pertain to improvements on said property.

Additionally, I authorize Keach-Nordstrom Associates, Inc. to aid in the representation of these applications throughout the approval process.

Signature of Owner:

Printed Name of Owner:

Brian H. Craven BRIAN H. CRAVEN, TRUSTEE

Address of Owner:

88 SPEARE ROAD

HUDSON NH 03051

I, <u>Bill</u> <u>Galaco</u>, authorized representative of Bluebird Self Storage, LLC, applicant for the property, Tax Map 176 Lots 21, 22 and 23, referenced at 196 Central Street in Hudson, New Hampshire, hereby verify that I have authorized Keach-Nordstrom Associates, Inc. to submit on my behalf, any and all applicable State and local permit applications as they pertain to improvements on said property.

Additionally, I authorize Keach-Nordstrom Associates, Inc. to aid in the representation of these applications throughout the approval process.

Signature of Applicant:

Bill Avor

Printed Name of Applicant:

Address of Applicant:

200disal Oceant 125 Greenland NH 03840 12-16-21

Date:

2. AOT APPLICATION

ALTERATION OF TERRAIN PERMIT APPLICATION

Water Division/ Alteration of Terrain Bureau/ Land Resources Management Check the Status of your Application: <u>www.des.nh.gov/onestop</u>

RSA/ Rule: RSA 485-A:17, Env-Wq 1500

Administrative Administrative		Administrative		File Number:		
				Check No.		
Use Only	Use Only	Use Only		Amount:		
				Initials:		
1. APPLICANT INFORMATION (IN	TENDED PERMIT HOLDER)					
Applicant Name: Bluebird Self Sto	Contact Name: Bill Go	Contact Name: Bill Goodison				
Email: bill.goodison@bluebirdsto	Daytime Telephone: 6	Daytime Telephone: 603-380-9455				
Mailing Address: 125 Ocean Road	1	-				
Town/City: Greenland			State: NH		Zip Code: 03840	
2. APPLICANT'S AGENT INFORMA	TION If none, check here:]				
Business Name:	Contact Name:					
Email:	Daytime Telephone:					
Address:						
Town/City:		State:		Zip Code:		
3. PROPERTY OWNER INFORMAT	ION (IF DIFFERENT FROM APPLICAN	IT)				
Applicant Name: Craven Rev. Tru	Contact Name: Brian	Craven				
Email: bcnashuatile@yahoo.com	Daytime Telephone: 603-888-1231					
Mailing Address: 88 Speare Road						
Town/City: Hudson		State: NH Zip Code: 03051				
4. PROPERTY OWNER'S AGENT IN	IFORMATION If none, check	here: 🔀				
Business Name:	Contact Name:					
Email:	Daytime Telephone:					
Address:						
Town/City:		State:		Zip Code:		
5. CONSULTANT INFORMATION	If none, check here:					
Engineering Firm: Keach-Nordstro	Contact Name: Bridget Souza					
Email: bsouza@keachnordstrom.	Daytime Telephone: 6	Daytime Telephone: 603-627-2881				
Address: 10 Commerce Park N., Suite 3						
Town/City: Bedford		State: NH		Zip Code: 03110		

ridge.mauck@des.nh.gov or (603) 271-2147

NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095

NHDES-W-01-003						
6. PROJECT TYPE						
Excavation Only Residential	\sum	Commercial	Golf Course	e 🗌 Schoo	I Municipal	
Agricultural Land	Conversion	Other:				
7. PROJECT LOCATION INFORMATION						
Project Name: Bluebird Self Storage						
Street/Road Address: 196-202 Central	Street					
Town/City: Hudson		Cou	nty: Hillsborough	า		
Tax Map: 176	Block:		Lot Number: 21	1,22,& 23	Unit:	
Location Coordinates: 42.76875071.4	13730	Latitude/Lor	ngitude [State Plane	
Post-development, will the proposed pro	oject withdraw fr	rom or directly disch	arge to any of the	following? If yes,	identify the purpose.	
1. Stream or Wetland		·	Yes	Withdrawal	Discharge	
Purpose:			 No			
2. Man-made pond created by impoun	iding a stream oi	r wetland	Yes	Withdrawal	Discharge	
Purpose:			🖂 No			
3. Unlined pond dug into the water tak	ole		Yes	Withdrawal	Discharge	
Purpose:			🛛 No			
Post-development, will the proposed pro	oject discharge te	<u>o:</u>				
• A surface water impaired for phosphor	us and/or nitrog	gen? 🖄 No 📋 Ye	s - include inform	ation to demonstr	ate that project will not	
• A Class A surface water or Outstanding	Resource Wate		Ves - include inf	ormation to demo	instrate that project will not	
cause net increase in phosphorus a	nd/or nitrogen				istrate that project will not	
• A lake or pond not covered previously?	? 🛛 No 🕺 [Yes - include info	ormation to demo	nstrate that proje	ct will not cause net increase	
in phosphorus in the lake or pond						
Is the project a High Load area? Ye If yes, specify the type of high load I	es 🛛 No and use or activi	ity:				
Is the project within a Water Supply Intake Protection Area (WSIPA)?						
Is the project within a Groundwater Protection Area (GPA)?			Yes [No No		
Will the well setbacks identified in Env-Wq 1508.02 be met? Yes No					For more dataile and the	
Note: Guidance document titled " <u>Using NHDES's OneStop WebGIS to Locate Protection Areas</u> " is available online. For more details on the						
Is any part of the property within the 100-year floodplain? \Box Yes \boxtimes No						
If yes: Cut volume: cubic feet within the 100-year floodplain						
Fill volume: cubic feet within the 100-year floodplain						
Project IS within ¼ mile of a designated river Name of River:						
Project is NOT within ¼ mile of a designated river						
Project IS within a Coastal/Great B	ay Region com	munity - include in	fo required by En	ıv-Wq 1503.08(l) i	f applicable	
Project is NOT within a Coastal/Great Bay Region community						
8. BRIEF PROJECT DESCRIPTION (PLEA	ASE DO NOT REI	PLY "SEE ATTACHEI	י״)			
This project proposes a 3-story (39,388 S	F footprint), 118	3,164 SF self storage	building with asso	ociated parking, uti	lities, and stormwater	
systems.						
			DEDMIT			
5. IF APPLICADLE, DESCRIBE ANY WO	AR STARTED PR		PERIVITI			

A. Date a copy of the application was sent to the municipality as required by Env-Wq 1503.05(e) ¹ :12/20/2021.						
(Attach proof of delivery)	(Attach proof of delivery)					
B. Date a copy of the application was sent to the	local river advisory	committee i	if required by	Env-Wq 1503.05(e)²: <u>//</u> .		
(Attach proof of delivery)						
C. Type of plan required: 🗌 Land Conversion 🛛	Detailed Develop	ment 🗌 Ex	cavation, Gra	ding & Reclamation 🔲 Steep Slope		
D. Additional plans required: 🔀 Stormwater Dra	ainage & Hydrologic	Soil Groups	Source C	Control 🗌 Chloride Management		
E. Total area of disturbance: <u>140,435</u> square fee	t					
F. Additional impervious cover as a result of the coverage).	project: <u>61,147</u> squ	are feet (use	e the "-" syml	bol to indicate a net reduction in impervious		
G Total undisturbed cover: 24 130 square feet	el					
H. Number of lots proposed: 1						
Total length of roadway: 0 linear feet						
I Name(s) of receiving water(s). Ottarnic Pond						
3. Name(s) of receiving water(s). Ottameronu						
K. Identify all other NHDES permits required for t the required approval has been issued provide	the project, and for the permit numbe	each indicat r, registratio	e whether an on date, or ap	application has been filed and is pending, or if proval letter number, as applicable.		
		<u> </u>		Status		
pe of Approval Application Filed? Pending If Issued:						
. 140 01 Okhi 0401	Application	rileu:	Pending	If Issued:		
1. Water Supply Approval	Yes No		Pending	If Issued: Permit number:		
1. Water Supply Approval 2. Wetlands Permit	Yes No		Pending	If Issued: Permit number: Permit number:		
1. Water Supply Approval 2. Wetlands Permit 3. Shoreland Permit	Yes No	N/A N/A N/A	Pending	If Issued:Permit number:Permit number:Permit number:		
1. Water Supply Approval 2. Wetlands Permit 3. Shoreland Permit 4. UIC Registration	Yes No Yes No Yes No Yes No	N/A N/A N/A N/A	Pending	If Issued:Permit number:Permit number:Permit number:Registration date:		
 Water Supply Approval Wetlands Permit Shoreland Permit UIC Registration Large/Small Community Well Approval 	Yes No	$ \boxed{N/A} \\ \boxed{N/A} \\ \boxed{N/A} \\ \boxed{N/A} \\ \boxed{N/A} \\ \boxed{N/A} \\ \boxed{N/A} $	Pending	If Issued:Permit number:Permit number:Permit number:Registration date:Approval letter date:		
 Water Supply Approval Wetlands Permit Shoreland Permit UIC Registration Large/Small Community Well Approval Large Groundwater Withdrawal Permit 	Yes No	N/A N/A N/A N/A N/A N/A	Pending	If Issued:Permit number:Permit number:Permit number:Registration date:Approval letter date:Permit number:		
 Water Supply Approval Wetlands Permit Shoreland Permit UIC Registration Large/Small Community Well Approval Large Groundwater Withdrawal Permit Other: 	Yes No	$ \boxed{N/A} \\ \boxed{N/A} $	Pending	If Issued:Permit number:Permit number:Permit number:Registration date:Approval letter date:Permit number:Permit number:		
 Water Supply Approval Wetlands Permit Shoreland Permit UIC Registration Large/Small Community Well Approval Large Groundwater Withdrawal Permit Other: List all species identified by the Natural Heritag Spotted Turtle 	Yes No	N/A N/A N/A N/A N/A N/A N/A ened or end	Pending	If Issued:Permit number:Permit number:Permit number:Registration date:Approval letter date:Permit number:Permit number:Permit number:f concern: Blanding's Turtle, Eastern Box Turtle,		
	Yes No	N/A N/A N/A N/A N/A N/A N/A ened or end	Pending	If Issued:Permit number:Permit number:Permit number:Registration date:Approval letter date:Permit number:Permit number:f concern: Blanding's Turtle, Eastern Box Turtle,Surface Water Impairment layer turned on, list		
 Water Supply Approval Wetlands Permit Shoreland Permit UIC Registration Large/Small Community Well Approval Large Groundwater Withdrawal Permit Other: List all species identified by the Natural Heritag Spotted Turtle M. Using NHDES's Web GIS OneStop program (www the impairments identified for each receiving with the impairment identified for each receiving with the impa	Yes No w2.des.state.nh.us water. If no polluta -application meetin	N/A N/A N/A N/A N/A N/A N/A ened or end s/gis/onesto nts are listed	Pending	If Issued: Permit number: Permit number: Permit number: Registration date: Approval letter date: Permit number: Permit number: Permit number: f concern: Blanding's Turtle, Eastern Box Turtle, Surface Water Impairment layer turned on, list Yes No		
 Water Supply Approval Wetlands Permit Shoreland Permit UIC Registration Large/Small Community Well Approval Large Groundwater Withdrawal Permit Other: List all species identified by the Natural Heritag Spotted Turtle M. Using NHDES's Web GIS OneStop program (www the impairments identified for each receiving with the impairment identified for each receiving withe impairment identified for each receiving with the impairmen	Yes No ge Bureau as threat ww2.des.state.nh.us water. If no polluta -application meetin Yes No aced on the plans, a /pip/publications/w	N/A N/A N/A N/A N/A N/A N/A N/A ened or end s/gis/onesto nts are listed g with AOT s If yes, est available at: yd/documen	Pending	If Issued: Permit number: Permit number: Permit number: Registration date: Approval letter date: Permit number: Permit number: Permit number: f concern: Blanding's Turtle, Eastern Box Turtle, Surface Water Impairment layer turned on, list		
 Water Supply Approval Wetlands Permit Shoreland Permit UIC Registration Large/Small Community Well Approval Large Groundwater Withdrawal Permit Other: List all species identified by the Natural Heritag Spotted Turtle Using NHDES's Web GIS OneStop program (www the impairments identified for each receiving w 	Yes No ge Bureau as threat ww2.des.state.nh.us water. If no polluta -application meetin Yes No aced on the plans, a /pip/publications/w st rock will be gener ditional detail.	N/A N/A N/A N/A N/A N/A N/A ened or end s/gis/onesto nts are listed g with AOT s If yes, est available at: r/d/documen ated, a grou	Pending	If Issued: Permit number: Permit number: Permit number: Registration date: Approval letter date: Permit number: Permit number: Permit number: f concern: Blanding's Turtle, Eastern Box Turtle, Surface Water Impairment layer turned on, list		

NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095

www.des.nh.gov

¹ Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the governing body of each municipality in which the project is proposed.

² Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the Local River Advisory Committee, if the project is within ¼ mile of a designated river.

11. CHECK ALL APPLICATION ATTACHMENTS THAT APPLY (SUBMIT WITH APPLICATION IN ORDER LISTED)
 LOOSE: ☑ Signed application form: des.nh.gov/organization/divisions/water/aot/index.htm (with attached proof(s) of delivery) ☑ Check for the application fee: des.nh.gov/organization/divisions/water/aot/fees.htm ☑ Color copy of a USGS map with the property boundaries outlined (1" = 2,000' scale) ☑ If Applicant is not the property owner, proof that the applicant will have a legal right to undertake the project on the property if a permit is issued to the applicant.
BIND IN A REPORT IN THE FOLLOWING ORDER:
 PLANS: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details) Pre & post-development drainage area plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details)
100-YEAR FLOODPLAIN REPORT: All information required in Env-Wq 1503.09, submitted as a separate report.
ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE

REVIEW APPLICATION FOR COMPLETENESS & CONFIRM INFORMATION LISTED ON THE APPLICATION IS INCLUDED WITH SUBMITTAL.

12. REQUIRED SIGNATURES

By initialing here, I acknowledge that I am required by Env-Wq 1503.20(e) to submit a copy of all approved documents to the department in PDF format on a CD within one week after permit approval.

By signing below, I certify that:

- The information contained in or otherwise submitted with this application is true, complete, and not misleading to the best of my knowledge and belief;
- I understand that the submission of false, incomplete, or misleading information constitutes grounds for the department to deny the
 application, revoke any permit that is granted based on the information, and/or refer the matter to the board of professional engineers
 established by RSA 310-A:3 if I am a professional engineer; and
- I understand that I am subject to the penalties specified in New Hampshire law for falsification in official matters, currently RSA 641.

APPLICANT APPLICANT'S AGENT: Signature: Name (print or type):

Date: 12-16-21 Title: Managing Director

PROPERTY OWNER □ PROPERTY Signature: Bar A Caven Name (print or type): Baran H. Craven.

PROPERTY OWNER'S AGENT:

Date: 12-18-21 Title: Trustee

ridge.mauck@des.nh.gov or (603) 271-2147 NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095 www.des.nh.gov

Alteration of Terrain Permit Application Form - 2017 - revised 12/2019

Page 5 of 9

3. AOT APPLICATION CHECKLIST

ATTACHMENT A:

ALTERATION OF TERRAIN PERMIT APPLICATION CHECKLIST

Check the box to indicate the item has been provided or provide an explanation why the item does not apply.

DESIGN PLANS

- Plans printed on 34 36" by 22 24" white paper
- 🛛 PE stamp
- Wetland delineation
- Temporary erosion control measures
- Treatment for all stormwater runoff from impervious surfaces such as roadways (including gravel roadways), parking areas, and nonresidential roof runoff. Guidance on treatment BMPs can be found in Volume 2, Chapter 4 of the NH Stormwater Management Manual.
- Pre-existing 2-foot contours
- Proposed 2-foot contours
- igodown Drainage easements protecting the drainage/treatment structures
- Compliance with the Wetlands Bureau, RSA 482- A <u>http://des.nh.gov/organization/divisions/water/wetlands/index.htm</u>. Note that artificial detention in wetlands is not allowed.
- Compliance with the Comprehensive Shoreland Protection Act, RSA 483-B. <u>http://des.nh.gov/organization/divisions/water/wetlands/cspa</u>
- Benches. Benching is needed if you have more than 20 feet change in elevation on a 2:1 slope, 30 feet change in elevation on a 3:1 slope, 40 feet change in elevation on a 4:1 slope.
- Check to see if any proposed ponds need state Dam permits. <u>http://des.nh.gov/organization/divisions/water/dam/documents/damdef.pdf</u>

DETAILS

- Typical roadway x-section
- Detention basin with inverts noted on the outlet structure
- Stone berm level spreader
- Outlet protection riprap aprons
- A general installation detail for an erosion control blanket
- igsquiring Silt fences or mulch berm
- Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement.
- Hay bale barriers
- Stone check dams
- Gravel construction exit
- 🔀 Temporary sediment trap
- The treatment BMP's proposed
- Any innovative BMP's proposed

CONSTRUCTION SEQUENCE/EROSION CONTROL

Note that the project is to be managed in a manner that meets the requirements and intent of RSA 430:53 and Chapter Agr 3800 relative to invasive species.

 \boxtimes Note that perimeter controls shall be installed prior to earth moving operations.

oxed N Note that temporary water diversion (swales, basins, etc) must be used as necessary until areas are stabilized.

- oxed N Note that ponds and swales shall be installed early on in the construction sequence (before rough grading the site).
- Note that all ditches and swales shall be stabilized prior to directing runoff to them.
- X Note that all roadways and parking lots shall be stabilized within 72 hours of achieving finished grade.
- 🛛 Note that all cut and fill slopes shall be seeded/loamed within 72 hours of achieving finished grade
- Note that all erosion controls shall be inspected weekly AND after every half-inch of rainfall.
- oxed N Note the limits on the open area allowed, see Env-Wq 1505.02 for detailed information.

Example note: The smallest practical area shall be disturbed during construction, but in no case shall exceed 5 acres at any one time before disturbed areas are stabilized.

Note the definition of the word "stable"

Example note: An area shall be considered stable if one of the following has occurred:

- Base course gravels have been installed in areas to be paved.
- A minimum of 85 percent vegetated growth has been established.
- A minimum of 3 inches of non-erosive material such stone or riprap has been installed.
- Or, erosion control blankets have been properly installed.
- Note the limit of time an area may be exposed Example note: All areas shall be stabilized within 45 days of initial disturbance.
- Provide temporary and permanent seeding specifications. (Reed canary grass is listed in the Green Book; however, this is a problematic species according to the Wetlands Bureau and therefore should not be specified)

Provide winter construction notes that meet or exceed our standards.

Standard Winter Notes:

- All proposed vegetated areas that do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting, elsewhere. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events.
- All ditches or swales which do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions.
- After October 15, incomplete road or parking surfaces, where work has stopped for the winter season, shall be protected with a minimum of 3 inches of crushed gravel per NHDOT item 304.3.

Note at the end of the construction sequence that "Lot disturbance, other than that shown on the approved plans, shall not commence until after the roadway has the base course to design elevation and the associated drainage is complete and stable." – This note is applicable to single/duplex family subdivisions, when lot development is not part of the permit.

DRAINAGE ANALYSES

Please double-side 8 $\frac{1}{2}$ × 11" sheets where possible but, **do not** reduce the text such that more than one page fits on one side.

PE stamp

Rainfall amount obtained from the Northeast Regional Climate Center- http://precip.eas.cornell.edu/. Include extreme precipitation table as obtained from the above referenced website.

Drainage analyses, in the following order:

- Pre-development analysis: Drainage diagram.
- Pre-development analysis: Area Listing and Soil Listing.
- Pre-development analysis: Node listing 1-year (if applicable), 2-year, 10-year and 50-year.
- Pre-development analysis: Full summary of the 10-year storm.
- Post-development analysis: Drainage diagram.
- Post-development analysis: Area Listing and Soil Listing.
- Post-development analysis: Node listing for the 2-year, 10-year and 50-year.
- Post-development analysis: Full summary of the 10-year storm.

Review the Area Listing and Soil Listing reports

- Hydrologic soil groups (HSG) match the HSGs on the soil maps provided.
- There is the same or less HSG A soil area after development (check for each HSG).
- There is the same or less "woods" cover in the post-development.
- Undeveloped land was assumed to be in "good" condition.
- The amount of impervious cover in the analyses is correct.

Note: A good check is to subtract the total impervious area used in the pre analysis from the total impervious area used in the post-analysis. For residential projects without demolition occurring, a good check is to take this change in impervious area, subtract out the roadway and divide the remaining by the number of houses/units proposed. Do these numbers make sense?

 \boxtimes Check the storage input used to model the ponds.

🛛 Check to see if the artificial berms pass the 50-year storm, i.e., make sure the constructed berms on ponds are not overtopped.

Check the outlet structure proposed and make sure it matches that modeled.

 \boxtimes Check to see if the total areas in the pre and post analyses are same.

Confirm the correct NRCS storm type was modeled (Coos, Carroll & Grafton counties are Type II, all others Type III).

PRE- AND POST-DEVELOPMENT DRAINAGE AREA PLANS

Plans printed on 34 - 36" by 22 - 24" on white paper.

- Submit these plans separate from the soil plans.
- \square A north arrow.
- \square A scale.
- Labeled subcatchments, reaches and ponds.
- Tc lines.
- \boxtimes A clear delineation of the subcatchment boundaries.
- Roadway station numbers.
- Culverts and other conveyance structures.

PRE AND POST-DEVELOPMENT COLOR-CODED SOIL PLANS

 \boxtimes 11" × 17" sheets suitable, as long as it is readable.

Submit these plans separate from the drainage area plans.

 \boxtimes A north arrow.

A scale.

 \boxtimes Name of the soil scientist who performed the survey and date the soil survey took place.

2-foot contours (5-foot contours if application is for a gravel pit) as well as other surveyed features.

 \boxtimes Delineation of the soil boundaries and wetland boundaries.

Delineation of the subcatchment boundaries.

 \boxtimes Soil series symbols (e.g., 26).

A key or legend which identifies each soil series symbol and its associated soil series name (e.g., 26 = Windsor).

The hydrologic soil group color coding (A = Green, B = yellow, C= orange, D=red, Water=blue, & Impervious = gray).

Please note that excavation projects (e.g., gravel pits) have similar requirements to that above, however the following are common exceptions/additions:

Drainage report is not needed if site does not have off-site flow.

 \boxtimes 5 foot contours allowed rather than 2 foot.

 \boxtimes No PE stamp needed on the plans.

Add a note to the plans that the applicant must submit to the Department of Environmental Services a written update of the project and revised plans documenting the project status every five years from the date of the Alteration of Terrain permit.

Add reclamation notes.

See NRCS publication titled: *Vegetating New Hampshire Sand and Gravel Pits* for a good resource, it is posted online at: <u>http://des.nh.gov/organization/divisions/water/aot/categories/publications</u>.

ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE

If project will discharge stormwater to a surface water impaired for phosphorus and/or nitrogen, include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen.

If project will discharge stormwater to a Class A surface water or Outstanding Resource Water, include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen.

If project will discharge stormwater to a lake or pond not covered previously, include information to demonstrate that project will not cause net increase in phosphorus in the lake or pond.

If project is within a Coastal/Great Bay Region community, include info required by Env-Wq 1503.08(I) if applicable.

4. COPY OF AOT APPLICATION CHECK

CASH ONLY IF ALL CheckLock™ SECURITY FEATURES LISTED ON BACK INDICATE NO TAMPERING OR COPYING 2934 TD BANK, NA 54-007/114 BLUEBIRD STORAGE LLC 125 Ocean Rd Greenland, NH 03840 16/2021 PAY TO THE ORDER OF \$ 3,125.40 IND 100 1-800 133 6810 0 m AN \mathcal{O} Ú C 12 DOLLARS SUP HVC. 0.20 4 NT AOT Fee MEMO #002934#

BLUEBIRD STORAGE LLC

2934

5. MUNICIPAL SUBMISSION: TOWN OF HUDSON

6. USGS MAP

7. PROJECT NARRATIVE

I. INTRODUCTION

A. Project Description

The subject project proposes a 3-story, 39,388 SF footprint self-storage building. The project encompasses three existing lots for a total of 3.783 acres. There are two existing residential homes, numerous sheds, and the rest of the property is woodland and cleared grass areas. The construction will involve the clearing of woods to the rear of the lot. Once cleared, the building will be constructed along with the parking, drives, stormwater ponds, and associated landscape improvements.

B. Existing Site Conditions

The proposed parcel is located at 196 to 202 Central Street, Hudson, NH. The three parcels total approximately 3.8 acres and contain two residential homes with out-buildings and the remaining acreage is woodland. The site contains one poorly drained wetland located in the north-eastern corner of the property. There is a high point in the rear of lot 21 that causes about half the site to slope to the existing wetland while the other half slopes towards Central Street.

According to the Site-specific Soil Survey Report, performed on November 4, 2021 by certified soil scientist, Luke Hurley, the area of development consists of Agawam, Udorthents, and Scarboro soils of varying slopes ranging from 0-25%+. According to the National Resources Conservation Service (NRCS) soil mapping the site consists of, Windsor loamy sand and Freetown mucky peat soil types of slopes ranging from 0-15%.

II. Storm Drainage Analysis & Design

A. Methodology

In accordance with the Hudson Stormwater Regulations, NHDES AoT requirements and generally accepted engineering practice, the 2-year, 10-year, 25-year, and 50year frequency storms have each been used in the various aspects of analysis and design of stormwater management considerations for the subject site. Stormwater treatment provisions and all drainage facilities have been designed to be fully functional during a 50-year return frequency storm.

KNA utilizes HydroCAD version 10.00-22 to analyze both pre and post-development watershed characteristics. This computer software system is based largely on hydrology techniques (TR-20) developed by the Soil Conservation Service (now the Natural Resources Conservation Service). In addition, the software derives Time of Concentration values using the methodology contained within USDA-S.C.S. publication Urban Hydrology for Small Watersheds Technical Release No. 55 (TR 55).

All proposed stormwater inlet structures were designed to remain under inlet control throughout a design storm of the return frequency noted. Outlet protection for each discharging culvert was designed in accordance with the methodology for the "best management practice", in accordance with a publication entitled <u>New Hampshire</u> <u>Stormwater Manual Volume 2: Post-Construction Best Management Practices</u> <u>Selection and Design</u>. In addition, this publication served as the primary reference for the numerous temporary and permanent erosion control methods incorporated into the design of this project.

All design and analysis calculations performed using the referenced methodologies are attached to this report. The minimum time of concentrations used for the analysis is 6 minutes. These calculations document each catchment area, a breakdown of surface type, time of concentration, rainfall intensity, peak discharge volume, Manning's "n" value, peak velocity, and other descriptive design data for each watershed and pipe segment evaluated. In addition, the "Pre/Post Development Drainage Area Plans" graphically define and illustrate the extent of each watershed or catchment area investigated.

B. Pre-Development Drainage Conditions

The pre-development drainage model recognizes two (2) points of analysis (POA) as the appropriate points to compare pre vs. post-development peak rates of stormwater discharge.

The pre-development drainage model's POA are further described as follows:

- A Wetland/Rear Abutter Lot
- B Central Street

For a more visual description of the information presented in this section, please refer to the attached "Pre-Development Drainage Areas Plan" attached in the appendix of this report.

C. Post-Development Drainage Conditions:

The same POA's that were identified in the pre-development scenario have been analyzed in the post-development scenario.

Overall, the design has maintained the drainage patterns to mimic the predevelopment conditions. Stormwater will discharge to the same two points of analysis identified in the pre-development scenario. The improvements, however, also provide stormwater treatment for the new impervious areas created for the proposed development.

Subcatchment areas, times of concentration and analysis points have been provided showing how the pre-development and post-development areas best match to have a proper comparison.

A Pocket Pond (Wet Pond) is being proposed at the rear (northern portion) of the property to provide detention and treatment. The system has been designed to maintain the required permanent pool while providing treatment and has been sized to withstand a 50-year storm event.

A series of three additional pond areas is proposed at the front (southern portion) of the property. A Bioretention Pond is proposed to capture a portion of runoff, providing detention and treatment. This stormwater pond will be underdrained. Run-off will be treated first by a sediment forebay, and then the stormwater will infiltrate through the filter media before finally reaching the underdrain and flowing to an outlet structure. The system has been sized to withstand a 50-year storm event.

Two Infiltration Ponds are proposed to capture the remaining stormwater flow. This stormwater pond will treat run-off first by sediment forebays and then recharged back into the ground. The ponds have been sized to provide the required groundwater recharge volume, as well as withstand a 50-year storm event.

The detailed hydrologic and hydraulic relationship of each sub-catchment is described within the HydroCAD stormwater modeling, also contained in the appendix of this report.

The peak stormwater runoff rate and total storm volume for the specific storm frequencies are presented and analyzed in the subsequent summary section of this report, for the point of analysis (Table 1 & 2).

D. Summary:

The subject site complies with the Town of Hudson Stormwater Management and Erosion Control Regulations and NHDES Regulations Env-Wq 1500 in regard to stormwater treatment and groundwater recharge volume. Proposed stormwater best management practices (BMP) are designed in accordance with the <u>New Hampshire Stormwater Manual Volume 2: Post-Construction Best Management Practices Selection and Design</u> and BMP worksheets provided by the New Hampshire Department of Environmental Services. In addition, stormwater discharges, in terms of peak rate of runoff and total volume, are consistent with the Town of Hudson Stormwater Regulations and NHDES Regulations Env-Wq 1500. The results are reported below in Table 1 and 2.

Site Pre-Development vs. Post Development (Peak Discharge Rate in cfs)								
Description	2-Year		10-Year 25-1		Year	50-Year		
24-hr Rainfall	2.94	in/hr	1/hr 4.45 in/hr		5.63 in/hr		6.74 in/hr	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Α	0.08	0.07	0.61	0.38	1.34	0.75	2.13	1.14
B	0.46	0.44	1.99	0.89	3.59	1.30	5.24	1.79

Table 1: Peak Runoff (Env-Wq 1507.06)

Table 2: Peak Runoff (2-Year Frozen Conditions)

Site Pre-Development vs. Post Development – Frozen (Peak Discharge Rate in cfs)				
Description 2-Year - Frozen				
24-hr Rainfall	2.93 in/hr			
	Pre	Post		
Α	2.85	1.38		
В	5.17	1.09		

III. EROSION & SEDIMENTATION CONTROL PROVISIONS

A. Temporary Erosion Control Measures

As an integral part of the engineering design of this site, an erosion and sedimentation control plan has been developed with the intent of limiting the potential for soil loss and associated receiving water quality degradation, both during and after the construction period. As the project plans indicate, traditional temporary erosion and sedimentation control devices and practices, such as siltation fencing, block and gravel sediment filters, and seeding have been specified for use during the construction period. In preparation of these provisions, reference was made to the <u>New Hampshire Stormwater Manual; Volume 3: Erosion and Sediment Temporary Controls During Construction</u>. Construction details for each temporary erosion control measure and practice specified have been added to the project plans.

B. Construction Sequence

A site-specific construction sequence sensitive to limiting soil loss due to erosion and associated water quality degradation was prepared specifically for this project and is shown on the project plans. As pointed out in the erosion control notes, it is important for the contractor to recognize that proper judgment in the implementation of work will be essential if erosion is to be limited and protection of completed work is to be realized. Moreover, any specific changes in sequence and/or field conditions affecting the ability of specific erosion control measures to adequately serve their intended purpose should be reported to this office by the contractor. Furthermore, the contractor is encouraged

to supplement specified erosion control measures during the construction period where and when in his/ her best judgment, additional protection is warranted.

C. Permanent Erosion Control Measures

In the design of this site, consideration was given to limiting the potential for long-term erosion of completed improvements. As a result, several permanent erosion control measures were incorporated into the site design. These provisions include:

- 1) Specification of a turf establishment schedule and seed mixture, utilizing materials and workmanship recognized as appropriate for the site conditions at hand;
- 2) The design has provided catch basins with sumps to capture runoff and reduce the overland flow, thereby reducing erosion;
- 3) Construction of rip-rap at the outlet of the stormwater management areas;
- **4)** Two Infiltration Basins, a Bioretention Pond and a Pocket Pond (Wet Pond) were designed to reduce runoff and volume.

8. SURFACE WATER IMPAIRMENTS

Surface Water Impairments

9. WEB GIS FIGURES

GIS Figure

10. NEW HAMPSHIRE NATURAL HERITAGE INVENTORY LETTER

Memo

Please note: portions of this document are confidential.

Maps and NHB record pages are confidential and should be redacted from public documents.

- To: Bridget Souza, Keach-Nordstrom Associates, Inc. 10 Commerce Park North Suite 3 Bedford, NH 03110
- From: Jessica Bouchard, NH Natural Heritage Bureau
- **Date**: 9/29/2021 (valid until 09/29/2022)
- **Re**: Review by NH Natural Heritage Bureau
- Permits: MUNICIPAL POR Hudson, NHDES Alteration of Terrain Permit

 NHB ID:
 NHB21-2966
 Town:
 Hudson
 Location:
 196-202
 Central Street

 Description:
 Remove two abandoned residential homes and construction 39,000 +/- s.f. footprint storage facility with associated drainage, utilities, parking, and landscaping.
 Vim Tuttla
 Location:
 196-202
 Central Street

cc: Kim Tuttle

As requested, I have searched our database for records of rare species and exemplary natural communities, with the following results.

Comments NHB: No Comments At This Time

F&G: Please submit AoT-related documents for NHFG review, AoT review inquiries or wildlife biologist questions to NHFG review@wildlife.nh.gov. If project related: Include the NHB datacheck results letter number (i.e. NHB21-2966) in the email subject line at a minimum. Not including this number will affect our response time and delays of our review. Please include the NHB number in the title of the assessment along with a date (year,month,day).

Vertebrate species	State ¹	Federal	Notes
Blanding's Turtle (Emydoidea blandingii)	E		Contact the NH Fish & Game Dept (see below).
Eastern Box Turtle (Terrapene carolina)	E		Contact the NH Fish & Game Dept (see below).
Spotted Turtle (Clemmys guttata)	Т		Contact the NH Fish & Game Dept (see below).

¹Codes: "E" = Endangered, "T" = Threatened, "SC" = Special Concern, "--" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list. An asterisk (*) indicates that the most recent report for that occurrence was more than 20 years ago.

Contact for all animal reviews: Kim Tuttle, NHF&G, (603) 271-6544.

Memo

NH Natural Heritage Bureau NHB DataCheck Results Letter

Please note: portions of this document are confidential.

Maps and NHB record pages are confidential and should be redacted from public documents.

A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.

Department of Natural and Cultural Resources Division of Forests and Lands (603) 271-2214 fax: 271-6488

DNCR/NHB 172 Pembroke Rd. Concord, NH 03301

CONFIDENTIAL – NH Dept. of Environmental Services review

NHB21-2966

New Hampshire Natural Heritage Bureau - Animal Record

Blanding's Turtle (*Emydoidea blandingii*)

Legal Status Co	nservation Status				
Federal: Not listed Glo	bal: Apparently secure but with cause for concern				
State: Listed Endangered Sta	te: Critically imperiled due to rarity or vulnerability				
Description at this Location					
Conservation Rank: Not ranked					
Comments on Rank:					
Detailed Description: 2015: Area 14021: 1 adult obser	ved, sexunknown.				
General Area: 2015: Area 14021: Wetland area	within urban setting.				
General Comments:					
Management					
Comments:					
Location					
Survey Site Name: Second Brook					
Managed By:					
County: Hillsborough					
Town(s): Hudson					
Size: 1.9 acres Ele	vation:				
Precision: Within (but not necessarily restricted to) the area indicated on the map.					
Directions: 2015: Area 14021: Wetland area opposite 222 Central Street, Hudson.					
Dates documented					
First reported: 2015-06-04 Las	st reported: 2015-06-04				

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact themat 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.
Blanding's Turtle (Emydoidea blandingii)

Legal Status		Conser	vation S ta	tus	
Federal: Not listed		Global:	Apparent	ly secure but with cause for concern	
State: Listed Endar	ngered	State:	Critically	imperiled due to rarity or vulnerability	
Description at this Lo	cation				
Conservation Rank:	Not ranked				
Comments on Rank:					
Detailed Description: General Area: General Comments: Management Comments:	2014: Area 13895: 1 adult ob 2014: Area 13895: Pond in m 	oserved, s unicipal	exunknov park.	/n.	
Location					
Survey Site Name: Se	econd Brook				
Managed By:					
County: Hillsboroug Town(s): Hudson Size: .4 acres	gh	Elevatio	on:		
Precision: Within (but not necessarily restricted to) the area indicated on the map.					
Directions: 2014: A	Area 13895: Near pond in Ben	son Park,	Hudson (4	42.76663, -71.40373).	
Dates documented					
First reported: 20	014-07-17	Last rep	orted:	2014-07-17	

Blanding's Turtle (Emydoidea blandingii)

Legal Status		Conser	vation S ta	tus	
Federal: Not listed		Global:	Apparent	ly secure but with cause for concern	
State: Listed Endar	ngered	State:	Critically	imperiled due to rarity or vulnerability	
Description at this Lo	cation				
Conservation Rank:	Not ranked				
Comments on Rank:					
Detailed Description: General Area: General Comments: Management Comments:	2014: Area 13571: 1 adult ma 2014: Area 13571: Marshy at 	ale obser rea leadii	ved. ng to small	stream. Roads surrounding the marshy area.	
Location	akingan Dand				
Managed By:	obinson Pond				
County: Hillsboroug Town(s): Hudson	gh				
Size: .4 acres		Elevatio	on:		
Precision: Within (but not necessarily restricted to) the area indicated on the map.					
Directions: 2014: A	Area 13571: Greeley Street, Hu	udson, at	crossingo	f Glover Brook.	
Dates documented					
First reported: 20	014-05-02	Last rep	orted:	2014-05-02	

Blanding's Turtle (Emydoidea blandingii)

Legal Status		Conser	vation Stat	us	
Federal: Not listed		Global:	Apparent	ly secure but with cause for concern	
State: Listed Endar	ngered	State:	Critically	imperiled due to rarity or vulnerability	
Description at this Lo	cation				
Conservation Rank:	Not ranked				
Comments on Rank:					
Detailed Description:	2013: Area 13420: 1 adult ob	served, s	exunknow	'n.	
General Area:	2013: Area 13420: Residenti	al yard, c	oniferous f	orest.	
General Comments:					
Management					
Comments:					
Location					
Survey Site Name: R	obinsonPond				
Managed By:					
County: Hillsboroug	gh				
Town(s): Hudson					
Size: .4 acres		Elevatio	n:		
Precision: Within (but not necessarily restricted to) the area indicated on the map.					
Directions: 2013: A	Area 13420: 11 Glover Brook	Lane, Hu	dson.		
Dates documented					
First reported: 20	013 06 17	Lastron	orted	2013 06 17	
Thist reported. 20	J15-00-17	Lastiep	uneu.	2013-00-17	

Blanding's Turtle (Emydoidea blandingii)

Legal Status		Conser	vation Statu	IS
Federal: Not listed		Global:	Apparently	secure but with cause for concern
State: Listed Endar	ngered	State:	Critically in	nperiled due to rarity or vulnerability
Description at this Lo	cation			
Conservation Rank:	Not ranked			
Comments on Rank:				
	0011 A 12140 5 1 k			
Detailed Description:	2011: Area 13149: 5 adults o	bserved.		
General Area:	2011: Area 13149: Marsh.			
General Comments:				
Management				
Comments:				
Location				
Survey Site Name: Se	econd Brook			
Managed By:				
je se				
County: Hillsborous	gh			
Town(s): Hudson				
Size: 1.9 acres		Elevatio	on:	
Precision: Within	(but not necessarily restricted	to) the a	rea indicated	l on the map.
Directions: 2011: A	Area 13149: 125 Belknap Road	d, Hudso	n.	
	1			
Dates documented				
First reported: 20	011-05-08	Last rep	orted:	2011-05-08
First reported: 20	011-05-08	Last rep	orted:	2011-05-08

Blanding's Turtle (Emydoidea blandingii)

Legal Status		Conser	vation Stat	us
Federal: Not listed		Global:	Apparentl	y secure but with cause for concern
State: Listed Endar	ngered	State:	Critically i	mperiled due to rarity or vulnerability
Description at this Lo	cation			
Concompation Bonki	Notmarked			
Conservation Rank.	NotTaliked			
Comments on Rank:				
Detailed Description:	2017: Area 14371: 1 adult ob	served.s	exunknow	n.
General Area:	2017: Area 14371: Forest in a	city park.		
General Comments:		J I		
Management				
Comments:				
Location				
Survey Site Name: S	econd Brook			
Managed By:				
County: Hillsboroug	gh			
Town(s): Hudson				
Size: 1.9 acres		Elevatio	n:	
Precision: Within	(but not necessarily restricted	to) the a	rea indicate	d on the map.
	× 2	/		1
Directions: 2017: A	Area 14371: Benson Park, Hud	lson.		
Dates documented				
First reported: 20	017-04-17	Last rep	orted:	2017-04-17

Blanding's Turtle (Emydoidea blandingii)

Legal Status		Conserv	ation Sta	tus	
Federal: Not listed		Global:	Apparent	tly secure but with cause for concern	
State: Listed Endar	ngered	State:	Critically	imperiled due to rarity or vulnerability	
Description at this La	antion				
Description at tills Lo					
Conservation Rank:	Not ranked				
Comments on Rank:					
Detailed Description:	2016: Area 14397: 1 adult fer and released on 6/27.	maleobse	erved, inju	red on road. Turtle was brought to rehabber,	
General Area:	Area 14397: Roadside.				
General Comments:					
Management					
Comments:					
Location					
Survey Site Name: R Managed By:	obinson Pond				
County: Hillsboroug Town(s): Hudson	gh				
Size: .4 acres		Elevatio	n:		
Precision: Within (but not necessarily restricted to) the area indicated on the map.					
Directions: 2016: A	Area 14397: Near junction of F	Route 111	, State Str	eet, and Marshmallow Path, Hudson.	
Dates documented					
First reported: 20	016-06-15	Last rep	orted:	2016-06-15	

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact themat 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

CONFIDENTIAL – NH Dept. of Environmental Services review

Eastern Box Turtle (*Terrapene carolina*)

Legal Status	Conservation Status						
Federal: Not listed		Global:	Demonst	rably widespread, abundant, and secure			
State: Listed End	angered	State:	Critically	imperiled due to rarity or vulnerability			
Description at this I	ocetion						
Concornation Bank:	Notronkad						
Comments on Rank:	NotTaliked						
Comments on Rank.							
Detailed Description	: 2017-2019: Turtle 7010: Rad Radiotracked male. Turtle 70 2016: Adult male tracked via recapture on 6/30. Second ad tracked via telemetry. Believe evidence.	iotracked 13: Radio telemetr lult male o ed to hav	l female. T otracked fe y. Initial c captured a e laid eggs	Furtle 7011: Radiotracked male. Turtle 7012: emale. Turtle 7014: Radiotracked female. apture on 6/2. First recapture on 6/7. Second nd tagged on 9/9. 2014: Adult female s during telemetry survey, but no direct			
General Area:	2016: Powerline right-of-way either side of right-of-way. 2	2016: Powerline right-of-way with dense shrub cover. Appalachian oak - pine forest on either side of right-of-way 2014: Moving between woods and adjacent powerline corridor					
General Comments:							
Management							
Comments:							
Location							
Survey Site Name:	Musquash Brook						
Managed By:	Hamblett						
County: Hillsboro Town(s): Hudson Size: 45.5 acre	ugh s	Elevatio	n:				
Precision: With	in (but not necessarily restricted	lto)the a	rea indicat	ed on the map.			
Directions:							
Dates documented							
First reported:	2014-06-18	Last rep	orted:	2019-09-10			

Spotted Turtle (Clemmys guttata)

Legal Status		Conser	vation S ta	tus	
Federal: Not listed		Global:	Demonst	rably widespread, abundant, and secure	
State: Listed The	reatened	State:	Imperiled	due to rarity or vulnerability	
Description at this	Location				
Conservation Rank:	Not ranked				
Comments on Rank					
Detailed Description	n: 2013: Area 13521: 1 adult ob	served, s	exunknov	vn.	
General Area:	2013: Area 13521: Shrublan	d.			
General Comments:					
Management					
Comments:					
Location	Marcill Dura 1				
Managed By:	Memii Brook				
County: Hillsbord	ough				
Size: 1.9 acres	5	Elevatio	on:		
Precision: Within (but not necessarily restricted to) the area indicated on the map.					
Directions: 2013: Area 13521: Benson's Park, Hudson. Along Meadow View Trail approximately 100 feet west of intersection with Haselton Farm Trail.					
Dates documented					
First reported:	2013-06-03	Last rep	orted:	2013-06-03	

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact themat 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

CONFIDENTIAL – NH Dept. of Environmental Services review

11. WEB SOIL SURVEY

National Cooperative Soil Survey

Conservation Service

10/22/2021 Page 1 of 4

Hydrologic Soil Group

	1	1	r	
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Gw	Freetown mucky peat, 0 to 2 percent slopes	B/D	0.2	4.0%
WdB	Windsor loamy sand, 3 to 8 percent slopes	A	2.8	46.8%
WdC	Windsor loamy sand, 8 to 15 percent slopes	A	3.0	49.2%
Totals for Area of Interest			6.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

12. AERIAL PHOTOGRAPH

DATE: 11/30/2021	50B. NC
SCALE: " = 2,000'	SHEET

SHEET I OF I

13. SITE PHOTOGRAPHS

<u>Photo No. 1</u>: Looking south-west down Central Street from the existing paved driveway on Lot 21.

Photo No. 2: Existing 2-story house on Lot 21 to be razed.

Civil Engineering	Land Surveying	Landso	cape Architecture
10 Commerce Park North, Suite 3B	Bedford, NH 03110	Phone (603) 627-2881	Fax (603) 627-2915

Photo No. 3: Looking north-east down Central Street from between existing driveways.

Photo No. 4: Existing 2-story house on Lot 23 to be razed.

 10 Commerce Park North, Suite 3B
 Bedford, NH 03110
 Phone (603) 627-2881
 Fax (603) 627-2915

Photo No. 5: Looking to the rear of the parcels showing the wooded area.

Photo No. 6: Onsite photo of the wetland located in northern, rear corner of Lot 23.

Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B Bedford, NH 03110 Phone (603) 627-2881 Fax (603) 627-2915

14. GRV CALCULATION

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

-	ас	Area of HSG A soil that was replaced by impervious cover	0.40"
1.48	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
-	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
-	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.25	inches	Rd = Weighted groundwater recharge depth	
0.3708	ac-in	GRV = AI * Rd	
1,346	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

Infiltration Pond #4 provides 3,797 cf of infiltration below the lowest orifice

NHDES Alteration of Terrain

15. BMP WORKSHEETS

STORMWATER POND DESIGN CRITERIA

Env-Wq 1508.03

Type/Node Name:	Wet Pond #1	
	Enter the type of stormwater pond (e.g., Wet Pond) and the node name in the di	ainage analysis, if applicable.
0.98 ac	A = Area draining to the practice	
0.31 ac	A _I = Impervious area draining to the practice	
0.32 decimal	I = Percent impervious area draining to the practice, in decimal form	
0.33 unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
0.33 ac-in	WQV= 1" x Rv x A	
1,191 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
119 cf	10% x WQV (check calc for sediment forebay and micropool volume)	
595 cf	50% x WQV (check calc for extended detention volume)	
248 cf	V _{SED} = Sediment forebay volume	<u>></u> 10%WQV
10,729 cf	V _{PP} = Permanent pool volume (volume below the lowest invert of the ous stage-storage table.	utlet structure) Attach
no cf	Extended Detention? ¹	<u><</u> 50% WQV
	V _{ED} = Volume of extended detention (if "yes" is given in box above)	
	E _{ED} = Elevation of WQV if "yes" is given in box above ²	
- cfs	$2Q_{avg}$ = 2* V _{ED} / 24 hrs * (1hr / 3600 sec) (used to check against Q_{EDmax} b	elow)
cfs	Q_{EDmax} = Discharge at the E_{ED} (attach stage-discharge table)	< 2Q _{avg}
- hours	T_{ED} = Drawdown time of extended detention = $2V_{ED}/Q_{EDmax}$	<u>></u> 24-hrs
3.00 :1	Pond side slopes	<u>></u> 3:1
179.00 ft	Elevation of seasonal high water table	
<u>179.00</u> ft <u>182.00</u> ft	Elevation of seasonal high water table Elevation of lowest pond outlet	
179.00 ft 182.00 ft 174.00 ft	Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft)	
179.00 ft 182.00 ft 174.00 ft 171.00 ft	Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8')	<u>≤</u> 8 ft
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft	Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³	≤ 8 ft ≤ Max floor and > Min floor
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft 129.00 ft	Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth	≤ 8 ft ≤ Max floor and > Min floor
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft 129.00 ft 37.00 ft	Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average width ([average of the top width + average bottom width]/2)	≤ 8 ft ≤ Max floor and > Min floor
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft 129.00 ft 37.00 ft 3.49 :1	Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average width ([average of the top width + average bottom width]/2) Length to average width ratio	≤ 8 ft ≤ Max floor and > Min floor ≥ 3:1
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft 129.00 ft 37.00 ft 3.49 :1 Yes Yes/No	 Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor³ Length of the flow path between the inlet and outlet at mid-depth Average width ([average of the top width + average bottom width]/2) Length to average width ratio Is the perimeter curvilinear. 	<pre>≤ 8 ft ≤ Max floor and > Min floor </pre> ≥ 3:1 ✓ Yes
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft 129.00 ft 37.00 ft 3.49 :1 Yes Yes/No Yes Yes/No	 Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor³ Length of the flow path between the inlet and outlet at mid-depth Average width ([average of the top width + average bottom width]/2) Length to average width ratio Is the perimeter curvilinear. Are the inlet and outlet located as far apart as possible. 	<pre>≤ 8 ft ≤ Max floor and > Min floor </pre> ≥ 3:1 ✓ Yes
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft 129.00 ft 37.00 ft 3.49 :1 Yes Yes/No Yes Yes/No No Yes/No	 Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor³ Length of the flow path between the inlet and outlet at mid-depth Average width ([average of the top width + average bottom width]/2) Length to average width ratio Is the perimeter curvilinear. Are the inlet and outlet located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr perimeter data. 	<pre>≤ 8 ft ≤ Max floor and > Min floor ≥ 3:1 </pre> ← Yes <pre>eriod?</pre>
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft 129.00 ft 37.00 ft 3.49 :1 Yes Yes/No Yes Yes/No No Yes/No If no state will	Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average width ([average of the top width + average bottom width]/2) Length to average width ratio Is the perimeter curvilinear. Are the inlet and outlet located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr per ny: If needed, the pond will be pumped out to empty	<pre>≤ 8 ft </pre> ≤ 8 ft Max floor and > Min floor ≥ 3:1 ← Yes ← Yes eriod?
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft 129.00 ft 37.00 ft 349 :1 Yes Yes/No No Yes/No If no state wl	Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average width ([average of the top width + average bottom width]/2) Length to average width ratio Is the perimeter curvilinear. Are the inlet and outlet located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr peny: If needed, the pond will be pumped out to empty What mechanism is proposed to prevent the outlet structure from cloge	<pre>≤ 8 ft ≤ Max floor and > Min floor > 3:1 </pre>
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft 129.00 ft 37.00 ft 349 :1 Yes Yes/No No Yes/No If no state wl Trash grates	Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average width ([average of the top width + average bottom width]/2) Length to average width ratio Is the perimeter curvilinear. Are the inlet and outlet located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr pent hy: If needed, the pond will be pumped out to empty What mechanism is proposed to prevent the outlet structure from clogge orifices/weirs with a dimension of <6")?	<pre>≤ 8 ft ≤ Max floor and > Min floor ≥ 3:1 </pre> ← Yes eriod? <pre>ging (applicable for</pre>
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft 129.00 ft 37.00 ft 3.49 :1 Yes Yes/No Yes Yes/No No Yes/No If no state wh Trash grates 183.50 ft	Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average width ([average of the top width + average bottom width]/2) Length to average width ratio Is the perimeter curvilinear. Are the inlet and outlet located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr pent My: If needed, the pond will be pumped out to empty What mechanism is proposed to prevent the outlet structure from clogge orifices/weirs with a dimension of <6")? Peak elevation of the 50-year storm event	<pre>≤ 8 ft </pre> ≤ Max floor and > Min floor ≥ 3:1 € Yes € Yes eriod? ging (applicable for
179.00 ft 182.00 ft 174.00 ft 171.00 ft 179.00 ft 129.00 ft 37.00 ft 37.00 ft 349 :1 Yes Yes/No No Yes/No If no state wl Trash grates 183.50 ft 184.50 ft	Elevation of seasonal high water table Elevation of lowest pond outlet Max floor = Maximum elevation of pond bottom (ft) Minimum floor (to maintain depth at less than 8') Elevation of pond floor ³ Length of the flow path between the inlet and outlet at mid-depth Average width ([average of the top width + average bottom width]/2) Length to average width ratio Is the perimeter curvilinear. Are the inlet and outlet located as far apart as possible. Is there a manually-controlled drain to dewater the pond over a 24hr per hy: If needed, the pond will be pumped out to empty What mechanism is proposed to prevent the outlet structure from clogge orifices/weirs with a dimension of <6")? Peak elevation of the 50-year storm event Berm elevation of the pond	<pre>≤ 8 ft ≤ Max floor and > Min floor ≥ 3:1 ← Yes ← Yes eriod? ging (applicable for</pre>

1. If the entire WQV is stored in the perm. pool, there is no extended det., and the following five lines do not apply.

2. This is the elevation of WQV if the hydrologic analysis is set up to include the permanent pool storage in the node description.

3. If the pond floor elevation is above the max floor elev., a hydrologic budget must be submitted to demonstrate that a minimum depth of 3 feet can be maintained. (First check whether a revised "lowest pond outlet" elev. will resolve the issue.)

Designer's Notes:

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention Pond #2

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.07	7(a).
0.35	ас	A = Area draining to the practice	
0.16	ас	A _I = Impervious area draining to the practice	
0.46	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.46	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)	
0.16	ac-in	WQV= 1" x Rv x A	
586	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
147	cf	25% x WQV (check calc for sediment forebay volume)	
440	cf	75% x WQV (check calc for surface sand filter volume)	
Fore	ebay	Method of Pretreatment? (not required for clean or roof runoff)	
175	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti	me to drain	n if system IS NOT underdrained:	
	sf	A _{SA} = Surface area of the practice	
	- iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	_	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
-	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
Calculate ti	me to drain	if system IS underdrained:	
176.10	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
0.22	- cfs	Ω = Discharge at the E (attach stage-discharge table)	
0.22	CI3	Q_{WQV} – Discharge at the L_{WQV} (attach stage-discharge table)	
1.48	hours	T_{DRAIN} = Drain time = 2WQV/Q _{WQV}	<u><</u> 72-hrs
1.48 173.50	hours feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2$	<u><</u> 72-hrs
1.48 173.50 172.50	hours feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable$	<u><</u> 72-hrs
1.48 173.50 172.50 172.00	hours feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test place)$	<u>< 72-hrs</u>
1.48 173.50 172.50 172.00 172.00	hours feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilter E_{ROCK} = Elevation te$	≤ 72-hrs it)
1.48 173.50 172.50 172.00 172.00 1.00	hours feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test piece elevation of bedrock (if none found, enter the lowest elevation of the test piece elevation of the test of te$	≤ 72-hrs it) ≥ 1'
1.48 173.50 172.50 172.00 172.00 1.00 1.50	hours feet feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course$	≤ 72-hrs it) ≥ 1' ≥ 1'
1.48 173.50 172.50 172.00 172.00 1.00 1.50 1.50	hours feet feet feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test place) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test place) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course$	≤ 72-hrs it) ≥ 1' ≥ 1' ≥ 1' ≥ 1'
1.48 173.50 172.50 172.00 172.00 1.00 1.50 1.50 1.77.22	hours feet feet feet feet feet feet feet fee	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilter to UD from the bottom of the filter course D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)$	≤ 72-hrs it) ≥ 1' ≥ 1' ≥ 1' ≥ 1'
1.48 173.50 172.50 172.00 172.00 1.00 1.50 1.50 1.50 177.22 178.25	hours feet feet feet feet feet feet feet ft	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter elevation of bedrock (if none found, enter the lowest elevation of the test pilter to UD from the bottom of the filter course D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the bottom of the filter course D_{EC to SHWT} = Depth to SHWT from the vent (infiltration can be used in analysis) Elevation of the top of the practice$	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1'</pre>
1.48 173.50 172.50 172.00 172.00 172.00 1.00 1.50 1.50 1.50 177.22 178.25 YES	hours feet feet feet feet feet feet ft ft	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice$	≤ 72-hrs it) ≥ 1' ≥ 1' ≥ 1' ≥ 1' ≤ 1'
1.48 173.50 172.50 172.00 172.00 1.00 1.50 1.50 1.50 177.22 178.25 YES If a surface	hours feet feet feet feet feet feet ft ft sand filter	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test plestor and the test of test of$	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ∴ yes
1.48 173.50 172.50 172.00 172.00 172.00 1.50 1.50 1.50 1.50 177.22 178.25 YES If a surface YES	hours feet feet feet feet feet feet ft ft sand filter ac	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter elevation of bedrock (if none found, enter the lowest elevation of the test pilter to UD from the bottom of the filter course D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the practice D_{FC to SHWT} = Depth to SHWT from the practice D_{FC to SHWT} = Depth to SHWT from the practice for underground sand filter is proposed: D_{FC to SHWT} = Depth to SHWT from the practice for underground sand filter is proposed: D_{FC to SHWT} = Depth to SHWT from the $	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes < 10 ac
1.48 173.50 172.50 172.00 172.00 1.00 1.50 1.50 1.50 177.22 178.25 YES If a surface YES	hours feet feet feet feet feet feet ft ft sand filter ac cf	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test place) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test place) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Dependence elevation of the solution of the top of the practice S0 peak elevation of the solution of the top of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage3 (attach a stage-storage table)$	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes <pre>< 10 ac ≥ 75%WQV</pre>
1.48 173.50 172.50 172.00 172.00 172.00 1.00 1.50 1.50 1.50 177.22 178.25 YES If a surface YES	hours feet feet feet feet feet feet ft ft sand filter ac cf inches	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter course) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the top of the practice D_{FC to SHWT} = Depth to SHWT from the top of the practice D_{FC to SHWT} = Depth to SHWT from the top of the practice D_{FC to SHWT} = Depth to SHWT from the top of the practice D_{FC to SHWT} = Depth to SHWT from the top of the practice D_{FC to SHWT} = Depth to SHWT from the top of the practice D_{FC} = Filter course thickness$	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes <pre>< 10 ac </pre> <pre>> 75%WQV 18", or 24" if within GPA</pre>
1.48 173.50 172.50 172.00 172.00 1.00 1.50 1.50 1.50 177.22 178.25 YES If a surface YES	hours feet feet feet feet feet feet ft ft sand filter ac cf inches	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter course = Elevation of bedrock (if none found, enter the lowest elevation of the test pilter to UD = Depth to UD from the bottom of the filter course = DFC to ROCK = Depth to bedrock from the bottom of the filter course = DFC to SHWT = Depth to SHWT from the bottom of the filter course = Peak elevation of the 50-year storm event (infiltration can be used in analysis) = Elevation of the top of the practice = 50 peak elevation ≤ Elevation of the top of the practice = Drainage Area check. V = Volume of storage3 (attach a stage-storage table) = DFC = Filter course thickness = Note what sheet in the plan set contains the filter course specification.$	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes <10 ac > 75%WQV 18", or 24" if within GPA

If a biorete	ention area	is proposed:	
YES	ас	Drainage Area no larger than 5 ac?	← yes
662	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
18.0	inches	D _{FC} = Filter course thickness	within GPA
Sheet	tt	Note what sheet in the plan set contains the filter course specification	
3.0) :1	Pond side slopes	<u>> 3</u> :1
Sheet	t	Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	avement is	s proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
	_		mod. 304.1 (see
Sheet	t	Note what sheet in the plan set contains the filter course spec.	spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:Pond to be lined.Volume calculation in filter media voids: 1.5 ft thickness x 193 sq.ft. area x 30% voids = 87 cu.ft. storage

NHDES Alteration of Terrain

Last Revised: January 2019

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Infiltration Pond #3

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

Yes	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	← yes
0.17 ac	A = Area draining to the practice	
0.07 ac	A _I = Impervious area draining to the practice	
0.41 decimal	I = Percent impervious area draining to the practice, in decimal form	
0.42 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.07 ac-in	WQV= 1" x Rv x A	
260 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
65 cf	25% x WQV (check calc for sediment forebay volume)	
Forebay	Method of pretreatment? (not required for clean or roof runoff)	
76 cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
412 cf	V = Volume ¹ (attach a stage-storage table)	> WQV
612 sf	A _{SA} = Surface area of the bottom of the pond	
3.00 iph	Ksat _{DESIGN} = Design infiltration rate ²	
1.7 hours	$I_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	< 72-hrs
178.00 feet	E _{BTM} = Elevation of the bottom of the basin	
175.00 feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	oit)
175.00 feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	: pit)
3.00 feet	D _{SHWT} = Separation from SHWT	<u>></u> * ³
3.0 feet	D _{ROCK} = Separation from bedrock	<u>></u> * ³
- ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	> 24"
- ft	D _T = Depth of trench, if trench proposed	4 - 10 ft
N/A Yes/No	If a trench or underground system is proposed, has observation well been provid	ed? ←yes
N/A	If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements. ⁴	← yes
Yes Yes/No	- If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
3.0 :1	If a basin is proposed, pond side slopes.	<u>></u> 3:1
178.52 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
178.80 ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
180.00 ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES	10 peak elevation < Elevation of the top of the trench? ⁵	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Infiltration Pond #4

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

Yes	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	← yes
1.51 ac	A = Area draining to the practice	
1.03 ac	A _I = Impervious area draining to the practice	
0.68 decimal	I = Percent impervious area draining to the practice, in decimal form	
0.66 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
1.00 ac-in	WQV= 1" x Rv x A	
3,639 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
910 cf	25% x WQV (check calc for sediment forebay volume)	
Forebay	Method of pretreatment? (not required for clean or roof runoff)	
1,300 cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
3,797 cf	V = Volume ¹ (attach a stage-storage table)	<u>></u> WQV
1,859 sf	A _{SA} = Surface area of the bottom of the pond	
3.00 iph	Ksat _{DESIGN} = Design infiltration rate ²	
7.8 hours	$I_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	< 72-hrs
180.00 feet	E _{BTM} = Elevation of the bottom of the basin	
177.00 feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	pit)
177.00 feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	t pit)
3.00 feet	D _{SHWT} = Separation from SHWT	<u>></u> * ³
3.0 feet	D _{ROCK} = Separation from bedrock	<u>></u> * ³
ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	> 24"
ft	D_T = Depth of trench, if trench proposed	4 - 10 ft
Yes/No	If a trench or underground system is proposed, has observation well been provid	ed? ←yes
	If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements.	← yes
Yes Yes/No	If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
3.0 :1	If a basin is proposed, pond side slopes.	<u>></u> 3:1
182.17 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
183.20 ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
184.25 ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES	10 peak elevation \leq Elevation of the top of the trench? ⁵	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

16. EXTREME PRECIPITATION TABLES

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	71.414 degrees West
Latitude	42.769 degrees North
Elevation	0 feet
Date/Time	Fri, 22 Oct 2021 09:38:22 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.42	0.52	0.68	0.85	1.07	1yr	0.73	1.01	1.24	1.55	1.96	<mark>2.47</mark>	2.71	1yr	2.19	2.61	3.04	3.72	4.33	1yr
2yr	0.33	0.51	0.63	0.84	1.05	1.32	2yr	0.91	1.21	1.53	1.90	2.37	<mark>2.95</mark>	3.28	2yr	2.61	3.15	3.66	4.38	4.98	2yr
5yr	0.39	0.61	0.77	1.03	1.31	1.67	5yr	1.13	1.52	1.93	2.42	3.01	3.73	4.18	5yr	3.30	4.02	4.64	5.50	6.23	5yr
10yr	0.44	0.69	0.88	1.19	1.55	1.99	10yr	1.34	1.80	2.32	2.90	3.61	<mark>4.46</mark>	5.01	10yr	3.95	4.82	5.56	6.54	7.37	10yr
25yr	0.53	0.83	1.06	1.46	1.94	2.51	25yr	1.67	2.25	2.93	3.68	4.58	<mark>5.65</mark>	6.39	25yr	5.00	6.14	7.06	8.22	9.23	25yr
50yr	0.59	0.94	1.21	1.70	2.30	3.00	50yr	1.98	2.66	3.51	4.42	5.50	<mark>6.75</mark>	7.68	50yr	5.98	7.38	8.46	9.78	10.95	50yr
100yr	0.68	1.10	1.41	2.00	2.73	3.58	100yr	2.35	3.16	4.20	5.30	6.58	<mark>8.08</mark>	9.23	100yr	7.15	8.88	10.14	11.64	12.98	100yr
200yr	0.77	1.26	1.63	2.34	3.24	4.28	200yr	2.79	3.75	5.03	6.35	7.89	9.67	11.11	200yr	8.56	10.68	12.16	13.85	15.40	200yr
500yr	0.93	1.53	1.99	2.90	4.06	5.41	500yr	3.51	4.70	6.39	8.08	10.02	12.28	14.19	500yr	10.86	13.64	15.47	17.45	19.32	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.35	0.43	0.57	0.70	0.81	1yr	0.61	0.79	1.07	1.31	1.67	2.25	2.55	1yr	1.99	2.45	2.70	3.01	3.77	1yr
2yr	0.31	0.49	0.60	0.81	1.00	1.20	2yr	0.86	1.17	1.37	1.79	2.30	2.87	3.18	2yr	2.54	3.06	3.55	4.26	4.85	2yr
5yr	0.36	0.55	0.69	0.94	1.20	1.42	5yr	1.04	1.39	1.62	2.11	2.69	3.50	3.84	5yr	3.10	3.69	4.25	5.10	5.78	5yr
10yr	0.39	0.61	0.75	1.05	1.36	1.61	10yr	1.17	1.57	1.83	2.38	3.04	4.05	4.42	10yr	3.58	4.25	4.87	5.83	6.58	10yr
25yr	0.45	0.68	0.85	1.21	1.59	1.88	25yr	1.38	1.84	2.15	2.81	3.53	4.90	5.35	25yr	4.33	5.14	5.84	6.98	7.78	25yr
50yr	0.49	0.74	0.92	1.33	1.79	2.14	50yr	1.54	2.09	2.43	3.19	3.97	5.67	6.19	50yr	5.02	5.95	6.72	8.00	8.81	50yr
100yr	0.54	0.81	1.01	1.46	2.01	2.42	100yr	1.73	2.36	2.76	3.54	4.47	6.21	7.19	100yr	5.50	6.91	7.75	9.19	9.97	100yr
200yr	0.59	0.89	1.12	1.63	2.27	2.74	200yr	1.96	2.68	3.10	4.02	5.07	7.13	8.36	200yr	6.31	8.04	8.94	10.56	11.30	200yr
500yr	0.67	1.00	1.28	1.86	2.65	3.25	500yr	2.29	3.18	3.66	4.76	5.99	8.56	10.28	500yr	7.58	9.88	10.81	12.71	13.33	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.31	0.47	0.58	0.78	0.96	1.12	1yr	0.83	1.09	1.27	1.65	2.09	2.66	2.87	1yr	2.36	2.76	3.42	4.19	4.79	1yr
2yr	0.35	0.54	0.67	0.90	1.11	1.31	2yr	0.96	1.28	1.49	1.92	2.47	3.07	3.42	2yr	2.72	3.29	3.80	4.53	5.18	2yr
5yr	0.44	0.67	0.83	1.14	1.45	1.67	5yr	1.26	1.63	1.89	2.43	3.05	4.02	4.57	5yr	3.56	4.40	5.03	5.95	6.69	5yr
10yr	0.53	0.81	1.00	1.40	1.81	2.03	10yr	1.56	1.99	2.30	2.91	3.62	4.98	5.71	10yr	4.41	5.49	6.25	7.33	8.19	10yr
25yr	0.68	1.03	1.29	1.84	2.42	2.63	25yr	2.09	2.57	2.97	3.68	4.51	6.61	7.67	25yr	5.85	7.37	8.33	9.64	10.74	25yr
50yr	0.82	1.25	1.56	2.24	3.02	3.21	50yr	2.61	3.14	3.60	4.41	5.34	8.19	9.58	50yr	7.25	9.21	10.33	11.86	13.18	50yr
100yr	1.01	1.52	1.90	2.75	3.77	3.92	100yr	3.26	3.83	4.38	5.38	6.33	10.66	11.96	100yr	9.43	11.50	12.82	14.62	16.20	100yr
200yr	1.23	1.84	2.34	3.38	4.72	4.78	200yr	4.07	4.67	5.32	6.45	7.50	13.31	14.91	200yr	11.78	14.34	15.90	18.00	19.93	200yr
500yr	1.60	2.38	3.07	4.46	6.34	6.20	500yr	5.47	6.06	6.88	8.22	9.38	17.87	19.95	500yr	15.81	19.18	21.15	23.72	26.20	500yr

17. HYDROCAD DRAINAGE ANALYSIS

PRE DEVELOPMENT

Prepared by Keach	Nordstrom Associates, Inc.	
HydroCAD® 10.00-26	s/n 01045 © 2020 HydroCAD Software Solutions LL	<u>C</u>

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.878	61.0	>75% Grass cover, Good, HSG B (1S, 2S)
0.201	98.0	Paved parking, HSG D (2S)
0.007	98.0	Roofs, HSG B (2S)
0.067	98.0	Roofs, HSG D (1S, 2S)
2.625	55.0	Woods, Good, HSG B (1S, 2S)
0.011	77.0	Woods, Good, HSG D (1S)
3.789	59.6	TOTAL AREA

PRE DEVELOPMENT

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
3.509	HSG B	1S, 2S
0.000	HSG C	
0.279	HSG D	1S, 2S
0.000	Other	
3.789		TOTAL AREA

PRE DEVELOPMENT Prepared by Keach Nordstrom Assoc HydroCAD® 10.00-26 s/n 01045 © 2020 H	Type III 24-hr 2-YEAR Rainfall=2.95"iates, Inc.Printed 12/20/2021lydroCAD Software Solutions LLCPage 4								
Time span=0.00-24.00 hrs, dt=0.03 hrs, 801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method									
Subcatchment 1S: Overland Flow to	Runoff Area=55,615 sf 0.06% Impervious Runoff Depth>0.19" Flow Length=204' Tc=12.5 min CN=55.3 Runoff=0.08 cfs 0.02 af								
Subcatchment 2S: Overland Flow	Runoff Area=109,425 sf 10.92% Impervious Runoff Depth>0.37" Flow Length=336' Tc=17.4 min CN=61.7 Runoff=0.47 cfs 0.08 af								
Link A: Abutting Property	Inflow=0.08 cfs 0.02 af Primary=0.08 cfs 0.02 af								
Link B: Central Street	Inflow=0.47 cfs 0.08 af Primary=0.47 cfs 0.08 af								
Total Runoff Area = 3.	789 ac Runoff Volume = 0.10 af Average Runoff Depth = 0.31" 92.74% Pervious = 3.514 ac 7.26% Impervious = 0.275 ac								

Summary for Subcatchment 1S: Overland Flow to Wetland

Runoff = 0.08 cfs @ 12.48 hrs, Volume= 0.02 af, Depth> 0.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

_	A	rea (sf)	CN	Descriptio	on	
		54,171	55.0	Woods, G	Good, HSG	В
		481	77.0	Woods, C	Good, HSG	D
		927	61.0	>75% Gra	ass cover, (Good, HSG B
		36	98.0	Roofs, HS	SG D	
		55,615	55.3	Weighted	Average	
		55,579	55.3	99.94% P	ervious Are	ea
		36 98.0 0.06% Impervious A			pervious Ai	rea
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	11.1	50	0.0300	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.84"
	1.3	154	0.1500	1.94		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	12.5	204	Total			

Summary for Subcatchment 2S: Overland Flow

Runoff = 0.47 cfs @ 12.38 hrs, Volume= 0.08 af, Depth> 0.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

A	rea (sf)	CN	Descriptic	n	
	60,157	55.0	Woods, G	Good, HSG	В
	298	98.0	Roofs, HS	G B	
	2,890	98.0	Roofs, HS	SG D	
	8,761	98.0	Paved pa	rking, HSG	D
	37,319	61.0	>75% Gra	ass cover, C	Good, HSG B
1	09,425	61.7	Weighted	Average	
	97,476	57.3	89.08% P	ervious Are	a
	11,949	98.0	10.92% Ir	npervious A	Area
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13.1	50	0.0200	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.84"
4.1	263	0.0460	1.07		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.2	23	0.0869	2.06		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
17.4	336	Total			

Summary for Link A: Abutting Property

Inflow Area	a =	1.277 ac,	0.06% Impervious,	Inflow Depth > 0).19" for 2-	YEAR event
Inflow	=	0.08 cfs @	12.48 hrs, Volume	= 0.02 af		
Primary	=	0.08 cfs @	12.48 hrs, Volume	= 0.02 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

Summary for Link B: Central Street

Inflow Area	a =	2.512 ac, <i>1</i>	10.92% Imp	ervious,	Inflow Dep	oth > 0	.37" fo	r 2-Y	'EAR eve	nt
Inflow	=	0.47 cfs @	12.38 hrs,	Volume	= ().08 af				
Primary	=	0.47 cfs @	12.38 hrs,	Volume	= (0.08 af,	Atten= (0%, I	Lag= 0.0	min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs
PRE DEVELOPMENT	Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4
Prepared by Keach Nordstrom Associates, Inc.	Printed 12/20/2021
HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD S	oftware Solutions LLC Page 7
Time span=0.00-24.00 Runoff by SCS TR-20 me Reach routing by Dyn-Stor-Ind metho	hrs, dt=0.03 hrs, 801 points thod, UH=SCS, Weighted-CN d - Pond routing by Dyn-Stor-Ind method
Subcatchment 1S: Overland Flow to Runc Flow Length=204' Tc=1	ff Area=55,615 sf 0.06% Impervious Runoff Depth>2.71" 2.5 min AMC Adjusted CN=98.0 Runoff=2.97 cfs 0.29 af
Subcatchment 2S: Overland Flow Runoff Flow Length=336' Tc=1	Area=109,425 sf 10.92% Impervious Runoff Depth>2.71" 7.4 min AMC Adjusted CN=98.0 Runoff=5.17 cfs 0.57 af
Link A: Abutting Property	Inflow=2.97 cfs 0.29 af Primary=2.97 cfs 0.29 af
Link B: Central Street	Inflow=5.17 cfs 0.57 af Primary=5.17 cfs 0.57 af

Total Runoff Area = 3.789 acRunoff Volume = 0.86 afAverage Runoff Depth = 2.71"92.74% Pervious = 3.514 ac7.26% Impervious = 0.275 ac

Summary for Subcatchment 1S: Overland Flow to Wetland

Runoff 2.97 cfs @ 12.16 hrs, Volume= 0.29 af, Depth> 2.71" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

_	A	rea (sf)	CN	Adj	Description							
		54,171	55.0		Woods, Goo	Voods, Good, HSG B						
		481	77.0		Woods, Goo	Noods, Good, HSG D						
		927	61.0		>75% Grass	s cover, Good, HSG B						
		36	98.0		Roofs, HSG	D						
		55,615	55.3	98.0	Weighted A	verage, AMC Adjusted						
		55,579	55.3	98.0	99.94% Per	vious Area, AMC Adjusted						
		36	98.0	98.0	0.06% Impe	rvious Area, AMC Adjusted						
	Tc	Length	Slope	Velocity	/ Capacity	Description						
	(min)	(feet)	(ft/ft)	(ft/sec) (cfs)							
	11.1	50	0.0300	0.07	7	Sheet Flow,						
						Woods: Light underbrush n= 0.400 P2= 2.84"						
	1.3	154	0.1500	1.94	ł	Shallow Concentrated Flow,						
						Woodland Kv= 5.0 fps						
	12.5	204	Total									

Summary for Subcatchment 2S: Overland Flow

Runoff 5.17 cfs @ 12.23 hrs, Volume= 0.57 af, Depth> 2.71" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

	Area (sf)	CN	Adj	Description					
	60,157	55.0		Woods, Good, HSG B					
	298	98.0		Roofs, HSG	В				
	2,890	98.0		Roofs, HSG	D				
	8,761	98.0		Paved parki	ng, HSG D				
	37,319	61.0		>75% Grass	s cover, Good, HSG B				
	109,425	61.7	98.0	Weighted Av	verage, AMC Adjusted				
	97,476	57.3	98.0	89.08% Per	vious Area, AMC Adjusted				
	11,949	98.0	98.0	10.92% Imp	ervious Area, AMC Adjusted				
т	Longth	Clana	Valaaitu	Consoitu	Description				
IC (min)	; Lengin			Capacity	Description				
(min) (leet)	(11/11)	(It/sec)	(CIS)					
13.1	50	0.0200	0.06		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.84"				
4.1	263	0.0460	1.07		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.2	2 23	0.0869	2.06		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
17.4	336	Total							

Summary for Link A: Abutting Property

Inflow Are	ea =	1.277 ac,	0.06% Impervious,	Inflow Depth >	2.71"	for 2-YR Frozen event
Inflow	=	2.97 cfs @	12.16 hrs, Volume	= 0.29 a	f	
Primary	=	2.97 cfs @	12.16 hrs, Volume	= 0.29 a ⁻	f, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

Summary for Link B: Central Street

Inflow Area	a =	2.512 ac, 1	0.92% Impe	ervious,	Inflow Depth >	2.71"	for 2-YR Frozen event
Inflow	=	5.17 cfs @	12.23 hrs,	Volume	= 0.57	af	
Primary	=	5.17 cfs @	12.23 hrs,	Volume	= 0.57	af, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

PRE DEVELOPMENT	Туре	III 24-hr 10-YEAR Rainfall=4.46"
Prepared by Keach Nordstrom Assoc	iates, Inc.	Printed 12/20/2021
HydroCAD® 10.00-26 s/n 01045 © 2020 H	lydroCAD Software Solutions LLC	Page 10
Time span=0 Runoff by SCS Reach routing by Dyn-Stor	0.00-24.00 hrs, dt=0.03 hrs, 801 TR-20 method, UH=SCS, Wei -Ind method - Pond routing by	l points ghted-CN Dyn-Stor-Ind method
Subcatchment 1S: Overland Flow to	Runoff Area=55,615 sf 0. Flow Length=204' Tc=12.5 min	06% Impervious Runoff Depth>0.74" n CN=55.3 Runoff=0.64 cfs 0.08 af
Subcatchment 2S: Overland Flow	Runoff Area=109,425 sf 10. Flow Length=336' Tc=17.4 min	92% Impervious Runoff Depth>1.10" n CN=61.7 Runoff=2.02 cfs 0.23 af
Link A: Abutting Property		Inflow=0.64 cfs 0.08 af Primary=0.64 cfs 0.08 af
Link B: Central Street		Inflow=2.02 cfs 0.23 af Primary=2.02 cfs 0.23 af
Total Runoff Area = 3.	789 ac Runoff Volume = 0.31 92.74% Pervious = 3.514	af Average Runoff Depth = 0.98" ac 7.26% Impervious = 0.275 ac

Summary for Subcatchment 1S: Overland Flow to Wetland

Runoff = 0.64 cfs @ 12.22 hrs, Volume= 0.08 af, Depth> 0.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 10-YEAR Rainfall=4.46"

_	A	rea (sf)	CN	Descriptio	n						
		54,171	55.0	Woods, G	oods, Good, HSG B						
		481	77.0	Woods, G	Good, HSG	D					
		927	61.0	>75% Gra	ass cover, (Good, HSG B					
		36	98.0	Roofs, HS	SG D						
_		55,615	55.3	Weighted	Average						
		55,579	55.3	99.94% P	ervious Are	a					
		36	98.0	0.06% Im	pervious Ai	rea					
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	11.1	50	0.0300	0.07		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 2.84"					
	1.3	154	0.1500	1.94		Shallow Concentrated Flow,					
_						Woodland Kv= 5.0 fps					
_	12.5	204	Total								

Summary for Subcatchment 2S: Overland Flow

Runoff = 2.02 cfs @ 12.27 hrs, Volume= 0.23 af, Depth> 1.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 10-YEAR Rainfall=4.46"

A	rea (sf)	CN	Descriptic	n						
	60,157	55.0	Woods, G	oods, Good, HSG B						
	298	98.0	Roofs, HS	SG B						
	2,890	98.0	Roofs, HS	SG D						
	8,761	98.0	Paved pa	rking, HSG	D					
	37,319	61.0	>75% Gra	ass cover, C	Good, HSG B					
1	09,425	61.7	Weighted	Average						
	97,476	57.3	89.08% P	ervious Are	a					
	11,949	98.0	10.92% Ir	npervious A	Area					
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
13.1	50	0.0200	0.06		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 2.84"					
4.1	263	0.0460	1.07		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
0.2	23	0.0869	2.06		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
17.4	336	Total								

Summary for Link A: Abutting Property

Inflow Ar	ea =	1.277 ac,	0.06% Impervious,	Inflow Depth > 0	.74" for 10-YEAR event
Inflow	=	0.64 cfs @	12.22 hrs, Volume	= 0.08 af	
Primary	=	0.64 cfs @	12.22 hrs, Volume	= 0.08 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

Summary for Link B: Central Street

Inflow Area	a =	2.512 ac, 1	0.92% Impe	ervious,	Inflow Depth	> 1	.10" fo	or 10	-YEAR event
Inflow	=	2.02 cfs @	12.27 hrs,	Volume	= 0.23	3 af			
Primary	=	2.02 cfs @	12.27 hrs,	Volume	= 0.23	3 af,	Atten=	0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

PRE DEVELOPMENT		Type III 24-hr 25-YEAR Rainfall=5.65"				
Prepared by Keach Nordstrom Assoc	iates, Inc.		F	Printed 12/20/2021		
HydroCAD® 10.00-26 s/n 01045 © 2020 H	lydroCAD Software Sc	olutions LLC		Page 13		
Time span=(Runoff by SCS Reach routing by Dyn-Stor	0.00-24.00 hrs, dt=0.0 TR-20 method, UH= -Ind method - Pond	03 hrs, 801 p =SCS, Weigh routing by D	oints ted-CN yn-Stor-Ind me	thod		
Subcatchment 1S: Overland Flow to	Runoff Area=55 Flow Length=204'	5,615 sf 0.06 Tc=12.5 min	% Impervious CN=55.3 Run	Runoff Depth>1.34" off=1.40 cfs 0.14 af		
Subcatchment 2S: Overland Flow	Runoff Area=109, Flow Length=336'	425 sf 10.92 Tc=17.4 min	% Impervious CN=61.7 Run	Runoff Depth>1.83" off=3.62 cfs 0.38 af		
Link A: Abutting Property			Infle	ow=1.40 cfs 0.14 af		
			Prima	ary=1.40 cfs 0.14 af		
Link B: Central Street			Infle	ow=3.62 cfs 0.38 af		
			Prima	ary=3.62 cfs 0.38 af		
Total Runoff Area = 3.	789 ac Runoff Volu 92.74% Perviou	ume = 0.52 a us = 3.514 a	f Average Ru 7.26% Imp	noff Depth = 1.66" ervious = 0.275 ac		

Summary for Subcatchment 1S: Overland Flow to Wetland

Runoff = 1.40 cfs @ 12.20 hrs, Volume= 0.14 af, Depth> 1.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-YEAR Rainfall=5.65"

_	A	rea (sf)	CN	Descriptio	n						
		54,171	55.0	Woods, G	oods, Good, HSG B						
		481	77.0	Woods, G	Good, HSG	D					
		927	61.0	>75% Gra	ass cover, (Good, HSG B					
_		36	98.0	Roofs, HS	SG D						
		55,615	55.3	Weighted	Average						
		55,579	55.3	99.94% P	ervious Are	a					
		36	98.0	0.06% lm	pervious Ai	rea					
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	11.1	50	0.0300	0.07		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 2.84"					
	1.3	154	0.1500	1.94		Shallow Concentrated Flow,					
_						Woodland Kv= 5.0 fps					
_	12.5	204	Total								

Summary for Subcatchment 2S: Overland Flow

Runoff = 3.62 cfs @ 12.26 hrs, Volume= 0.38 af, Depth> 1.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-YEAR Rainfall=5.65"

A	rea (sf)	CN	Descriptio	n	
	60,157	55.0	Woods, G	Good, HSG	В
	298	98.0	Roofs, HS	SG B	
	2,890	98.0	Roofs, HS	SG D	
	8,761	98.0	Paved pa	rking, HSG	D
	37,319	61.0	>75% Gra	ass cover, C	Good, HSG B
1	09,425	61.7	Weighted	Average	
	97,476	57.3	89.08% P	ervious Are	ea
	11,949	98.0	10.92% Ir	npervious <i>I</i>	Area
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13.1	50	0.0200	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.84"
4.1	263	0.0460	1.07		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.2	23	0.0869	2.06		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
17.4	336	Total			

Summary for Link A: Abutting Property

Inflow Are	ea =	1.277 ac,	0.06% Impervious,	Inflow Depth > 1	.34" for 25-YEAR event
Inflow	=	1.40 cfs @	12.20 hrs, Volume	= 0.14 af	
Primary	=	1.40 cfs @	12.20 hrs, Volume	= 0.14 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

Summary for Link B: Central Street

Inflow Area	a =	2.512 ac, 1	10.92% Impe	ervious,	Inflow De	epth > 1	.83" fo	or 25	-YEAR event
Inflow	=	3.62 cfs @	12.26 hrs,	Volume	=	0.38 af			
Primary	=	3.62 cfs @	12.26 hrs,	Volume	=	0.38 af,	Atten=	0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

PRE DEVELOPMENT	Type II	24-hr 50-YEAR Rainfall=6.75"
Prepared by Keach Nordstrom Assoc	ciates, Inc.	Printed 12/20/2021
HydroCAD® 10.00-26 s/n 01045 © 2020 H	HydroCAD Software Solutions LLC	Page 16
Time span=(Runoff by SCS Reach routing by Dyn-Stor	0.00-24.00 hrs, dt=0.03 hrs, 801 p 5 TR-20 method, UH=SCS, Weigh -Ind method - Pond routing by D	points nted-CN Dyn-Stor-Ind method
Subcatchment 1S: Overland Flow to	Runoff Area=55,615 sf 0.06 Flow Length=204' Tc=12.5 min	% Impervious Runoff Depth>1.99" CN=55.3 Runoff=2.23 cfs 0.21 af
Subcatchment 2S: Overland Flow	Runoff Area=109,425 sf 10.92 Flow Length=336' Tc=17.4 min	2% Impervious Runoff Depth>2.58" CN=61.7 Runoff=5.28 cfs 0.54 af
Link A: Abutting Property		Inflow=2.23 cfs 0.21 af Primary=2.23 cfs 0.21 af
Link B: Central Street		Inflow=5.28 cfs 0.54 af Primary=5.28 cfs 0.54 af
Total Runoff Area = 3.	789 ac Runoff Volume = 0.75 a 92.74% Pervious = 3.514 a	f Average Runoff Depth = 2.38" c 7.26% Impervious = 0.275 ac

Summary for Subcatchment 1S: Overland Flow to Wetland

Runoff = 2.23 cfs @ 12.19 hrs, Volume= 0.21 af, Depth> 1.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 50-YEAR Rainfall=6.75"

_	A	rea (sf)	CN	Descriptio	on	
		54,171	55.0	Woods, G	Good, HSG	В
		481	77.0	Woods, C	Good, HSG	D
		927	61.0	>75% Gra	ass cover, (Good, HSG B
		36	98.0	Roofs, HS	SG D	
		55,615	55.3	Weighted	Average	
		55,579	55.3	99.94% P	ervious Are	ea
		36	98.0	0.06% Im	pervious Ai	rea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	11.1	50	0.0300	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.84"
	1.3	154	0.1500	1.94		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	12.5	204	Total			

Summary for Subcatchment 2S: Overland Flow

Runoff = 5.28 cfs @ 12.25 hrs, Volume= 0.54 af, Depth> 2.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 50-YEAR Rainfall=6.75"

A	rea (sf)	CN	Descriptio	n	
	60,157	55.0	Woods, G	Good, HSG	В
	298	98.0	Roofs, HS	SG B	
	2,890	98.0	Roofs, HS	SG D	
	8,761	98.0	Paved pa	rking, HSG	D
	37,319	61.0	>75% Gra	ass cover, C	Good, HSG B
1	09,425	61.7	Weighted	Average	
	97,476	57.3	89.08% P	ervious Are	ea
	11,949	98.0	10.92% Ir	npervious <i>I</i>	Area
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13.1	50	0.0200	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.84"
4.1	263	0.0460	1.07		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.2	23	0.0869	2.06		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
17.4	336	Total			

Summary for Link A: Abutting Property

Inflow Are	a =	1.277 ac,	0.06% Impervious,	Inflow Depth > 1	.99" for 50-YEAR event
Inflow	=	2.23 cfs @	12.19 hrs, Volume	= 0.21 af	
Primary	=	2.23 cfs @	12.19 hrs, Volume	= 0.21 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

Summary for Link B: Central Street

Inflow Are	a =	2.512 ac, 1	10.92% Impe	ervious,	Inflow Dep	oth > 2	2.58" fo	or 50-Y	'EAR event
Inflow	=	5.28 cfs @	12.25 hrs,	Volume	= 0).54 af			
Primary	=	5.28 cfs @	12.25 hrs,	Volume	= ().54 af,	Atten=	0%, La	ag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

Prepared by Keach	Nordstro	m Associates,	Inc.	
HydroCAD® 10.00-26	s/n 01045	© 2020 HydroCA	D Software	Solutions LLC

Area Listing (all nodes)

Are	a CN	Description
(acres	3)	(subcatchment-numbers)
1.50	7 61.0	>75% Grass cover, Good, HSG B (1S, 2S, 4S, 6S, 7S, 8S, 9S, 10S, 11S, 12S, 13S, 15S, 16S)
0.09	1 80.0	>75% Grass cover, Good, HSG D (2S, 4S, 16S)
0.55	3 98.0	Paved parking, HSG B (2S, 4S, 6S, 8S, 10S, 11S, 12S, 15S)
0.17	4 98.0	Paved parking, HSG D (2S, 4S, 8S, 10S, 11S, 15S)
0.93	7 98.0	Roofs, HSG B (3S, 5S, 14S)
0.00	3 98.0	Roofs, HSG D (14S)
0.51	3 55.0	Woods, Good, HSG B (1S, 2S, 4S, 6S, 7S, 9S, 16S)
0.01	1 77.0	Woods, Good, HSG D (1S)
3.78	9 77.0	TOTAL AREA

Soil Listing (all nodes)

Area	a Soil	Subcatchment
(acres) Group	Numbers
0.000) HSG A	
3.510) HSG B	1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 16S
0.00) HSG C	
0.279	9 HSG D	1S, 2S, 4S, 8S, 10S, 11S, 14S, 15S, 16S
0.00	O Other	
3.78	Ð	TOTAL AREA

 Type III 24-hr
 2-YEAR Rainfall=2.95"

 Printed
 12/20/2021

 s LLC
 Page 4

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

> Time span=0.00-24.00 hrs, dt=0.02 hrs, 1201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Overland Flow to	Runoff Area=20,345 sf 0.00% Impervious Runoff Depth>0.22" Tc=6.0 min CN=56.7 Runoff=0.04 cfs 0.01 af
Subcatchment 2S: Overland Flow	Runoff Area=8,448 sf 13.75% Impervious Runoff Depth>0.55" Tc=6.0 min CN=66.7 Runoff=0.10 cfs 0.01 af
Subcatchment 3S: Roof Awning	Runoff Area=707 sf 100.00% Impervious Runoff Depth>2.72" Tc=6.0 min CN=98.0 Runoff=0.05 cfs 0.00 af
Subcatchment 4S: Flow to CB#100	Runoff Area=10,721 sf 65.43% Impervious Runoff Depth>1.70" Tc=6.0 min CN=87.1 Runoff=0.49 cfs 0.03 af
Subcatchment 5S: Roof Awning	Runoff Area=707 sf 100.00% Impervious Runoff Depth>2.72" Tc=6.0 min CN=98.0 Runoff=0.05 cfs 0.00 af
Subcatchment 6S: Flow to CB#101	Runoff Area=7,072 sf 68.89% Impervious Runoff Depth>1.64" Tc=6.0 min CN=86.3 Runoff=0.31 cfs 0.02 af
Subcatchment 7S: Flow to Stormwater Flow Length=142'	Runoff Area=23,453 sf 0.00% Impervious Runoff Depth>0.33" Slope=0.0140 '/' Tc=8.7 min CN=60.5 Runoff=0.09 cfs 0.01 af
Subcatchment 8S: Flow to CB#110	Runoff Area=8,827 sf 75.87% Impervious Runoff Depth>1.86" Tc=6.0 min CN=89.1 Runoff=0.44 cfs 0.03 af
Subcatchment 9S: Flow to Bioretention	Runoff Area=6,113 sf 0.00% Impervious Runoff Depth>0.32" Tc=6.0 min CN=60.1 Runoff=0.02 cfs 0.00 af
Subcatchment 10S: Flow to CB#111	Runoff Area=2,406 sf 77.93% Impervious Runoff Depth>1.92" Tc=6.0 min CN=89.8 Runoff=0.12 cfs 0.01 af
Subcatchment 11S: Flow to CB#112	Runoff Area=2,938 sf 58.68% Impervious Runoff Depth>1.39" Tc=6.0 min CN=82.7 Runoff=0.11 cfs 0.01 af
Subcatchment 12S: Flow to CB#113	Runoff Area=4,124 sf 76.60% Impervious Runoff Depth>1.88" Tc=6.0 min CN=89.3 Runoff=0.21 cfs 0.01 af
Subcatchment 13S: Flow to Bioretention	Runoff Area=3,336 sf 0.00% Impervious Runoff Depth>0.35" Tc=6.0 min CN=61.0 Runoff=0.02 cfs 0.00 af
Subcatchment 14S: Roof	Runoff Area=39,522 sf 100.00% Impervious Runoff Depth>2.72" Tc=6.0 min CN=98.0 Runoff=2.59 cfs 0.21 af
Subcatchment 15S: Flow to CB#120	Runoff Area=6,013 sf 85.83% Impervious Runoff Depth>2.18" Tc=6.0 min CN=92.8 Runoff=0.34 cfs 0.03 af
Subcatchment 16S: Flow to Infiltration	Runoff Area=20,315 sf 0.00% Impervious Runoff Depth>0.39"

POST DEVELOPMENT (2) Prepared by Keach Nordstrom Associates, Inc.

Type III 24-hr 2-YEAR Rainfall=2.95"

Printed 12/20/2021

HydroCAD® 10.00-26 s/n 01045	© 2020 HydroCAD Software Solutions LLC	Page 5
Pond 1P: Roof Drain	Peak Elev=184.23' Inflow=0.05 cfs 6.0" Round Culvert n=0.013 L=45.0' S=0.0200 '/' Outflow=0.05 cfs	0.00 af 0.00 af
Pond 2P: CB#100	Peak Elev=183.07' Inflow=0.54 cfs 15.0" Round Culvert n=0.013 L=90.0' S=0.0100 '/' Outflow=0.54 cfs	0.04 af 0.04 af
Pond 3P: Roof Drain	Peak Elev=183.54' Inflow=0.05 cfs 6.0" Round Culvert n=0.013 L=37.0' S=0.0300 '/' Outflow=0.05 cfs	0.00 af 0.00 af
Pond 4P: CB#101	Peak Elev=182.42' Inflow=0.90 cfs 15.0" Round Culvert n=0.013 L=70.0' S=0.0100 '/' Outflow=0.90 cfs	0.06 af 0.06 af
Pond 5P: Stormwater Pond #	Peak Elev=182.42' Storage=12,960 cf Inflow=0.94 cfs Outflow=0.04 cfs	0.08 af 0.04 af
Pond 6P: DMH#104	Peak Elev=181.56' Inflow=0.04 cfs 12.0" Round Culvert n=0.013 L=110.0' S=0.0055 '/' Outflow=0.04 cfs	0.04 af 0.04 af
Pond 8P: CB#110	Peak Elev=176.09' Inflow=0.44 cfs 12.0" Round Culvert n=0.013 L=13.0' S=0.0200 '/' Outflow=0.44 cfs	0.03 af 0.03 af
Pond 9P: Bioretention Pond #	2 Peak Elev=175.87' Storage=339 cf Inflow=0.46 cfs Outflow=0.15 cfs	0.04 af 0.04 af
Pond 10P: DMH#113	Peak Elev=172.17' Inflow=0.24 cfs 12.0" Round Culvert n=0.013 L=39.0' S=0.0100 '/' Outflow=0.24 cfs	0.04 af 0.04 af
Pond 11P: DMH#114	Peak Elev=171.78' Inflow=0.34 cfs 12.0" Round Culvert n=0.013 L=38.0' S=0.0100 '/' Outflow=0.34 cfs	0.05 af 0.05 af
Pond 12P: DMH#123	Peak Elev=171.36' Inflow=0.34 cfs 12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.34 cfs	0.05 af 0.05 af
Pond 13P: CB#111 - Filterra 4	x4 Peak Elev=175.01' Storage=13 cf Inflow=0.12 cfs Outflow=0.14 cfs	0.01 af 0.01 af
Pond 14P: CB#112 - Filterra 4	x4 Peak Elev=174.99' Storage=13 cf Inflow=0.11 cfs Outflow=0.11 cfs	0.01 af 0.01 af
Pond 15P: CB#113	Peak Elev=178.39' Inflow=0.21 cfs 12.0" Round Culvert n=0.013 L=15.0' S=0.0100 '/' Outflow=0.21 cfs	0.01 af 0.01 af
Pond 16P: InfitIration Pond #3	Peak Elev=178.27' Storage=174 cf Inflow=0.22 cfs Discarded=0.05 cfs 0.02 af Primary=0.00 cfs 0.00 af Outflow=0.05 cfs	0.02 af 0.02 af
Pond 17P: Roof Drain	Peak Elev=184.24' Inflow=2.59 cfs 15.0" Round Culvert n=0.013 L=53.0' S=0.0500 '/' Outflow=2.59 cfs	0.21 af 0.21 af
Pond 18P: CB#120	Peak Elev=181.56' Inflow=2.93 cfs 15.0" Round Culvert n=0.013 L=17.0' S=0.0400 '/' Outflow=2.93 cfs	0.23 af 0.23 af

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Pond 19P: Infiltration Pond #4 Peak Elev=181.35' Storage=4,115 cf Inflow=2.98 cfs 0.25 af Discarded=0.26 cfs 0.25 af Primary=0.00 cfs 0.00 af Outflow=0.26 cfs 0.25 af

Link A: Wetland

Inflow=0.07 cfs 0.05 af Primary=0.07 cfs 0.05 af

Link B: Central Street

Inflow=0.44 cfs 0.06 af Primary=0.44 cfs 0.06 af

Total Runoff Area = 3.789 acRunoff Volume = 0.41 afAverage Runoff Depth = 1.30"56.01% Pervious = 2.122 ac43.99% Impervious = 1.667 ac

 Type III 24-hr
 2-YEAR Rainfall=2.95"

 Printed
 12/20/2021

 s LLC
 Page 6

Summary for Subcatchment 1S: Overland Flow to Wetland

Runoff = 0.04 cfs @ 12.34 hrs, Volume= 0.01 af, Depth> 0.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

Are	ea (sf)	CN	Descriptio	n			
	480	77.0	Woods, G	iood, HSG	D		
1	6,003	55.0	Woods, G	iood, HSG	В		
	3,862	61.0	>75% Gra	iss cover, C	Good, HSG B		
2	0,345	56.7	Weighted	Average			
2	0,345	56.7	100.00% I	100.00% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment 2S: Overland Flow

Runoff = 0.10 cfs @ 12.11 hrs, Volume= 0.01 af, Depth> 0.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

Ar	rea (sf)	CN	Description
	246	55.0	Woods, Good, HSG B
	632	98.0	Paved parking, HSG B
	530	98.0	Paved parking, HSG D
	6,698	61.0	>75% Grass cover, Good, HSG B
	342	80.0	>75% Grass cover, Good, HSG D
	8,448	66.7	Weighted Average
	7,286	61.7	86.25% Pervious Area
	1,162	98.0	13.75% Impervious Area
-			
IC	Length	Slope	Velocity Capacity Description
(min)	(feet)	(ft/ft)	(ft/sec) (cfs)
6.0			Direct Entry,

Summary for Subcatchment 3S: Roof Awning

Runoff	=	0.05 cfs @	12.08 hrs,	Volume=	0.00 af, Depth> 2.72"
--------	---	------------	------------	---------	-----------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

 Type III 24-hr
 2-YEAR Rainfall=2.95"

 Printed
 12/20/2021

 s LLC
 Page 8

Prepared by Keach	Nordstro	m Associates, Inc.	
HydroCAD® 10.00-26	s/n 01045	© 2020 HydroCAD Software Solutions	L

Area (sf)	CN	Descriptio	on	
707	98.0	Roofs, HS	SG B	
707	98.0	100.00%	Impervious	s Area
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0				Direct Entry,

Summary for Subcatchment 4S: Flow to CB#100

Runoff = 0.49 cfs @ 12.09 hrs, Volume= 0.03 af, Depth> 1.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

A	rea (sf)	CN	Descriptic	n				
	2,792	98.0	Paved pa	rking, HSG	В			
	4,223	98.0	Paved pa	rking, HSG	D			
	2,020	61.0	>75% Ġra	ass cover, C	Good, HSG B			
	1,209	80.0	>75% Gra	ass cover, C	Good, HSG D			
	477	55.0	Woods, G	ood, HSG	В			
	10,721	87.1	Weighted	Weighted Average				
	3,706	66.4	34.57% P	34.57% Pervious Area				
	7,015	98.0	65.43% Ir	65.43% Impervious Area				
Тс	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 5S: Roof Awning

Runoff = 0.05 cfs @ 12.08 hrs, Volume= 0.00 af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

A	rea (sf)	CN	Descriptio	n				
	707	98.0	Roofs, HS	SG B				
	707	98.0	100.00%	00.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 6S: Flow to CB#101

Runoff = 0.31 cfs @ 12.09 hrs, Volume= 0.02 af, Depth> 1.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

A	rea (sf)	CN	Descriptic	n				
	2,027	61.0	>75% Gra	ass cover, (Good, HSG B			
	173	55.0	Woods, G	Good, HSG	В			
	4,872	98.0	Paved pa	rking, HSG	В			
	7,072	86.3	Weighted	Average				
	2,200	60.5	31.11% P	ervious Are	ea			
	4,872	98.0	68.89% Ir	68.89% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 7S: Flow to Stormwater Pond #1

Runoff = 0.09 cfs @ 12.20 hrs, Volume= 0.01 af, Depth> 0.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

A	rea (sf)	CN	Descriptio	on	
	2,021	55.0	Woods, G	Good, HSG	В
	21,432	61.0	>75% Gra	ass cover, C	Good, HSG B
	23,453	60.5	Weighted	Average	
	23,453	60.5	100.00%	Pervious Ar	rea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.9	50	0.0140	0.12		Sheet Flow,
1.9	92	0.0140	0.83		Grass: Short n= 0.150 P2= 2.84" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
07	110	Tatal			

8.7 142 Total

Summary for Subcatchment 8S: Flow to CB#110

Runoff = 0.44 cfs @ 12.09 hrs, Volume= 0.03 af, Depth> 1.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

 Type III 24-hr
 2-YEAR Rainfall=2.95"

 Printed
 12/20/2021

 s LLC
 Page 10

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Descriptio	on				
	2,130	61.0	>75% Gra	ass cover, C	Good, HSG B			
	5,476	98.0	Paved pa	rking, HSG	В			
	1,221	98.0	Paved pa	rking, HSG	D			
	8,827	89.1	Weighted	Average				
	2,130	61.0	24.13% P	24.13% Pervious Area				
	6,697	98.0	75.87% Ir	75.87% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 9S: Flow to Bioretention Pond #2

Runoff = 0.02 cfs @ 12.15 hrs, Volume= 0.00 af, Depth> 0.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

(sf)	CN	Descriptio	n		
932	55.0	Woods, G	lood, HSG	B	
,181	61.0	>75% Gra	ass cover, C	Good, HSG B	
,113	60.1	Weighted	Average		
,113	60.1	100.00%	Pervious A	Area	
ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
				Direct Entry,	
	<u>(sf)</u> 932 , <u>181</u> ,113 ,113 ength (feet)	(sf) CN 932 55.0 ,181 61.0 ,113 60.1 ,113 60.1 ,ength Slope (feet) (ft/ft)	(sf) CN Description 932 55.0 Woods, G ,181 61.0 >75% Grading ,113 60.1 Weighted ,113 60.1 100.00% ength Slope Velocity (feet) (ft/ft) (ft/sec)	(sf)CNDescription93255.0Woods, Good, HSG,18161.0>75% Grass cover,,11360.1Weighted Average,11360.1100.00% Pervious AengthSlopeVelocity(feet)(ft/ft)(ft/sec)(cfs)	(sf) CN Description 932 55.0 Woods, Good, HSG B ,181 61.0 >75% Grass cover, Good, HSG B ,113 60.1 Weighted Average ,113 60.1 100.00% Pervious Area ength Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)

Summary for Subcatchment 10S: Flow to CB#111

Runoff = 0.12 cfs @ 12.09 hrs, Volume= 0.01 af, Depth> 1.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

A	rea (sf)	CN	Descriptio	on				
	531	61.0	>75% Gra	ass cover, (Good, HSG B			
	917	98.0	Paved pa	rking, HSG	В			
	958	98.0	Paved pa	rking, HSG	D			
	2,406	89.8	Weighted	Weighted Average				
	531	61.0	22.07% P	ervious Are	ea			
	1,875	98.0	77.93% Ir	77.93% Impervious Area				
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 11S: Flow to CB#112

Runoff = 0.11 cfs @ 12.09 hrs, Volume= 0.01 af, Depth> 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

A	rea (sf)	CN	Descriptic	n				
	1,214	61.0	>75% Gra	ass cover, (Good, HSG B			
	1,704	98.0	Paved pa	rking, HSG	В			
	20	98.0	Paved pa	rking, HSG	D			
	2,938	82.7	Weighted	Weighted Average				
	1,214	61.0	41.32% Pervious Area					
	1,724	98.0	58.68% Ir	58.68% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 12S: Flow to CB#113

Runoff = 0.21 cfs @ 12.09 hrs, Volume= 0.01 af, Depth> 1.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

A	rea (sf)	CN	Descriptio	n					
	965	61.0	>75% Gra	ass cover, (Good, HSG B				
	3,159	98.0	Paved pa	rking, HSG	G B				
	4,124	89.3	Weighted	Weighted Average					
	965	61.0	23.40% P	23.40% Pervious Area					
	3,159	98.0	76.60% Ir	76.60% Impervious Area					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				
					-				

Summary for Subcatchment 13S: Flow to Bioretention Pond #3

Runoff = 0.02 cfs @ 12.14 hrs, Volume= 0.00 af, Depth> 0.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

Area (sf)	CN	Description
3,336	61.0	>75% Grass cover, Good, HSG B
3,336	61.0	100.00% Pervious Area

POST	DEVEL	OPMENT	(2)
------	-------	---------------	-----

(min)

6.0

(feet)

(ft/ft)

(ft/sec)

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,							
Summary for Subcatchment 14S: Roof							
Runoff = 2.59 cfs @ 12.08 hrs, Volume= 0.21 af, Depth> 2.72"							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"							
Area (sf) CN Description							
39,396 98.0 Roofs, HSG B 126 98.0 Roofs, HSG D							
39,522 98.0 Weighted Average 39,522 98.0 100.00% Impervious Area							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,							
Summary for Subcatchment 15S: Flow to CB#120							
Runoff = 0.34 cfs @ 12.09 hrs, Volume= 0.03 af, Depth> 2.18"							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"							
Area (sf) CN Description							
639 98.0 Paved parking, HSG D 4,522 98.0 Paved parking, HSG B 852 61.0 >75% Grass cover, Good, HSG B							
6,013 92.8 Weighted Average 852 61.0 14.17% Pervious Area 5,161 98.0 85.83% Impervious Area							
Tc Length Slope Velocity Capacity Description							

Summary for Subcatchment 16S: Flow to Infiltration Pond #4

Direct Entry,

Runoff = 0.11 cfs @ 12.21 hrs, Volume= 0.02 af, Depth> 0.39"

(cfs)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YEAR Rainfall=2.95"

 Type III 24-hr
 2-YEAR Rainfall=2.95"

 Printed
 12/20/2021

 s LLC
 Page 13

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

 A	rea (sf)	CN	Descriptio	on	
	2,499	55.0	Woods, G	Good, HSG	В
	15,393	61.0	>75% Gra	ass cover, (Good, HSG B
	2,423	80.0	>75% Gra	ass cover, (Good, HSG D
	20,315	62.5	Weighted	Average	
	20,315	62.5	100.00%	Pervious A	rea
Тс	Length	Slope	Velocity	Capacity	Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.6	50	0.0109	0.11		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.84"
3.1	134	0.0109	0.73		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps

10.7 184 Total

Summary for Pond 1P: Roof Drain

Inflow Area	ı =	0.016 ac,10	0.00% Imperviou	is, Inflow Dept	th > 2.72"	for 2-YEAR event
Inflow	=	0.05 cfs @	12.08 hrs, Volu	me= 0.	.00 af	
Outflow	=	0.05 cfs @	12.08 hrs, Volu	me= 0.	.00 af, Atten	= 0%, Lag= 0.0 min
Primary	=	0.05 cfs @	12.08 hrs, Volu	me= 0.	.00 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 184.23' @ 12.08 hrs Flood Elev= 187.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	184.10'	6.0" Round Culvert L= 45.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 184.10' / 183.20' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.05 cfs @ 12.08 hrs HW=184.22' TW=183.07' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.05 cfs @ 1.20 fps)

Summary for Pond 2P: CB#100

Inflow Area	=	0.262 ac, 6	7.57% Imperv	vious, Inflow [Depth > 1	.76" for 2-	YEAR event
Inflow	=	0.54 cfs @	12.09 hrs, V	'olume=	0.04 af		
Outflow	=	0.54 cfs @	12.09 hrs, V	'olume=	0.04 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	0.54 cfs @	12.09 hrs, V	'olume=	0.04 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.07' @ 12.09 hrs Flood Elev= 186.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	182.70'	15.0" Round Culvert
			L= 90.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 182.70' / 181.80' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Summary for Pond 3P: Roof Drain

Inflow Area =	=	0.016 ac,10	0.00% Impe	ervious,	Inflow	Depth >	2.72"	for 2-	YEAR e	event
Inflow =	:	0.05 cfs @	12.08 hrs,	Volume	=	0.00 a	ıf			
Outflow =	:	0.05 cfs @	12.08 hrs,	Volume	=	0.00 a	if, Atten	i= 0%,	Lag= 0	.0 min
Primary =	=	0.05 cfs @	12.08 hrs,	Volume	=	0.00 a	ıf			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.54' @ 12.08 hrs Flood Elev= 187.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	183.41'	6.0" Round Culvert
			L= 37.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 183.41' / 182.30' S= 0.0300 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.05 cfs @ 12.08 hrs HW=183.53' TW=182.36' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.05 cfs @ 1.20 fps)

Summary for Pond 4P: CB#101

Inflow Area	ı =	0.441 ac, 6	9.25% Impe	ervious, Inf	low Depth >	1.75" 1	for 2-Y	'EAR event
Inflow	=	0.90 cfs @	12.09 hrs,	Volume=	0.06 al	f		
Outflow	=	0.90 cfs @	12.09 hrs,	Volume=	0.06 at	f, Atten=	=0%, L	_ag= 0.0 min
Primary	=	0.90 cfs @	12.09 hrs,	Volume=	0.06 at	f		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 182.42' @ 16.56 hrs Flood Elev= 186.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	181.70'	15.0" Round Culvert L= 70.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.70' / 181.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.86 cfs @ 12.09 hrs HW=182.36' TW=182.17' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.86 cfs @ 1.89 fps)

Summary for Pond 5P: Stormwater Pond #1

Inflow Area	=	0.979 ac, 3	31.18% Impe	ervious,	Inflow Depth	> 0).97"	for 2-Y	EAR eve	ent
Inflow	=	0.94 cfs @	12.09 hrs,	Volume	= 0.0	8 af				
Outflow	=	0.04 cfs @	16.54 hrs,	Volume	= 0.0	4 af,	Atten=	= 96%,	Lag= 26	6.7 min
Primary	=	0.04 cfs @	16.54 hrs,	Volume	= 0.0	4 af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Starting Elev= 182.00' Surf.Area= 5,137 sf Storage= 10,729 cf Peak Elev= 182.42' @ 16.54 hrs Surf.Area= 5,527 sf Storage= 12,960 cf (2,231 cf above start) Flood Elev= 185.00' Surf.Area= 7,127 sf Storage= 22,939 cf (12,210 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 241.5 min (1,078.0 - 836.5)

Volume	Invert	Avail.St	orage	Storage Description			
#1	179.00'	22,9	939 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)	
Elevation	su Su	rf.Area I	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
179.00		2,168	252.3	0	0	2,168	
180.00)	3,043	312.6	2,593	2,593	4,893	
181.00)	4,069	357.9	3,544	6,137	7,334	
182.00)	5,137	339.8	4,593	10,729	8,397	
184.00)	7,127	365.6	12,210	22,939	10,008	
Device	Routing	Invert	Outle	et Devices			
#1	Primary	181.95'	12.0 L= 9 Inlet n= 0	" Round Culvert 0.0' CMP, square ed / Outlet Invert= 181.9 .013 Corrugated PE	dge headwall, Ke= 95' / 181.50' S= 0. , smooth interior, F	= 0.500 .0050 '/' Cc= 0.900 Flow Area= 0.79 sf	
#2	Device 1	182.00'	1.0"	W x 2.0" H Vert. Ori	fice/Grate C= 0.6	500	
#3	Device 1	182.84'	2.0"	Vert. Orifice/Grate	C= 0.600		
#4	#4 Device 1 183.50' 48.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads						
Primary OutFlow Max=0.04 cfs @ 16.54 hrs HW=182.42' TW=181.56' (Dynamic Tailwater) 1=Culvert (Passes 0.04 cfs of 0.64 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.04 cfs @ 2.78 fps) 3=Orifice/Grate (Controls 0.00 cfs)							

4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 6P: DMH#104

Inflow Area	=	0.979 ac, 3	1.18% Impervious,	Inflow Depth >	0.45"	for 2-YEAR event
Inflow	=	0.04 cfs @	16.54 hrs, Volume	e= 0.04 a	af	
Outflow	=	0.04 cfs @	16.54 hrs, Volume	e= 0.04 a	af, Atten	= 0%, Lag= 0.0 min
Primary	=	0.04 cfs @	16.54 hrs, Volume	e= 0.04 a	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Peak Elev= 181.56' @ 16.54 hrs Flood Elev= 186.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	181.45'	12.0" Round Culvert
			L= 110.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.45' / 180.85' S= 0.0055 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.04 cfs @ 16.54 hrs HW=181.56' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 0.04 cfs @ 1.20 fps)

Summary for Pond 8P: CB#110

Inflow Area	ı =	0.203 ac, 7	5.87% Impervi	ous, Inflow D)epth >	1.86" fo	r 2-YEAR event
Inflow	=	0.44 cfs @	12.09 hrs, Vo	lume=	0.03 af		
Outflow	=	0.44 cfs @	12.09 hrs, Vo	lume=	0.03 af	, Atten= (0%, Lag= 0.0 min
Primary	=	0.44 cfs @	12.09 hrs, Vo	lume=	0.03 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 176.09' @ 12.09 hrs Flood Elev= 180.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	175.76'	12.0" Round Culvert
	,		L= 13.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 175.76' / 175.50' S= 0.0200 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 st

Summary for Pond 9P: Bioretention Pond #2

Inflow Area	a =	0.343 ac, 4	4.83% Imper	vious, Inflow De	epth > 1.23"	for 2-YEAR event
Inflow	=	0.46 cfs @	12.09 hrs, V	/olume=	0.04 af	
Outflow	=	0.15 cfs @	12.44 hrs, V	/olume=	0.04 af, Atter	n= 68%, Lag= 20.8 min
Primary	=	0.15 cfs @	12.44 hrs, ∖	/olume=	0.04 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 175.87' @ 12.44 hrs Surf.Area= 628 sf Storage= 339 cf Flood Elev= 178.10' Surf.Area= 1,676 sf Storage= 2,684 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 16.6 min (842.4 - 825.8)

Volume	Invert	Avail.Storage	Storage Description
#1	175.00'	2,684 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Type III 24-hr 2-YEAR Rainfall=2.95"

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Printed 12/20/2021 Page 17

Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
175.0)0	193	87.3	0	0	193	
176.0)0	714	149.7	426	426	1,376	
177.0	00	1,080	196.1	891	1,317	2,664	
178.0	00	1,676	200.8	1,367	2,684	2,912	
Device	Routing	Inve	rt Outle	t Devices			
#1	Primary	175.0	0' 10.00	0 in/hr Exfiltration	over Surface area		
#2	Device 1	172.5	O' 12.0"	Round Culvert			
			L= 18	.0' CMP, square e	dge headwall, Ke=	= 0.500	
			Inlet /	Outlet Invert= 172.	50' / 171.96' S= 0	.0300 '/' Cc= 0.900	
			n= 0.0	013 Corrugated PE	, smooth interior, F	Flow Area= 0.79 sf	
#3	Device 1	176.2	0' 2.0" \	/ert. Orifice/Grate	C= 0.600		
#4	Device 1	176.8	0' 48.0''	x 48.0" Horiz. Orifi	ce/Grate C= 0.60	00	
			Limite	ed to weir flow at low	/ heads		
Primary	Primary OutFlow Max=0.15 cfs @ 12.44 hrs HW=175.87' TW=172.15' (Dynamic Tailwater)						

-1=Exfiltration (Exfiltration Controls 0.15 cfs)

2=Culvert (Passes 0.15 cfs of 3.53 cfs potential flow)

-3=Orifice/Grate (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 10P: DMH#113

Inflow Area	=	0.398 ac, 4	49.42% Impe	rvious, Ir	nflow Depth >	1.32"	for 2-YE	AR event
Inflow	=	0.24 cfs @	12.08 hrs, \	Volume=	0.04 a	af		
Outflow	=	0.24 cfs @	12.08 hrs, \	Volume=	0.04 a	af, Atten	= 0%, La	g= 0.0 min
Primary	=	0.24 cfs @	12.08 hrs, \	Volume=	0.04 a	of		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 172.17' @ 12.12 hrs Flood Elev= 176.85'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.92'	12.0" Round Culvert
			L= 39.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 171.92' / 171.53' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.23 cfs @ 12.08 hrs HW=172.17' TW=171.75' (Dynamic Tailwater) **□1=Culvert** (Outlet Controls 0.23 cfs @ 2.29 fps)

Summary for Pond 11P: DMH#114

Inflow Area	=	0.466 ac, 5	50.76% Impe	ervious,	Inflow	Depth >	1.33"	for 2-	YEAR even	t
Inflow	=	0.34 cfs @	12.12 hrs,	Volume	=	0.05 a	f			
Outflow	=	0.34 cfs @	12.12 hrs,	Volume	=	0.05 a	f, Atter	n= 0%,	Lag= 0.0 m	າin
Primary	=	0.34 cfs @	12.12 hrs,	Volume	=	0.05 a	f		-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Peak Elev= 171.78' @ 12.12 hrs Flood Elev= 177.35'

Prepared by Keach Nordstrom Associates, Inc.

Device	Routing	Invert	Outlet Devices
#1	Primary	171.48'	12.0" Round Culvert
	·		L= 38.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.48' / 171.10' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.34 cfs @ 12.12 hrs HW=171.78' TW=171.36' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.34 cfs @ 2.54 fps)

Summary for Pond 12P: DMH#123

Inflow Area	a =	2.149 ac, 6	2.12% Imperviou	is, Inflow Dep	pth > 0	.29" for 2	-YEAR event
Inflow	=	0.34 cfs @	12.12 hrs, Volu	me= (0.05 af		
Outflow	=	0.34 cfs @	12.12 hrs, Volu	me= (0.05 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	0.34 cfs @	12.12 hrs, Volu	me= (0.05 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 171.36' @ 12.12 hrs Flood Elev= 176.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.05'	12.0" Round Culvert L= 20.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.05' / 170.85' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			5 , , , , , , , , , , , , , , , , , , ,

Primary OutFlow Max=0.34 cfs @ 12.12 hrs HW=171.36' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 0.34 cfs @ 2.48 fps)

Summary for Pond 13P: CB#111 - Filterra 4x4

Inflow Area	ı =	0.055 ac, 7	7.93% Impervious,	Inflow Depth >	1.92" for	2-YEAR event
Inflow	=	0.12 cfs @	12.09 hrs, Volume	= 0.01 af	F	
Outflow	=	0.14 cfs @	12.09 hrs, Volume	e 0.01 af	f, Atten= 0%	, Lag= 0.0 min
Primary	=	0.14 cfs @	12.09 hrs, Volume	⊭ 0.01 af	•	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 175.01' @ 12.08 hrs Surf.Area= 16 sf Storage= 13 cf Flood Elev= 175.90' Surf.Area= 16 sf Storage= 16 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.8 min (811.0 - 810.2)

Volume	Invert	Avail.Storage	Storage Description
#1	174.19'	16 cf	4.00'W x 4.00'L x 1.00'H Prismatoid

Type III 24-hr 2-YEAR Rainfall=2.95" Printed 12/20/2021 s LLC Page 19

Prepared by Keach	Nordstro	m Associ	ates, Ind	С.	
HydroCAD® 10.00-26	s/n 01045	© 2020 H	ydroCAD	Software	Solutions LL

Device	Routing	Invert	Outlet Devices
#1	Device 3	174.19'	140.000 in/hr Exfiltration over Surface area
#2	Device 3	174.94'	1.7' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	172.02'	12.0" Round Culvert
	-		L= 5.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 172.02' / 171.97' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.13 cfs @ 12.09 hrs HW=175.00' TW=172.17' (Dynamic Tailwater) -3=Culvert (Passes 0.13 cfs of 5.96 cfs potential flow) -1=Exfiltration (Exfiltration Controls 0.05 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.08 cfs @ 0.71 fps)

Summary for Pond 14P: CB#112 - Filterra 4x4

Inflow Area	ı =	0.067 ac, 5	58.68% Impervious,	Inflow Depth > 1	.39" for 2-YEAR event
Inflow	=	0.11 cfs @	12.09 hrs, Volume	= 0.01 af	
Outflow	=	0.11 cfs @	12.11 hrs, Volume	= 0.01 af,	Atten= 1%, Lag= 1.5 min
Primary	=	0.11 cfs @	12.11 hrs, Volume	= 0.01 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 174.99' @ 12.11 hrs Surf.Area= 16 sf Storage= 13 cf Flood Elev= 175.90' Surf.Area= 16 sf Storage= 16 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1.0 min (838.1 - 837.1)

Volume	Invert	Avail.Stor	rage Storage Description
#1	174.19'	1	16 cf 4.00'W x 4.00'L x 1.00'H Prismatoid
Device	Routing	Invert	Outlet Devices
#1	Device 3	174.19'	140.000 in/hr Exfiltration over Surface area
#2	Device 3	174.94'	1.7' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	172.02'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 172.02' / 171.72' S= 0.0500 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.11 cfs @ 12.11 hrs HW=174.99' TW=171.78' (Dynamic Tailwater) **3=Culvert** (Passes 0.11 cfs of 5.94 cfs potential flow)

1=Exfiltration (Exfiltration Controls 0.05 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.05 cfs @ 0.63 fps)

Summary for Pond 15P: CB#113

Inflow Area	=	0.095 ac,	76.60% Impe	ervious,	Inflow Depth >	1.88"	for 2-YEAR event
Inflow	=	0.21 cfs @	12.09 hrs,	Volume	= 0.01	af	
Outflow	=	0.21 cfs @	12.09 hrs,	Volume	= 0.01	af, Atter	n= 0%, Lag= 0.0 min
Primary	=	0.21 cfs @	12.09 hrs,	Volume	= 0.01	af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 178.39' @ 12.09 hrs Flood Elev= 181.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	178.15'	12.0" Round Culvert L= 15.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 178.15' / 178.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.21 cfs @ 12.09 hrs HW=178.39' TW=178.12' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 0.21 cfs @ 2.15 fps)

Summary for Pond 16P: InfitIration Pond #3

Inflow Area	=	0.171 ac, 4	2.35% Impe	ervious,	Inflow Depth	> 1	.19" fo	or 2-Y	EAR event
Inflow	=	0.22 cfs @	12.09 hrs,	Volume=	= 0.0	2 af			
Outflow	=	0.05 cfs @	12.53 hrs,	Volume=	= 0.0	2 af,	Atten=	78%,	Lag= 26.4 min
Discarded	=	0.05 cfs @	12.53 hrs,	Volume=	= 0.0	2 af			
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	= 0.0	0 af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 178.27' @ 12.53 hrs Surf.Area= 704 sf Storage= 174 cf Flood Elev= 180.00' Surf.Area= 1,583 sf Storage= 2,141 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 21.0 min (847.9 - 826.9)

Volume	Invert	Avail.S	Storage	Storage Descriptio	n		
#1	178.00'	2	,141 cf	Custom Stage Dat	t a (Irregular) Listed	l below (Recalc)	
Elevatio	on Su	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(166	el)	(sq-it)	(leet)			(sq-it)	
178.0	00	585	143.3	0	0	585	
179.0	00	1,078	186.5	819	819	1,731	
180.0	00	1,583	162.2	1,322	2,141	2,427	
Device	Routing	ing Invert Outlet Devices					
#1	Discarded	178.0	0' 3.00	0 in/hr Exfiltration	over Surface area		
#2	Primary	172.1	0' 12.0	" Round Culvert			
	,		L= 1	3.0' CMP. square	edae headwall. Ke	= 0.500	
			Inlet	/ Outlet Invert= 172	10' / 171 45' S= (0.0500 '/' Cc= 0.900	
			n=0	013 Corrugated PI	= smooth interior	Elow Area = 0.79 sf	
#2	Dovice 2	170 5	0' 6 0''	Vort Orifice/Grote	-, should interior,		
#3	Device Z	U/0.0	U 0.U	vert. Ornice/Grate	U- 0.000		

 Type III 24-hr
 2-YEAR Rainfall=2.95"

 Printed
 12/20/2021

 is LLC
 Page 21

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

#4 Device 2 179.50' **48.0" x 48.0" Horiz. Orifice/Grate** C= 0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.05 cfs @ 12.53 hrs HW=178.27' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=178.00' TW=171.05' (Dynamic Tailwater) 2=Culvert (Passes 0.00 cfs of 8.79 cfs potential flow) -3=Orifice/Grate (Controls 0.00 cfs) 4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 17P: Roof Drain

Inflow Area	=	0.907 ac,10	0.00% Imperv	ious, Inflow [Depth >	2.72"	for 2-`	YEAR event
Inflow	=	2.59 cfs @	12.08 hrs, Vo	olume=	0.21 a	f		
Outflow	=	2.59 cfs @	12.08 hrs, Vo	olume=	0.21 a	f, Atten=	= 0%,	Lag= 0.0 min
Primary	=	2.59 cfs @	12.08 hrs, Vo	olume=	0.21 a	f		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 184.24' @ 12.08 hrs Flood Elev= 186.75'

Device	Routing	Invert	Outlet Devices
#1	Primary	183.43'	15.0" Round Culvert
			L= 53.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 183.43' / 180.78' S= 0.0500 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.58 cfs @ 12.08 hrs HW=184.24' TW=181.55' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.58 cfs @ 3.06 fps)

Summary for Pond 18P: CB#120

Inflow Are	a =	1.045 ac, 9	98.13% Imper	vious, Inf	low Depth >	2.65"	for 2-	YEAR eve	ent
Inflow	=	2.93 cfs @	12.08 hrs, V	/olume=	0.23 a	f			
Outflow	=	2.93 cfs @	12.08 hrs, V	/olume=	0.23 a	f, Atten	= 0%,	Lag= 0.0	min
Primary	=	2.93 cfs @	12.08 hrs, V	/olume=	0.23 a	f		-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 181.56' @ 12.08 hrs Flood Elev= 185.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	180.68'	15.0" Round Culvert L= 17.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 180.68' / 180.00' S= 0.0400 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.92 cfs @ 12.08 hrs HW=181.55' TW=180.73' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.92 cfs @ 3.18 fps)

Summary for Pond 19P: Infiltration Pond #4

Inflow Area	=	1.512 ac, 6	7.86% Imper	vious, Inflow	Depth > 1	.95" for	2-YEAR ev	/ent
Inflow	=	2.98 cfs @	12.09 hrs, V	/olume=	0.25 af			
Outflow	=	0.26 cfs @	13.07 hrs, V	/olume=	0.25 af,	Atten= 9)1%, Lag= 5	9.1 min
Discarded	=	0.26 cfs @	13.07 hrs, V	/olume=	0.25 af			
Primary	=	0.00 cfs @	0.00 hrs, ∖	/olume=	0.00 af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 181.35' @ 13.07 hrs Surf.Area= 3,759 sf Storage= 4,115 cf Flood Elev= 184.25' Surf.Area= 6,860 sf Storage= 18,117 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 135.9 min (907.5 - 771.6)

Volume	Invert	Avail.St	orage	Storage Description	ו	
#1	180.00'	18,	117 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)
Elevatio	on Su et)	rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
180.0 182.0 184.0	00 00 00	2,396 4,527 6,860	320.8 397.5 378.5	0 6,811 11,306	0 6,811 18,117	2,396 6,839 8,245
Device	Routing	Inver	t Outle	et Devices		
#1 #2	Discarded Primary	180.00 175.75	3.00 12.0 L= 5 Inlet n= 0	0 in/hr Exfiltration o " Round Culvert 5.0' CMP, square e / Outlet Invert= 175. .013 Corrugated PE	ver Surface area dge headwall, Ke= 75' / 173.00' S= 0 , smooth interior, I	= 0.500 .0500 '/' Cc= 0.900 Flow Area= 0.79 sf
#3 #4 #5	Device 2 Device 2 Device 2	181.60 182.50 183.85	2.0" 4.0" 48.0 Limit	Vert. Orifice/Grate Vert. Orifice/Grate " x 48.0" Horiz. Orifi ted to weir flow at lov	C= 0.600 C= 0.600 ce/Grate C= 0.60 v heads	00

Discarded OutFlow Max=0.26 cfs @ 13.07 hrs HW=181.35' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.26 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=180.00' TW=171.05' (Dynamic Tailwater) **2=Culvert** (Passes 0.00 cfs of 7.32 cfs potential flow)

3=Orifice/Grate (Controls 0.00 cfs)

-4=Orifice/Grate	(Controls 0.00 cfs)	

Summary for Link A: Wetland

Inflow Area	a =	1.446 ac, 2	1.11% Impe	ervious,	Inflow Dep	oth > ().38" fo	or 2-'	YEAR e	vent
Inflow	=	0.07 cfs @	12.36 hrs,	Volume	= (0.05 af				
Primary	=	0.07 cfs @	12.36 hrs,	Volume	= (0.05 af,	Atten=	0%,	Lag= 0.	.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Central Street

Inflow Area	a =	2.343 ac, 5	8.11% Imp	ervious,	Inflow De	epth > C).31" f	or 2-	YEAR event	t
Inflow	=	0.44 cfs @	12.12 hrs,	Volume	=	0.06 af				
Primary	=	0.44 cfs @	12.12 hrs,	Volume	=	0.06 af,	Atten=	0%,	Lag= 0.0 m	in

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

POST DEVELOPMENT (2)Type III 24-hr2-YR Frozen Rainfall=2.95", AMC=4Prepared by Keach Nordstrom Associates, Inc.Printed12/20/2021HydroCAD® 10.00-26s/n 01045© 2020 HydroCAD Software Solutions LLCPage 24

Time span=0.00-24.00 hrs, dt=0.02 hrs, 1201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Overland Flow to	Runoff Area=20,345 sf 0.00% Impervious Runoff Depth>2.72" Tc=6.0 min AMC Adjusted CN=98.0 Runoff=1.33 cfs 0.11 af
Subcatchment 2S: Overland Flow	Runoff Area=8,448 sf 13.75% Impervious Runoff Depth>2.72" Tc=6.0 min AMC Adjusted CN=98.0 Runoff=0.55 cfs 0.04 af
Subcatchment 3S: Roof Awning	Runoff Area=707 sf 100.00% Impervious Runoff Depth>2.72" Tc=6.0 min CN=98.0 Runoff=0.05 cfs 0.00 af
Subcatchment 4S: Flow to CB#100	Runoff Area=10,721 sf 65.43% Impervious Runoff Depth>2.72" Tc=6.0 min AMC Adjusted CN=98.0 Runoff=0.70 cfs 0.06 af
Subcatchment 5S: Roof Awning	Runoff Area=707 sf 100.00% Impervious Runoff Depth>2.72" Tc=6.0 min CN=98.0 Runoff=0.05 cfs 0.00 af
Subcatchment 6S: Flow to CB#101	Runoff Area=7,072 sf 68.89% Impervious Runoff Depth>2.72" Tc=6.0 min AMC Adjusted CN=98.0 Runoff=0.46 cfs 0.04 af
Subcatchment 7S: Flow to Stormwater Flow Length=142' Slope=0.0140 '	Runoff Area=23,453 sf 0.00% Impervious Runoff Depth>2.72" // Tc=8.7 min AMC Adjusted CN=98.0 Runoff=1.40 cfs 0.12 af
Subcatchment 8S: Flow to CB#110	Runoff Area=8,827 sf 75.87% Impervious Runoff Depth>2.72" Tc=6.0 min AMC Adjusted CN=98.0 Runoff=0.58 cfs 0.05 af
Subcatchment 9S: Flow to Bioretention	Runoff Area=6,113 sf 0.00% Impervious Runoff Depth>2.72" Tc=6.0 min AMC Adjusted CN=98.0 Runoff=0.40 cfs 0.03 af
Subcatchment 10S: Flow to CB#111	Runoff Area=2,406 sf 77.93% Impervious Runoff Depth>2.72" Tc=6.0 min AMC Adjusted CN=98.0 Runoff=0.16 cfs 0.01 af
Subcatchment 11S: Flow to CB#112	Runoff Area=2,938 sf 58.68% Impervious Runoff Depth>2.72" Tc=6.0 min AMC Adjusted CN=98.0 Runoff=0.19 cfs 0.02 af
Subcatchment 12S: Flow to CB#113	Runoff Area=4,124 sf 76.60% Impervious Runoff Depth>2.72" Tc=6.0 min AMC Adjusted CN=98.0 Runoff=0.27 cfs 0.02 af
Subcatchment 13S: Flow to Bioretention	Runoff Area=3,336 sf 0.00% Impervious Runoff Depth>2.72" Tc=6.0 min AMC Adjusted CN=98.0 Runoff=0.22 cfs 0.02 af
Subcatchment 14S: Roof	Runoff Area=39,522 sf 100.00% Impervious Runoff Depth>2.72" Tc=6.0 min CN=98.0 Runoff=2.59 cfs 0.21 af
Subcatchment 15S: Flow to CB#120	Runoff Area=6,013 sf 85.83% Impervious Runoff Depth>2.72" Tc=6.0 min AMC Adjusted CN=98.0 Runoff=0.39 cfs 0.03 af
Subcatchment 16S: Flow to Infiltration Flow Length=184' Slope=0.0109 '/'	Runoff Area=20,315 sf 0.00% Impervious Runoff Depth>2.71" Tc=10.7 min AMC Adjusted CN=98.0 Runoff=1.14 cfs 0.11 af
POST DEVELOPMENT (2) Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4 Printed 12/20/2021 Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Page 25 Peak Elev=184.23' Inflow=0.05 cfs 0.00 af Pond 1P: Roof Drain 6.0" Round Culvert n=0.013 L=45.0' S=0.0200 '/' Outflow=0.05 cfs 0.00 af Peak Elev=183.20' Inflow=0.75 cfs 0.06 af Pond 2P: CB#100 15.0" Round Culvert n=0.013 L=90.0' S=0.0100 '/' Outflow=0.75 cfs 0.06 af Pond 3P: Roof Drain Peak Elev=183.54' Inflow=0.05 cfs 0.00 af 6.0" Round Culvert n=0.013 L=37.0' S=0.0300 '/' Outflow=0.05 cfs 0.00 af Peak Elev=183.15' Inflow=1.26 cfs 0.10 af Pond 4P: CB#101 15.0" Round Culvert n=0.013 L=70.0' S=0.0100 '/' Outflow=1.26 cfs 0.10 af Pond 5P: Stormwater Pond #1 Peak Elev=183.15' Storage=17,269 cf Inflow=2.61 cfs 0.22 af Outflow=0.12 cfs 0.11 af Pond 6P: DMH#104 Peak Elev=181.64' Inflow=0.12 cfs 0.11 af 12.0" Round Culvert n=0.013 L=110.0' S=0.0055 '/' Outflow=0.12 cfs 0.11 af Peak Elev=176.65' Inflow=0.58 cfs 0.05 af Pond 8P: CB#110 12.0" Round Culvert n=0.013 L=13.0' S=0.0200 '/' Outflow=0.58 cfs 0.05 af Peak Elev=176.65' Storage=963 cf Inflow=0.98 cfs 0.08 af Pond 9P: Bioretention Pond #2 Outflow=0.22 cfs 0.08 af Peak Elev=172.24' Inflow=0.35 cfs 0.09 af Pond 10P: DMH#113 12.0" Round Culvert n=0.013 L=39.0' S=0.0100 '/' Outflow=0.35 cfs 0.09 af Peak Elev=171.87' Inflow=0.54 cfs 0.11 af Pond 11P: DMH#114

 Pond 12P: DMH#123
 Peak Elev=171.45'
 Inflow=0.54 cfs
 0.12 af

 12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/'
 Outflow=0.54 cfs
 0.12 af

 Pond 13P: CB#111 - Filterra 4x4
 Peak Elev=175.02'
 Storage=13 cf
 Inflow=0.16 cfs
 0.01 af

12.0" Round Culvert n=0.013 L=38.0' S=0.0100 '/' Outflow=0.54 cfs 0.11 af

 Pond 14P: CB#112 - Filterra 4x4
 Peak Elev=175.04' Storage=14 cf Inflow=0.19 cfs 0.02 af

 Outflow=0.19 cfs 0.02 af

 Pond 15P: CB#113
 Peak Elev=178.66'
 Inflow=0.27 cfs
 0.02 af

 12.0"
 Round Culvert
 n=0.013
 L=15.0'
 S=0.0100 '/'
 Outflow=0.27 cfs
 0.02 af

 Pond 16P: InfitIration Pond #3
 Peak Elev=178.66' Storage=480 cf
 Inflow=0.49 cfs
 0.04 af

 Discarded=0.06 cfs
 0.04 af
 Primary=0.07 cfs
 0.00 af
 Outflow=0.13 cfs
 0.04 af

 Pond 17P: Roof Drain
 Peak Elev=184.24'
 Inflow=2.59 cfs
 0.21 af

 15.0"
 Round Culvert
 n=0.013
 L=53.0'
 S=0.0500 '/'
 Outflow=2.59 cfs
 0.21 af

 Pond 18P: CB#120
 Peak Elev=181.91'
 Inflow=2.98 cfs
 0.24 af

 15.0"
 Round Culvert
 n=0.013
 L=17.0'
 S=0.0400 '/'
 Outflow=2.98 cfs
 0.24 af

POST DEVELOPMENT (2)Type III 24-hr2-YR Frozen Rainfall=2.95", AMC=4Prepared by Keach Nordstrom Associates, Inc.Printed12/20/2021HydroCAD® 10.00-26s/n 01045© 2020 HydroCAD Software Solutions LLCPage 26

Pond 19P: Infiltration Pond #4 Peak Elev=181.91' Storage=6,399 cf Inflow=3.99 cfs 0.34 af Discarded=0.31 cfs 0.32 af Primary=0.05 cfs 0.01 af Outflow=0.36 cfs 0.33 af

Link A: Wetland

Inflow=1.38 cfs 0.21 af Primary=1.38 cfs 0.21 af

Link B: Central Street

Inflow=1.09 cfs 0.16 af Primary=1.09 cfs 0.16 af

Total Runoff Area = 3.789 acRunoff Volume = 0.86 afAverage Runoff Depth = 2.72"56.01% Pervious = 2.122 ac43.99% Impervious = 1.667 ac

Summary for Subcatchment 1S: Overland Flow to Wetland

Runoff = 1.33 cfs @ 12.08 hrs, Volume= 0.11 af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

A	rea (sf)	CN	Adj	Description
	480	77.0		Woods, Good, HSG D
	16,003	55.0		Woods, Good, HSG B
	3,862	61.0		>75% Grass cover, Good, HSG B
	20,345	56.7	98.0	Weighted Average, AMC Adjusted
	20,345	56.7	98.0	100.00% Pervious Area, AMC Adjusted
Tc (min)	Length (feet)	Slope (ft/ft)	Velocit (ft/sec	/ Capacity Description) (cfs)
6.0	· · · ·	//		Direct Entry,

Summary for Subcatchment 2S: Overland Flow

Runoff = 0.55 cfs @ 12.08 hrs, Volume= 0.04 af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

Ar	rea (sf)	CN	Adj	Description
	246	55.0		Woods, Good, HSG B
	632	98.0		Paved parking, HSG B
	530	98.0		Paved parking, HSG D
	6,698	61.0		>75% Grass cover, Good, HSG B
	342	80.0		>75% Grass cover, Good, HSG D
	8,448	66.7	98.0	Weighted Average, AMC Adjusted
	7,286	61.7	98.0	86.25% Pervious Area, AMC Adjusted
	1,162	98.0	98.0	13.75% Impervious Area, AMC Adjusted
Tc	Length	Slope	Velocity	/ Capacity Description
<u>(min)</u>	(leet)	(11/11)	(II/Sec) (CIS)
6.0				Direct Entry,

Summary for Subcatchment 3S: Roof Awning

Runon – $0.05 \text{ cls}(Q)$ 12.06 hls, volume– 0.00 al , Depth 2.72	Runoff	=	0.05 cfs @	12.08 hrs,	Volume=	0.00 af, Depth> 2.72"
---	--------	---	------------	------------	---------	-----------------------

POST DEVELOPMENT (2)Type III 24-hr2-YR Frozen Rainfall=2.95", AMC=4Prepared by Keach Nordstrom Associates, Inc.Printed12/20/2021HydroCAD® 10.00-26s/n 01045© 2020 HydroCAD Software Solutions LLCPage 28

Ar	ea (sf)	CN	Descriptio	n				
	707	98.0	Roofs, HS	Roofs, HSG B				
	707	98.0	100.00%	Impervious	s Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 4S: Flow to CB#100

Runoff = 0.70 cfs @ 12.08 hrs, Volume= 0.06 af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

A	rea (sf)	CN	Adj	Description
	2,792	98.0		Paved parking, HSG B
	4,223	98.0		Paved parking, HSG D
	2,020	61.0		>75% Grass cover, Good, HSG B
	1,209	80.0		>75% Grass cover, Good, HSG D
	477	55.0		Woods, Good, HSG B
	10,721	87.1	98.0	Weighted Average, AMC Adjusted
	3,706	66.4	98.0	34.57% Pervious Area, AMC Adjusted
	7,015	98.0	98.0	65.43% Impervious Area, AMC Adjusted
Та	l e e este	Clana	Valasit	· Constitut Description
	Length	Siope	velocity	
(min)	(feet)	(ft/ft)	(ft/sec) (CIS)
6.0				Direct Entry,

Summary for Subcatchment 5S: Roof Awning

Runoff = 0.05 cfs @ 12.08 hrs, Volume= 0.00 af, Depth> 2.72"

A	rea (sf)	CN	Descriptio	on				
	707	98.0	Roofs, HS	Roofs, HSG B				
	707	98.0	100.00%	100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 6S: Flow to CB#101

Runoff = 0.46 cfs @ 12.08 hrs, Volume= 0.04 af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

A	rea (sf)	CN	Adj	Description
	2,027	61.0		>75% Grass cover, Good, HSG B
	173	55.0		Woods, Good, HSG B
	4,872	98.0		Paved parking, HSG B
	7,072	86.3	98.0	Weighted Average, AMC Adjusted
	2,200	60.5	98.0	31.11% Pervious Area, AMC Adjusted
	4,872	98.0	98.0	68.89% Impervious Area, AMC Adjusted
Та	l a sa aith	Clana	Valasit	
IC	Length	Slope	velocit	Capacity Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec) (Cfs)
6.0				Direct Entry,

Summary for Subcatchment 7S: Flow to Stormwater Pond #1

Runoff = 1.40 cfs @ 12.12 hrs, Volume= 0.12 af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

A	rea (sf)	CN	Adj	Description	
	2,021	55.0		Woods, Goo	od, HSG B
	21,432	61.0		>75% Grass	s cover, Good, HSG B
	23,453	60.5	98.0	Weighted A	verage, AMC Adjusted
	23,453	60.5	98.0	100.00% Pe	ervious Area, AMC Adjusted
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.9	50	0.0140	0.12		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.84"
1.9	92	0.0140	0.83		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
07	140	Total			

8.7 142 Total

Summary for Subcatchment 8S: Flow to CB#110

Runoff = 0.58 cfs @ 12.08 hrs, Volume= 0.05 af, Depth> 2.72"

Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

Printed 12/20/2021

Page 30

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Adj	Description
	2,130	61.0		>75% Grass cover, Good, HSG B
	5,476	98.0		Paved parking, HSG B
	1,221	98.0		Paved parking, HSG D
	8,827	89.1	98.0	Weighted Average, AMC Adjusted
	2,130	61.0	98.0	24.13% Pervious Area, AMC Adjusted
	6,697	98.0	98.0	75.87% Impervious Area, AMC Adjusted
т.	1		\/.l!t	
IC	Length	Slope	Velocity	Capacity Description
(min)	(feet)	(ft/ft)	(ft/sec) (cfs)
6.0				Direct Entry,

Summary for Subcatchment 9S: Flow to Bioretention Pond #2

Runoff = 0.40 cfs @ 12.08 hrs, Volume= 0.03 af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

A	rea (sf)	CN	Adj	Description
	932	55.0		Woods, Good, HSG B
	5,181	61.0		>75% Grass cover, Good, HSG B
	6,113	60.1	98.0	Weighted Average, AMC Adjusted
	6,113	60.1	98.0	100.00% Pervious Area, AMC Adjusted
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	y Capacity Description) (cfs)
6.0				Direct Entry,

Summary for Subcatchment 10S: Flow to CB#111

Runoff = 0.16 cfs @ 12.08 hrs, Volume= 0.01 af, Depth> 2.72"

A	rea (sf)	CN	Adj	Description
	531	61.0		>75% Grass cover, Good, HSG B
	917	98.0		Paved parking, HSG B
	958	98.0		Paved parking, HSG D
	2,406	89.8	98.0	Weighted Average, AMC Adjusted
	531	61.0	98.0	22.07% Pervious Area, AMC Adjusted
	1,875	98.0	98.0	77.93% Impervious Area, AMC Adjusted
Тс	Length	Slope	Velocity	Capacity Description
(min)	(feet)	(ft/ft)	(ft/sec	(cfs)
6.0				Direct Entry,

Summary for Subcatchment 11S: Flow to CB#112

Runoff = 0.19 cfs @ 12.08 hrs, Volume= 0.02 af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

A	rea (sf)	CN	Adj	Description
	1,214	61.0		>75% Grass cover, Good, HSG B
	1,704	98.0		Paved parking, HSG B
	20	98.0		Paved parking, HSG D
	2,938	82.7	98.0	Weighted Average, AMC Adjusted
	1,214	61.0	98.0	41.32% Pervious Area, AMC Adjusted
	1,724	98.0	98.0	58.68% Impervious Area, AMC Adjusted
Tc (min)	Length (feet)	Slope (ft/ft)	Velocit (ft/sec	y Capacity Description) (cfs)
6.0				Direct Entry,

Summary for Subcatchment 12S: Flow to CB#113

Runoff = 0.27 cfs @ 12.08 hrs, Volume= 0.02 af, Depth> 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

A	rea (sf)	CN	Adj	Description
	965	61.0		>75% Grass cover, Good, HSG B
	3,159	98.0		Paved parking, HSG B
	4,124	89.3	98.0	Weighted Average, AMC Adjusted
	965	61.0	98.0	23.40% Pervious Area, AMC Adjusted
	3,159	98.0	98.0	76.60% Impervious Area, AMC Adjusted
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec	y Capacity Description) (cfs)
6.0				Direct Entry,

Summary for Subcatchment 13S: Flow to Bioretention Pond #3

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 0.02 af, Depth> 2.72"

Area (sf)	CN	Adj	Description
3,336	61.0		>75% Grass cover, Good, HSG B
3,336	61.0	98.0	Weighted Average, AMC Adjusted
3,336	61.0	98.0	100.00% Pervious Area, AMC Adjusted

POST I	DEVELO	PMEN ¹	ſ (2)		Type II	l 24-hr	2-YR Frozen	Rainfall=2.95	", AMC=4
Prepared by Keach Nordstrom Associates, Inc. Printed 12/20/2								2/20/2021	
HydroCA	D® 10.00-2	26 s/n 0	1045 © 202	20 HydroCA	D Software S	Solutions	LLC		Page 32
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	า			
6.0	()	(14,14)	(1.000)	(0.0)	Direct Ent	rv.			
						- ,			
			Sumn	nary for S	Subcatchm	nent 14	S: Roof		
Runoff	=	2.59 cf	s@ 12.0	8 hrs, Volu	ime=	0.21 af	, Depth> 2.7	2"	
Runoff b Type III	y SCS TR 24-hr 2-Yl	-20 met R Frozei	hod, UH=S n Rainfall=	SCS, Weigh 2.95", AMC	nted-CN, Tim C=4	ne Span=	= 0.00-24.00 ł	nrs, dt= 0.02 hrs	3
A	rea (sf)	CN	Descriptio	on					
	39,396	98.0	Roofs, HS	SG B					
	126	98.0	Roofs, HS	SG D					
	39,522	98.0	Weighted	Average	A				
	39,522	98.0	100.00%	Impervious	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	า			
6.0					Direct Ent	ry,			
		-	_						
		Su	mmary f	or Subca	tchment 1	5S: Flo	w to CB#12	20	
Runoff	=	0.39 cf	s@ 12.0	8 hrs, Volu	ime=	0.03 af	f, Depth> 2.7	2"	
Runoff b Type III	y SCS TR 24-hr 2-Yl	-20 met R Frozei	hod, UH=S n Rainfall=	SCS, Weigh 2.95", AMC	nted-CN, Tim C=4	ne Span=	= 0.00-24.00 ł	nrs, dt= 0.02 hrs	3
А	rea (sf)	CN	Adj [Description					
	639	98.0	F	Paved parki	ing, HSG D				
	4,522	98.0	F	Paved parki	ing, HSG B				
	852	61.0	>	•75% Grass	s cover, Goo	od, HSG	В		
	6,013	92.8	98.0 V	Veighted A	verage, AM	C Adjuste	ed		
	852	61.0	98.0 1	4.17% Per	vious Area,		justed		
	5,101	98.0	98.0 8	5.83% IMP	ervious Area	a, AIVIC A	Aajusted		
Тс	Length	Slope	Velocity	Capacity	Descriptio	า			

Summary for Subcatchment 16S: Flow to Infiltration Pond #4

Direct Entry,

Runoff = 1.14 cfs @ 12.14 hrs, Volume= 0.11 af, Depth> 2.71"

(cfs)

(min)

6.0

(feet)

(ft/ft)

(ft/sec)

Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Printed 12/20/2021 Page 33

_	А	rea (sf)	CN	Adj	Description	
		2,499	55.0		Woods, Goo	od, HSG B
		15,393	61.0		>75% Grass	s cover, Good, HSG B
		2,423	80.0		>75% Grass	s cover, Good, HSG D
_		20,315	62.5	98.0	Weighted Av	verage, AMC Adjusted
		20,315	62.5	98.0	100.00% Pe	rvious Area, AMC Adjusted
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
_	7.6	50	0.0109	0.11	(0.0)	Sheet Flow.
				••••		Grass: Short n= 0.150 P2= 2.84"
	3.1	134	0.0109	0.73	3	Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps

10.7 184 Total

Summary for Pond 1P: Roof Drain

Inflow Area	a =	0.016 ac,10	0.00% Impervious,	Inflow Depth >	2.72"	for 2-YR Frozen event
Inflow	=	0.05 cfs @	12.08 hrs, Volume	e 0.00 a	ıf	
Outflow	=	0.05 cfs @	12.08 hrs, Volume	e= 0.00 a	if, Atten	= 0%, Lag= 0.0 min
Primary	=	0.05 cfs @	12.08 hrs, Volume	e= 0.00 a	ıf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 184.23' @ 12.08 hrs Flood Elev= 187.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	184.10'	6.0" Round Culvert L= 45.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 184.10' / 183.20' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.05 cfs @ 12.08 hrs HW=184.22' TW=183.20' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.05 cfs @ 1.20 fps)

Summary for Pond 2P: CB#100

Inflow Area	a =	0.262 ac, 6	7.57% Imp	ervious,	Inflow Dep	oth >	2.72"	for 2-	YR Frozen event
Inflow	=	0.75 cfs @	12.08 hrs,	Volume	= C).06 a	f		
Outflow	=	0.75 cfs @	12.08 hrs,	Volume	= C).06 a	f, Atter	i= 0%,	Lag= 0.0 min
Primary	=	0.75 cfs @	12.08 hrs,	Volume	= C).06 a	f		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.20' @ 12.09 hrs Flood Elev= 186.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	182.70'	15.0" Round Culvert
			L= 90.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 182.70' / 181.80' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Summary for Pond 3P: Roof Drain

Inflow Area	ı =	0.016 ac,10	0.00% Imp	ervious,	Inflow Depth	> 2.72"	for 2-YR Frozen event
Inflow	=	0.05 cfs @	12.08 hrs,	Volume	= 0.0) af	
Outflow	=	0.05 cfs @	12.08 hrs,	Volume	= 0.0	0 af, Atte	n= 0%, Lag= 0.0 min
Primary	=	0.05 cfs @	12.08 hrs,	Volume	= 0.0) af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.54' @ 12.08 hrs Flood Elev= 187.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	183.41'	6.0" Round Culvert L= 37.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 183.41' / 182.30' S= 0.0300 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.05 cfs @ 12.08 hrs HW=183.53' TW=182.77' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.05 cfs @ 1.20 fps)

Summary for Pond 4P: CB#101

Inflow Area	ı =	0.441 ac, 6	9.25% Impe	ervious,	Inflow Depth >	2.72"	for 2-YR Frozen event
Inflow	=	1.26 cfs @	12.08 hrs,	Volume	= 0.10	af	
Outflow	=	1.26 cfs @	12.08 hrs,	Volume	= 0.10	af, Atter	n= 0%, Lag= 0.0 min
Primary	=	1.26 cfs @	12.08 hrs,	Volume	= 0.10	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.15' @ 14.80 hrs Flood Elev= 186.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	181.70'	15.0" Round Culvert L= 70.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.70' / 181.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.05 cfs @ 12.08 hrs HW=182.77' TW=182.69' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 1.05 cfs @ 1.27 fps)

Summary for Pond 5P: Stormwater Pond #1

Inflow Area =	0.979 ac, 31.18% Impervious, Inflow	v Depth > 2.72" for 2-YR Frozen event
Inflow =	2.61 cfs @ 12.10 hrs, Volume=	0.22 af
Outflow =	0.12 cfs @ 14.80 hrs, Volume=	0.11 af, Atten= 95%, Lag= 161.8 min
Primary =	0.12 cfs @ 14.80 hrs, Volume=	0.11 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Starting Elev= 182.00' Surf.Area= 5,137 sf Storage= 10,729 cf Peak Elev= 183.15' @ 14.80 hrs Surf.Area= 6,243 sf Storage= 17,269 cf (6,539 cf above start) Flood Elev= 185.00' Surf.Area= 7,127 sf Storage= 22,939 cf (12,210 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 256.8 min (1,015.6 - 758.9)

Volume	Invert	Avail.St	orage	Storage Description	า				
#1	179.00'	22,9	939 cf	Custom Stage Data	a (Irregular) Listec	below (Recalc)			
Elevation	Sur	f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
179.00		2,168	252.3	0	0	2,168			
180.00		3,043	312.6	2,593	2,593	4,893			
181.00		4,069	357.9	3,544	6,137	7,334			
182.00		5,137	339.8	4,593	10,729	8,397			
184.00		7,127	365.6	12,210	22,939	10,008			
Device R	outing	Invert	Outle	et Devices					
#1 Pi	rimary	181.95	12.0	" Round Culvert					
	L= 90.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.95' / 181.50' S= 0.0050 '/' Cc= 0.900								
			n= 0	.013 Corrugated PE	, smooth interior,	Flow Area= 0.79 sf			
#2 D	evice 1	182.00	1.0"	W x 2.0" H Vert. Or	ifice/Grate $C=0$.	600			
#3 D	evice 1	182.84	2.0"	Vert. Orifice/Grate	C= 0.600				
#4 D	evice 1	183.50	48.0 Limit	" x 48.0" Horiz. Orif ited to weir flow at lov	ice/Grate C= 0.6 w heads	00			
Primary Ou	utFlow Ma	ax=0.12 cfs	@ 14.8	30 hrs HW=183.15'	TW=181.64' (Dy	namic Tailwater)			
1=Culve	ert (Passe	s 0.12 cfs c	ot 2.68 d	cts potential flow)					
-2=Or	ifice/Grate	(Orifice C	ontrols	0.07 cfs @ 4.97 fps)				
<u> </u> —3=Or	ifice/Grate	(Orifice C	ontrols	0.05 cfs @ 2.30 fps)				
4=Or	ifice/Grate) (Controls	s 0.00 c	fs)					

Summary for Pond 6P: DMH#104

Inflow Area	a =	0.979 ac, 3	1.18% Imperviou	s, Inflow Depth >	1.32"	for 2-YR Frozen event
Inflow	=	0.12 cfs @	14.80 hrs, Volur	ne= 0.11 a	af	
Outflow	=	0.12 cfs @	14.80 hrs, Volur	ne= 0.11 a	af, Atter	n= 0%, Lag= 0.0 min
Primary	=	0.12 cfs @	14.80 hrs, Volur	me= 0.11 a	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Peak Elev= 181.64' @ 14.80 hrs Flood Elev= 186.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	181.45'	12.0" Round Culvert
			L= 110.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.45' / 180.85' S= 0.0055 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Summary for Pond 8P: CB#110

Inflow Are	a =	0.203 ac, 75.87% Impervious, Inflow Depth > 2.72" for 2-YR Frozen event
Inflow	=	0.58 cfs @ 12.08 hrs, Volume= 0.05 af
Outflow	=	0.58 cfs @ 12.08 hrs, Volume= 0.05 af, Atten= 0%, Lag= 0.0 min
Primary	=	0.58 cfs @ 12.08 hrs, Volume= 0.05 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 176.65' @ 12.50 hrs Flood Elev= 180.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	175.76'	12.0" Round Culvert
			L= 13.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 175.76' / 175.50' S= 0.0200 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.40 cfs @ 12.08 hrs HW=176.27' TW=176.20' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.40 cfs @ 1.46 fps)

Summary for Pond 9P: Bioretention Pond #2

Inflow Area	ı =	0.343 ac, 4	4.83% Impe	ervious,	Inflow D	epth >	2.72"	for 2-Y	'R Frozen event
Inflow	=	0.98 cfs @	12.08 hrs,	Volume	=	0.08 a	f		
Outflow	=	0.22 cfs @	12.48 hrs,	Volume	=	0.08 a	f, Atten	= 78%,	Lag= 23.9 min
Primary	=	0.22 cfs @	12.48 hrs,	Volume	=	0.08 a	f		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 176.65' @ 12.48 hrs Surf.Area= 943 sf Storage= 963 cf Flood Elev= 178.10' Surf.Area= 1,676 sf Storage= 2,684 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 32.1 min (789.7 - 757.6)

Volume	Invert	Avail.Storage	Storage Description
#1	175.00'	2,684 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Page 37

Printed 12/20/2021

Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
175.0	00	193	87.3	0	0	193			
176.0	00	714	149.7	426	426	1,376			
177.0	00	1,080	196.1	891	1,317	2,664			
178.0	00	1,676	200.8	1,367	2,684	2,912			
Device	Routing	Inver	t Outlet [Devices					
#1	Primary	175.00	' 10.000	in/hr Exfiltration of	over Surface area				
#2	Device 1	172.50	' 12.0" F	Round Culvert					
			L= 18.0	' CMP, square ec	dge headwall, Ke=	: 0.500			
			Inlet / C	Outlet Invert= 172.5	50' / 171.96' S= 0.	.0300 '/' Cc= 0.900			
			n= 0.01	3 Corrugated PE,	smooth interior, F	low Area= 0.79 sf			
#3	Device 1	176.20	' 2.0" Ve	rt. Orifice/Grate	C= 0.600				
#4	Device 1	176.80	' 48.0" x	48.0" x 48.0" Horiz. Orifice/Grate C= 0.600					

Limited to weir flow at low heads

Primary OutFlow Max=0.22 cfs @ 12.48 hrs HW=176.65' TW=172.19' (Dynamic Tailwater)

2=Culvert (Passes < 4.86 cfs potential flow)

--3=Orifice/Grate (Passes < 0.06 cfs potential flow)

4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 10P: DMH#113

Inflow Area	=	0.398 ac, 4	9.42% Imp	ervious,	Inflow Depth >	2.72"	for 2-Y	R Frozen event
Inflow	=	0.35 cfs @	12.09 hrs,	Volume	= 0.09 a	af		
Outflow	=	0.35 cfs @	12.09 hrs,	Volume	= 0.09 a	af, Atter	ו = 0%, ו	Lag= 0.0 min
Primary	=	0.35 cfs @	12.09 hrs,	Volume	= 0.09 a	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 172.24' @ 12.11 hrs Flood Elev= 176.85'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.92'	12.0" Round Culvert
			L= 39.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.92' / 171.53' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.34 cfs @ 12.09 hrs HW=172.23' TW=171.87' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.34 cfs @ 2.38 fps)

Summary for Pond 11P: DMH#114

Inflow Area	ı =	0.466 ac, 5	0.76% Impe	ervious,	Inflow E)epth >	2.72"	for 2-	YR Frozen event
Inflow	=	0.54 cfs @	12.09 hrs,	Volume	=	0.11 a	f		
Outflow	=	0.54 cfs @	12.09 hrs,	Volume	=	0.11 a	f, Atten	= 0%,	Lag= 0.0 min
Primary	=	0.54 cfs @	12.09 hrs,	Volume	=	0.11 a	f		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Peak Elev= 171.87' @ 12.09 hrs Flood Elev= 177.35'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.48'	12.0" Round Culvert
	·		L= 38.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.48' / 171.10' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.53 cfs @ 12.09 hrs HW=171.87' TW=171.44' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.53 cfs @ 2.77 fps)

Summary for Pond 12P: DMH#123

Inflow Are	ea =	2.149 ac, 62.12% Impervious, Inf	low Depth > 0.66" for 2-YR Fro	ozen event
Inflow	=	0.54 cfs @ 12.09 hrs, Volume=	0.12 af	
Outflow	=	0.54 cfs @_ 12.09 hrs, Volume=	0.12 af, Atten= 0%, Lag= 0	0.0 min
Primary	=	0.54 cfs @ 12.09 hrs, Volume=	0.12 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 171.45' @ 12.09 hrs Flood Elev= 176.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.05'	12.0" Round Culvert
			L= 20.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.05' / 170.85' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE smooth interior. Flow Area= 0.79 sf

Primary OutFlow Max=0.53 cfs @ 12.09 hrs HW=171.44' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 0.53 cfs @ 2.74 fps)

Summary for Pond 13P: CB#111 - Filterra 4x4

Inflow Area	ı =	0.055 ac, 7	7.93% Impe	ervious,	Inflow Dep	oth >	2.72"	for 2	-YR Frozen event
Inflow	=	0.16 cfs @	12.08 hrs,	Volume	= 0).01 a	af		
Outflow	=	0.16 cfs @	12.08 hrs,	Volume	= 0).01 a	af, Atten	= 0%,	Lag= 0.0 min
Primary	=	0.16 cfs @	12.08 hrs,	Volume	= 0).01 a	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 175.02' @ 12.08 hrs Surf.Area= 16 sf Storage= 13 cf Flood Elev= 175.90' Surf.Area= 16 sf Storage= 16 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.8 min (758.4 - 757.6)

Volume	Invert	Avail.Storage	Storage Description
#1	174.19'	16 cf	4.00'W x 4.00'L x 1.00'H Prismatoid

Type III 24-hr 2-YR Frozen Rainfall=2.95", AMC=4

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Device 3	174.19'	140.000 in/hr Exfiltration over Surface area
#2	Device 3	174.94'	1.7' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	172.02'	12.0" Round Culvert
			L= 5.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 172.02' / 171.97' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.16 cfs @ 12.08 hrs HW=175.02' TW=172.23' (Dynamic Tailwater) **-3=Culvert** (Passes 0.16 cfs of 5.98 cfs potential flow) -1=Exfiltration (Exfiltration Controls 0.05 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.11 cfs @ 0.80 fps)

Summary for Pond 14P: CB#112 - Filterra 4x4

Inflow Area =	0.067 ac, 58.68% Impervious, Inflow	v Depth > 2.72"	for 2-YR Frozen event
Inflow =	0.19 cfs @ 12.08 hrs, Volume=	0.02 af	
Outflow =	0.19 cfs @ 12.09 hrs, Volume=	0.02 af, Atten	= 1%, Lag= 0.3 min
Primary =	0.19 cfs @ 12.09 hrs, Volume=	0.02 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 175.04' @ 12.09 hrs Surf.Area= 16 sf Storage= 14 cf Flood Elev= 175.90' Surf.Area= 16 sf Storage= 16 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.9 min (758.6 - 757.6)

Volume	Invert	Avail.Stor	rage Storage Description
#1	174.19'	1	16 cf 4.00'W x 4.00'L x 1.00'H Prismatoid
Device	Routing	Invert	Outlet Devices
#1	Device 3	174.19'	140.000 in/hr Exfiltration over Surface area
#2	Device 3	174.94'	1.7' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	172.02'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 172.02' / 171.72' S= 0.0500 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.19 cfs @ 12.09 hrs HW=175.03' TW=171.87' (Dynamic Tailwater) -3=Culvert (Passes 0.19 cfs of 6.00 cfs potential flow)

-1=Exfiltration (Exfiltration Controls 0.05 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.14 cfs @ 0.86 fps)

Printed 12/20/2021

Page 39

Summary for Pond 15P: CB#113

Inflow Area = 0.095 ac, 76.60% Impervious, Inflow Depth > 2.72" for 2-YR Frozen event Inflow 0.27 cfs @ 12.08 hrs, Volume= 0.02 af = 0.27 cfs @ 12.08 hrs, Volume= Outflow 0.02 af, Atten= 0%, Lag= 0.0 min = Primary = 0.27 cfs @ 12.08 hrs, Volume= 0.02 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 178.66' @ 12.44 hrs Flood Elev= 181.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	178.15'	12.0" Round Culvert
			L= 15.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert = 178.15' / 178.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.22 cfs @ 12.08 hrs HW=178.49' TW=178.42' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.22 cfs @ 1.38 fps)

Summary for Pond 16P: InfitIration Pond #3

Inflow Area	ı =	0.171 ac, 4	2.35% Impe	ervious,	Inflow D	epth >	2.72"	for 2-Y	R Frozen event
Inflow	=	0.49 cfs @	12.08 hrs,	Volume=	=	0.04 a	f		
Outflow	=	0.13 cfs @	12.43 hrs,	Volume=	=	0.04 a	f, Atten	i= 73%,	Lag= 20.9 min
Discarded	=	0.06 cfs @	12.43 hrs,	Volume	=	0.04 a	f		
Primary	=	0.07 cfs @	12.43 hrs,	Volume	=	0.00 a	f		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 178.66' @ 12.43 hrs Surf.Area= 891 sf Storage= 480 cf Flood Elev= 180.00' Surf.Area= 1,583 sf Storage= 2,141 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 44.0 min (801.7 - 757.6)

Volume	Invert	Avail.S	Storage	Storage Descriptio	n		
#1	178.00'	2	,141 cf	Custom Stage Dat	t a (Irregular) Listed	d below (Recalc)	
Elevatio (fee	on Su	urf.Area (sɑ-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sg-ft)	
178.0 179.0 180.0	00 00 00 00	585 1,078 1,583	143.3 186.5 162.2	0 819 1,322	0 819 2,141	585 1,731 2,427	
Device	Routing	Inve	rt Outle	et Devices			
#1	Discarded	178.0	0' 3.00	0 in/hr Exfiltration	over Surface area		
#2	Primary	172.1	0' 12.0 L= 1 Inlet n= 0	" Round Culvert 3.0' CMP, square (/ Outlet Invert= 172 .013 Corrugated Pl	edge headwall, Ke .10' / 171.45' S= E, smooth interior,	= 0.500 0.0500 '/' Cc= 0.900 Flow Area= 0.79 sf	
#3	Device 2	178.5	0' 6.0''	Vert. Orifice/Grate	C= 0.600		

POST DEVELOPMENT (2)Type III 24-hr2-YR Frozen Rainfall=2.95", AMC=4Prepared by Keach Nordstrom Associates, Inc.Printed12/20/2021HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLCPage 41

#4 Device 2 179.50' **48.0" x 48.0" Horiz. Orifice/Grate** C= 0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.06 cfs @ 12.43 hrs HW=178.66' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=0.07 cfs @ 12.43 hrs HW=178.66' TW=171.40' (Dynamic Tailwater) 2=Culvert (Passes 0.07 cfs of 9.31 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.07 cfs @ 1.34 fps) -4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 17P: Roof Drain

Inflow Area	=	0.907 ac,10	0.00% Impe	ervious,	Inflow Depth	> 2.72"	for 2-YR Frozen even	ent
Inflow	=	2.59 cfs @	12.08 hrs,	Volume	= 0.2	1 af		
Outflow	=	2.59 cfs @	12.08 hrs,	Volume	= 0.2	1 af, Atte	n= 0%, Lag= 0.0 min	
Primary	=	2.59 cfs @	12.08 hrs,	Volume	= 0.2	1 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 184.24' @ 12.08 hrs Flood Elev= 186.75'

Device	Routing	Invert	Outlet Devices
#1	Primary	183.43'	15.0" Round Culvert
			L= 53.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 183.43' / 180.78' S= 0.0500 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.58 cfs @ 12.08 hrs HW=184.24' TW=181.58' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.58 cfs @ 3.06 fps)

Summary for Pond 18P: CB#120

Inflow Are	ea =	1.045 ac, 98.13% Impervious,	Inflow Depth > 2	.72" for 2-YR Frozen event
Inflow	=	2.98 cfs @ 12.08 hrs, Volume	= 0.24 af	
Outflow	=	2.98 cfs @ 12.08 hrs, Volume	= 0.24 af,	Atten= 0%, Lag= 0.0 min
Primary	=	2.98 cfs @ 12.08 hrs, Volume	= 0.24 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 181.91' @ 13.05 hrs Flood Elev= 185.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	180.68'	15.0" Round Culvert L= 17.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 180.68' / 180.00' S= 0.0400 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.76 cfs @ 12.08 hrs HW=181.58' TW=181.11' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 2.76 cfs @ 4.06 fps)

Summary for Pond 19P: Infiltration Pond #4

Inflow Area	ı =	1.512 ac, 6	7.86% Impe	ervious,	Inflow Dept	:h >	2.72"	for 2-Y	'R Frozen event
Inflow	=	3.99 cfs @	12.09 hrs,	Volume	= 0.	34 a	f		
Outflow	=	0.36 cfs @	13.04 hrs,	Volume	= 0.	33 a	f, Atten	= 91%,	Lag= 56.9 min
Discarded	=	0.31 cfs @	13.04 hrs,	Volume	= 0.	32 a	f		
Primary	=	0.05 cfs @	13.04 hrs,	Volume	= 0.	01 a	f		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 181.91' @ 13.04 hrs Surf.Area= 4,414 sf Storage= 6,399 cf Flood Elev= 184.25' Surf.Area= 6,860 sf Storage= 18,117 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 169.8 min (928.6 - 758.8)

Volume	Invert	Avail.St	orage	Storage Description		
#1	180.00'	18,	117 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)
Elevatio	on Su et)	rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
180.0 182.0 184.0	00 00 00	2,396 4,527 6,860	320.8 397.5 378.5	0 6,811 11,306	0 6,811 18,117	2,396 6,839 8,245
Device	Routing	Inver	t Outle	et Devices		
#1 #2	Discarded Primary	180.00 175.75	' 3.00 ' 12.0 ' L= 5 Inlet n= 0	0 in/hr Exfiltration of Round Culvert 5.0' CMP, square eq / Outlet Invert= 175.7 .013 Corrugated PE	ver Surface area dge headwall, Ke= 75' / 173.00' S= 0 , smooth interior, F	= 0.500 .0500 '/' Cc= 0.900 Flow Area= 0.79 sf
#3 #4 #5	Device 2 Device 2 Device 2	181.60 182.50 183.85	' 2.0'' ' 4.0'' ' 48.0 ' Limit	Vert. Orifice/Grate Vert. Orifice/Grate " x 48.0" Horiz. Orificed to weir flow at low	C= 0.600 C= 0.600 ce/Grate C= 0.60 / heads	00

Discarded OutFlow Max=0.31 cfs @ 13.04 hrs HW=181.91' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.31 cfs)

Primary OutFlow Max=0.05 cfs @ 13.04 hrs HW=181.91' TW=171.33' (Dynamic Tailwater) 2=Culvert (Passes 0.05 cfs of 9.00 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.05 cfs @ 2.28 fps) -4=Orifice/Grate (Controls 0.00 cfs) -5=Orifice/Grate (Controls 0.00 cfs)

Summary for Link A: Wetland

Inflow Are	a =	1.446 ac, 2	1.11% Imp	ervious,	Inflow Depth >	1.77"	for 2-YR Frozen event
Inflow	=	1.38 cfs @	12.08 hrs,	Volume	= 0.21	af	
Primary	=	1.38 cfs @	12.08 hrs,	Volume	= 0.21	af, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Central Street

Inflow Area	ı =	2.343 ac, 5	8.11% Impe	ervious,	Inflow Depth >	0.83"	for 2-YR Frozen event
Inflow	=	1.09 cfs @	12.09 hrs,	Volume	= 0.16 a	f	
Primary	=	1.09 cfs @	12.09 hrs,	Volume	= 0.16 a	f, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

 Type III 24-hr
 10-YEAR Rainfall=4.46"

 Printed
 12/20/2021

 ns LLC
 Page 44

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

> Time span=0.00-24.00 hrs, dt=0.02 hrs, 1201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Overland Flow to	Runoff Area=20,345 sf 0.00% Impervious Runoff Depth>0.81" Tc=6.0 min CN=56.7 Runoff=0.34 cfs 0.03 af
Subcatchment 2S: Overland Flow	Runoff Area=8,448 sf 13.75% Impervious Runoff Depth>1.41" Tc=6.0 min CN=66.7 Runoff=0.30 cfs 0.02 af
Subcatchment 3S: Roof Awning	Runoff Area=707 sf 100.00% Impervious Runoff Depth>4.22" Tc=6.0 min CN=98.0 Runoff=0.07 cfs 0.01 af
Subcatchment 4S: Flow to CB#100	Runoff Area=10,721 sf 65.43% Impervious Runoff Depth>3.07" Tc=6.0 min CN=87.1 Runoff=0.87 cfs 0.06 af
Subcatchment 5S: Roof Awning	Runoff Area=707 sf 100.00% Impervious Runoff Depth>4.22" Tc=6.0 min CN=98.0 Runoff=0.07 cfs 0.01 af
Subcatchment 6S: Flow to CB#101	Runoff Area=7,072 sf 68.89% Impervious Runoff Depth>3.00" Tc=6.0 min CN=86.3 Runoff=0.56 cfs 0.04 af
Subcatchment 7S: Flow to Stormwater Flow Length=142'	Runoff Area=23,453 sf 0.00% Impervious Runoff Depth>1.02" Slope=0.0140 '/' Tc=8.7 min CN=60.5 Runoff=0.50 cfs 0.05 af
Subcatchment 8S: Flow to CB#110	Runoff Area=8,827 sf 75.87% Impervious Runoff Depth>3.26" Tc=6.0 min CN=89.1 Runoff=0.76 cfs 0.06 af
Subcatchment 9S: Flow to Bioretention	Runoff Area=6,113 sf 0.00% Impervious Runoff Depth>1.00" Tc=6.0 min CN=60.1 Runoff=0.14 cfs 0.01 af
Subcatchment 10S: Flow to CB#111	Runoff Area=2,406 sf 77.93% Impervious Runoff Depth>3.34" Tc=6.0 min CN=89.8 Runoff=0.21 cfs 0.02 af
Subcatchment 11S: Flow to CB#112	Runoff Area=2,938 sf 58.68% Impervious Runoff Depth>2.66" Tc=6.0 min CN=82.7 Runoff=0.21 cfs 0.01 af
Subcatchment 12S: Flow to CB#113	Runoff Area=4,124 sf 76.60% Impervious Runoff Depth>3.29" Tc=6.0 min CN=89.3 Runoff=0.36 cfs 0.03 af
Subcatchment 13S: Flow to Bioretention	Runoff Area=3,336 sf 0.00% Impervious Runoff Depth>1.06" Tc=6.0 min CN=61.0 Runoff=0.08 cfs 0.01 af
Subcatchment 14S: Roof	Runoff Area=39,522 sf 100.00% Impervious Runoff Depth>4.22" Tc=6.0 min CN=98.0 Runoff=3.95 cfs 0.32 af
Subcatchment 15S: Flow to CB#120	Runoff Area=6,013 sf 85.83% Impervious Runoff Depth>3.64" Tc=6.0 min CN=92.8 Runoff=0.56 cfs 0.04 af
Subcatchment 16S: Flow to Infiltration Flow Length=184'	Runoff Area=20,315 sf 0.00% Impervious Runoff Depth>1.15" Slope=0.0109 '/' Tc=10.7 min CN=62.5 Runoff=0.48 cfs 0.04 af

POST DEVELOPMENT (2) Prepared by Keach Nordstrom Associates, Inc.

Type III 24-hr 10-YEAR Rainfall=4.46" Printed 12/20/2021

HydroCAD® 10.00-26 s/n 01045	© 2020 HydroCAD Software Solutions LLC	Page 45
Pond 1P: Roof Drain	Peak Elev=184.26' Inflow=0.07 c 6.0" Round Culvert n=0.013 L=45.0' S=0.0200 '/' Outflow=0.07 c	fs 0.01 af fs 0.01 af
Pond 2P: CB#100	Peak Elev=183.22' Inflow=0.94 c 15.0" Round Culvert n=0.013 L=90.0' S=0.0100 '/' Outflow=0.94 c	fs 0.07 af fs 0.07 af
Pond 3P: Roof Drain	Peak Elev=183.57' Inflow=0.07 c 6.0" Round Culvert n=0.013 L=37.0' S=0.0300 '/' Outflow=0.07 c	fs 0.01 af fs 0.01 af
Pond 4P: CB#101	Peak Elev=182.88' Inflow=1.58 c 15.0" Round Culvert n=0.013 L=70.0' S=0.0100 '/' Outflow=1.58 c	fs 0.11 af fs 0.11 af
Pond 5P: Stormwater Pond #1	Peak Elev=182.88' Storage=15,611 cf Inflow=2.01 c Outflow=0.06 c	fs 0.16 af fs 0.06 af
Pond 6P: DMH#104	Peak Elev=181.59' Inflow=0.06 c 12.0" Round Culvert n=0.013 L=110.0' S=0.0055 '/' Outflow=0.06 c	fs 0.06 af fs 0.06 af
Pond 8P: CB#110	Peak Elev=176.50' Inflow=0.76 c 12.0" Round Culvert n=0.013 L=13.0' S=0.0200 '/' Outflow=0.76 c	fs 0.06 af fs 0.06 af
Pond 9P: Bioretention Pond #2	2 Peak Elev=176.50' Storage=823 cf Inflow=0.89 c Outflow=0.21 c	fs 0.07 af fs 0.07 af
Pond 10P: DMH#113	Peak Elev=172.26' Inflow=0.38 c 12.0" Round Culvert n=0.013 L=39.0' S=0.0100 '/' Outflow=0.38 c	fs 0.08 af fs 0.08 af
Pond 11P: DMH#114	Peak Elev=171.89' Inflow=0.59 c 12.0" Round Culvert n=0.013 L=38.0' S=0.0100 '/' Outflow=0.59 c	fs 0.10 af fs 0.10 af
Pond 12P: DMH#123	Peak Elev=171.47' Inflow=0.59 c 12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.59 c	fs 0.12 af fs 0.12 af
Pond 13P: CB#111 - Filterra 4x	A Peak Elev=175.04' Storage=14 cf Inflow=0.21 c Outflow=0.21 c	fs 0.02 af fs 0.02 af
Pond 14P: CB#112 - Filterra 4x	Peak Elev=175.04 Storage=14 cr Inflow=0.21 c Outflow=0.21 c	fs 0.01 af
Pond 16P: UnfitIration Bond #3	12.0" Round Culvert n=0.013 L=15.0' S=0.0100 '/' Outflow=0.36 c	fs 0.03 af
Pond 17P: Poof Drain	Discarded=0.06 cfs 0.03 af Primary=0.03 cfs 0.00 af Outflow=0.09 c	fs 0.03 af
Pond 18P: CB#120	15.0" Round Culvert n=0.013 L=53.0' S=0.0500 '/' Outflow=3.95 c	fs 0.32 af
	15.0" Round Culvert n=0.013 L=17.0' S=0.0400 '/' Outflow=4.51 c	fs 0.36 af

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Pond 19P: Infiltration Pond #4 Peak Elev=182.17' Storage=7,612 cf Inflow=4.86 cfs 0.41 af Discarded=0.33 cfs 0.35 af Primary=0.07 cfs 0.02 af Outflow=0.40 cfs 0.37 af

Link A: Wetland

Inflow=0.38 cfs 0.09 af Primary=0.38 cfs 0.09 af

Link B: Central Street

Inflow=0.89 cfs 0.15 af Primary=0.89 cfs 0.15 af

Total Runoff Area = 3.789 acRunoff Volume = 0.75 afAverage Runoff Depth = 2.38"56.01% Pervious = 2.122 ac43.99% Impervious = 1.667 ac

 Type III 24-hr
 10-YEAR Rainfall=4.46"

 Printed
 12/20/2021

 ns LLC
 Page 46

Summary for Subcatchment 1S: Overland Flow to Wetland

Runoff = 0.34 cfs @ 12.11 hrs, Volume= 0.03 af, Depth> 0.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-YEAR Rainfall=4.46"

A	rea (sf)	CN	Descriptio	n					
	480	77.0	Woods, G	lood, HSG	D				
	16,003	55.0	Woods, G	lood, HSG	В				
	3,862	61.0	>75% Gra	>75% Grass cover, Good, HSG B					
	20,345	56.7	Weighted Average						
	20,345	56.7	100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 2S: Overland Flow

Runoff = 0.30 cfs @ 12.10 hrs, Volume= 0.02 af, Depth> 1.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-YEAR Rainfall=4.46"

Ai	rea (sf)	CN	Description					
	246	55.0	Woods, Good, HSG B					
	632	98.0	Paved parking, HSG B					
	530	98.0	Paved parking, HSG D					
	6,698	61.0	>75% Grass cover, Good, HSG B					
	342	80.0	>75% Grass cover, Good, HSG D					
	8,448	66.7	Weighted Average					
	7,286	61.7	86.25% Pervious Area					
	1,162	98.0	13.75% Impervious Area					
т.	1 41	0						
IC	Length	Slope	Velocity Capacity Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec) (cfs)					
6.0			Direct Entry,					

Summary for Subcatchment 3S: Roof Awning

Runoff	=	0.07 cfs @	12.08 hrs,	Volume=	0.01 af, Depth> 4.22"	
--------	---	------------	------------	---------	-----------------------	--

 Type III 24-hr
 10-YEAR Rainfall=4.46"

 Printed
 12/20/2021

 ns LLC
 Page 48

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Area (sf)	CN	Descriptio	n	
707	98.0	Roofs, HS	SG B	
707	98.0	100.00%	Impervious	s Area
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0				Direct Entry,

Summary for Subcatchment 4S: Flow to CB#100

Runoff = 0.87 cfs @ 12.09 hrs, Volume= 0.06 af, Depth> 3.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-YEAR Rainfall=4.46"

A	rea (sf)	CN	Description					
	2,792	98.0	Paved parking, HSG B					
	4,223	98.0	Paved parking, HSG D					
	2,020	61.0	>75% Grass cover, Good, HSG B					
	1,209	80.0	>75% Grass cover, Good, HSG D					
	477	55.0	Woods, Good, HSG B					
	10,721	87.1	Weighted Average					
	3,706	66.4	34.57% Pervious Area					
	7,015	98.0	65.43% Impervious Area					
Тс	Length	Slope	Velocity Capacity Description					
(min)	(feet)	(ft/ft)	(ft/sec) (cfs)					
6.0			Direct Entry,					

Summary for Subcatchment 5S: Roof Awning

Runoff = 0.07 cfs @ 12.08 hrs, Volume= 0.01 af, Depth> 4.22"

Ai	rea (sf)	CN	Descriptio	n	
	707	98.0	Roofs, HS	SG B	
	707	98.0	100.00%	Impervious	s Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 6S: Flow to CB#101

Runoff = 0.56 cfs @ 12.09 hrs, Volume= 0.04 af, Depth> 3.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-YEAR Rainfall=4.46"

A	rea (sf)	CN	Descriptic	n				
	2,027	61.0	>75% Gra	ass cover, (Good, HSG B			
	173	55.0	Woods, G	Good, HSG	B			
	4,872	98.0	Paved pa	rking, HSG	G B			
	7,072	86.3	Weighted	Average				
	2,200	60.5	31.11% Pervious Area					
	4,872	98.0	68.89% Ir	68.89% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 7S: Flow to Stormwater Pond #1

Runoff = 0.50 cfs @ 12.14 hrs, Volume= 0.05 af, Depth> 1.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-YEAR Rainfall=4.46"

A	rea (sf)	CN	Descriptio	on						
	2,021	55.0	Woods, G	Good, HSG	В					
	21,432	61.0	>75% Gra	75% Grass cover, Good, HSG B						
	23,453	60.5	Weighted	/eighted Average						
	23,453	60.5	100.00%	Pervious A	rea					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.9	50	0.0140	0.12		Sheet Flow,					
1.9	92	0.0140	0.83		Grass: Short n= 0.150 P2= 2.84" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps					
07	140	Tatal								

8.7 142 Total

Summary for Subcatchment 8S: Flow to CB#110

Runoff = 0.76 cfs @ 12.09 hrs, Volume= 0.06 af, Depth> 3.26"

 Type III 24-hr
 10-YEAR Rainfall=4.46"

 Printed
 12/20/2021

 ns LLC
 Page 50

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Descriptio	on					
	2,130	61.0	>75% Gra	ass cover, C	Good, HSG B				
	5,476	98.0	Paved pa	rking, HSG	G B				
	1,221	98.0	Paved pa	Paved parking, HSG D					
	8,827	89.1	Weighted	Average					
	2,130	61.0	24.13% P	24.13% Pervious Area					
	6,697	98.0	75.87% Ir	75.87% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	/ Description				
6.0					Direct Entry,				

Summary for Subcatchment 9S: Flow to Bioretention Pond #2

Runoff = 0.14 cfs @ 12.10 hrs, Volume= 0.01 af, Depth> 1.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-YEAR Rainfall=4.46"

(sf)	CN	Descriptio	n			
932	55.0	Woods, G	lood, HSG	B		
,181	61.0	>75% Gra	ass cover, C	Good, HSG B		
,113	60.1	Weighted	Average			
,113	60.1	100.00%	100.00% Pervious Area			
ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
				Direct Entry,		
	<u>(sf)</u> 932 , <u>181</u> ,113 ,113 ength (feet)	(sf) CN 932 55.0 ,181 61.0 ,113 60.1 ,113 60.1 ,ength Slope (feet) (ft/ft)	(sf) CN Description 932 55.0 Woods, G ,181 61.0 >75% Grag ,113 60.1 Weighted ,113 60.1 100.00% I ength Slope Velocity (feet) (ft/ft) (ft/sec)	(sf)CNDescription93255.0Woods, Good, HSG,18161.0>75% Grass cover,,11360.1Weighted Average,11360.1100.00% Pervious AengthSlopeVelocity(feet)(ft/ft)(ft/sec)(cfs)	(sf) CN Description 932 55.0 Woods, Good, HSG B ,181 61.0 >75% Grass cover, Good, HSG B ,113 60.1 Weighted Average ,113 60.1 100.00% Pervious Area ength Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	

Summary for Subcatchment 10S: Flow to CB#111

Runoff = 0.21 cfs @ 12.09 hrs, Volume= 0.02 af, Depth> 3.34"

A	rea (sf)	CN	Descriptio	n				
	531	61.0	>75% Gra	ass cover, (ood, HSG B			
	917	98.0	Paved pa	rking, HSG	В			
	958	98.0	Paved pa	rking, HSG	D			
	2,406	89.8	Weighted Average					
	531	61.0	22.07% Pervious Area					
	1,875	98.0	77.93% Ir	77.93% Impervious Area				
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 11S: Flow to CB#112

Runoff = 0.21 cfs @ 12.09 hrs, Volume= 0.01 af, Depth> 2.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-YEAR Rainfall=4.46"

A	rea (sf)	CN	Descriptic	n					
	1,214	61.0	>75% Gra	ass cover, (Good, HSG B				
	1,704	98.0	Paved pa	rking, HSG	В				
	20	98.0	Paved pa	rking, HSG	D				
	2,938	82.7	Weighted	Average					
	1,214	61.0	41.32% Pervious Area						
	1,724	98.0	58.68% Ir	58.68% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 12S: Flow to CB#113

Runoff = 0.36 cfs @ 12.09 hrs, Volume= 0.03 af, Depth> 3.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-YEAR Rainfall=4.46"

A	rea (sf)	CN	Descriptio	n						
	965	61.0	>75% Gra	>75% Grass cover, Good, HSG B						
	3,159	98.0	Paved pa	Paved parking, HSG B						
	4,124	89.3	Weighted	Average						
	965	61.0	23.40% P	23.40% Pervious Area						
	3,159	98.0	76.60% Ir	76.60% Impervious Area						
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry,					
					-					

Summary for Subcatchment 13S: Flow to Bioretention Pond #3

Runoff = 0.08 cfs @ 12.10 hrs, Volume= 0.01 af, Depth> 1.06"

Area (sf)	CN	Description
3,336	61.0	>75% Grass cover, Good, HSG B
3,336	61.0	100.00% Pervious Area

POST	DEVEL	OPMENT	(2)
------	-------	---------------	-----

(min)

6.0

(feet)

(ft/ft)

(ft/sec)

Prepared by Keach Nordstrom Associates, Inc.

Type III 24-hr 10-YEAR Rainfall=4.46" Printed 12/20/2021 HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Page 52

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descri	iption	ı _	
6.0					Direct	Entr	ry,	
	Summary for Subcatchment 14S: Roof							
Runoff	=	3.95 cf	s@ 12.08	8 hrs, Volu	me=		0.32 af, Depth> 4.22"	
Runoff by Type III 2	y SCS TR 24-hr 10-\	-20 metl YEAR Ra	nod, UH=S ainfall=4.46	CS, Weigh 6"	ited-CN	, Time	ne Span= 0.00-24.00 hrs, dt= 0.02 hrs	
Ar	rea (sf)	CN	Descriptio	n				
	39,396	98.0	Roofs, HS	SG B				
	126	98.0	Roots, HS	<u>SG D</u>				
	39,522	98.0 98.0	Weighted	Average	Area			
	55,522	30.0	100.0070	Impervious	Alea			
Тс	Length	Slope	Velocity	Capacity	Descri	iption	1	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		-		
6.0	6.0 Direct Entry,							
		c	mmon f		hahma	nt 1 E	ESt Flow to CB#120	
		Su	minary io		lchme	nt 15	55. FIOW 10 CB#120	
Runoff	=	0.56 cf	s@ 12.08	8 hrs, Volu	me=		0.04 af, Depth> 3.64"	
Runoff b	v SCS TR	-20 metl	nod. UH=S	CS. Weiah	ted-CN	. Time	ne Span= 0.00-24.00 hrs. dt= 0.02 hrs	
Type III 2	24-hr 10-1	YEAR R	ainfall=4.46	5" ⁽	-	,		
۸.	raa (af)		Descriptio					
AI	ea (SI)		Descriptio	rking USC				
	4 522	90.0 08 0	Paved par	rking, NSG	D B			
	852	61.0	>75% Gra	ass cover. (Good. H	ISG B	3	
	6,013	92.8	Weighted	Averade	, -			
	852	61.0	14.17% P	ervious Are	ea			
	5,161	98.0	85.83% In	npervious A	Area			
Тс	Length	Slope	Velocity	Capacity	Descri	iption	1	

Summary for Subcatchment 16S: Flow to Infiltration Pond #4

Direct Entry,

Runoff = 0.48 cfs @ 12.17 hrs, Volume= 0.04 af, Depth> 1.15"

(cfs)

 Type III 24-hr
 10-YEAR Rainfall=4.46"

 Printed
 12/20/2021

 ns LLC
 Page 53

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Area (sf)	CN	Descriptio	n	
2,499	55.0	Woods, G	Good, HSG	В
15,393	61.0	>75% Gra	ass cover, (Good, HSG B
2,423	80.0	>75% Gra	ass cover, (Good, HSG D
20,315	62.5	Weighted	Average	
20,315	62.5	100.00%	Pervious A	rea
Length	Slope	Velocity	Capacity	Description
(feet)	(ft/ft)	(ft/sec)	(cfs)	
50	0.0109	0.11		Sheet Flow,
				Grass: Short n= 0.150 P2= 2.84"
134	0.0109	0.73		Shallow Concentrated Flow,
				Short Grass Pasture Kv= 7.0 fps
	Area (sf) 2,499 15,393 2,423 20,315 20,315 Length (feet) 50 134	Area (sf) CN 2,499 55.0 15,393 61.0 2,423 80.0 20,315 62.5 20,315 62.5 20,315 62.5 20,315 62.5 15,393 61.0 20,315 62.5 20,315 62.5 20,315 62.5 20,315 0.0109 134 0.0109	Area (sf) CN Descriptic 2,499 55.0 Woods, G 15,393 61.0 >75% Gra 2,423 80.0 >75% Gra 20,315 62.5 Weighted 20,315 62.5 100.00% Elength Slope Velocity (feet) (ft/ft) (ft/sec) 50 0.0109 0.11 134 0.0109 0.73	Area (sf) CN Description 2,499 55.0 Woods, Good, HSG 15,393 61.0 >75% Grass cover, 0 2,423 80.0 >75% Grass cover, 0 20,315 62.5 Weighted Average 20,315 62.5 100.00% Pervious A Elength Slope Velocity Capacity (feet) (ft/ft) (ft/sec) (cfs) 50 0.0109 0.11 134 0.0109 0.73

10.7 184 Total

Summary for Pond 1P: Roof Drain

Inflow Area	=	0.016 ac,10	0.00% Impervious,	Inflow Depth >	4.22" for 2	10-YEAR event
Inflow	=	0.07 cfs @	12.08 hrs, Volume	= 0.01 a	af	
Outflow	=	0.07 cfs @	12.08 hrs, Volume	= 0.01 a	af, Atten= 0%	, Lag= 0.0 min
Primary	=	0.07 cfs @	12.08 hrs, Volume	= 0.01 a	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 184.26' @ 12.08 hrs Flood Elev= 187.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	184.10'	6.0" Round Culvert L= 45.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 184.10' / 183.20' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.07 cfs @ 12.08 hrs HW=184.26' TW=183.21' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.07 cfs @ 1.34 fps)

Summary for Pond 2P: CB#100

Inflow Area	=	0.262 ac, 6	7.57% Impervious	, Inflow Depth >	3.14" for	10-YEAR event
Inflow	=	0.94 cfs @	12.09 hrs, Volum	e= 0.07 a	af	
Outflow	=	0.94 cfs @	12.09 hrs, Volum	ie= 0.07 a	af, Atten= 0%	6, Lag= 0.0 min
Primary	=	0.94 cfs @	12.09 hrs, Volum	e= 0.07 a	af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.22' @ 12.09 hrs Flood Elev= 186.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	182.70'	15.0" Round Culvert
			L= 90.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 182.70' / 181.80' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.92 cfs @ 12.09 hrs HW=183.21' TW=182.59' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.92 cfs @ 2.87 fps)

Summary for Pond 3P: Roof Drain

Inflow Area :	=	0.016 ac,10	0.00% Impe	ervious,	Inflow	Depth >	4.22	2" for 10)-YEAR ever	٦t
Inflow =		0.07 cfs @	12.08 hrs,	Volume	=	0.01 a	af			
Outflow =	:	0.07 cfs @	12.08 hrs,	Volume	=	0.01 a	af, A	tten= 0%,	Lag= 0.0 mi	n
Primary =		0.07 cfs @	12.08 hrs,	Volume	=	0.01 a	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.57' @ 12.08 hrs Flood Elev= 187.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	183.41'	6.0" Round Culvert
			L= 37.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 183.41' / 182.30' S= 0.0300 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.07 cfs @ 12.08 hrs HW=183.57' TW=182.59' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.07 cfs @ 1.34 fps)

Summary for Pond 4P: CB#101

Inflow Area	a =	0.441 ac,	69.25% Impe	ervious, l	Inflow D	epth >	3.13"	for 1	0-YEAR event
Inflow	=	1.58 cfs @	12.09 hrs,	Volume=	=	0.11 a	f		
Outflow	=	1.58 cfs @	12.09 hrs,	Volume=	=	0.11 a	f, Atter	ר= 0%	, Lag= 0.0 min
Primary	=	1.58 cfs @	12.09 hrs,	Volume=	=	0.11 a	f		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 182.88' @ 17.26 hrs Flood Elev= 186.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	181.70'	15.0" Round Culvert L= 70.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.70' / 181.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.49 cfs @ 12.09 hrs HW=182.59' TW=182.35' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.49 cfs @ 2.23 fps)

Summary for Pond 5P: Stormwater Pond #1

Inflow Area	ı =	0.979 ac, 3	31.18% Impe	ervious,	Inflow De	epth >	1.97"	for 10-	YEAR event	
Inflow	=	2.01 cfs @	12.10 hrs,	Volume	=	0.16 a	f			
Outflow	=	0.06 cfs @	17.23 hrs,	Volume	=	0.06 a	f, Atten	= 97%,	Lag= 307.8 r	min
Primary	=	0.06 cfs @	17.23 hrs,	Volume	=	0.06 a	f			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Starting Elev= 182.00' Surf.Area= 5,137 sf Storage= 10,729 cf Peak Elev= 182.88' @ 17.23 hrs Surf.Area= 5,972 sf Storage= 15,611 cf (4,882 cf above start) Flood Elev= 185.00' Surf.Area= 7,127 sf Storage= 22,939 cf (12,210 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 248.9 min (1,072.8 - 823.9)

Volume	Invert	Avail.S	Storage	Storage Description	on		
#1	179.00'	22	,939 cf	Custom Stage Da	ita (Irregular) List	ted below (Recalc)	
Elevation	ຸ ິິ	ırf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-ft)	(teet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
179.00)	2,168	252.3	0	0	2,168	
180.00)	3,043	312.6	2,593	2,593	4,893	
181.00)	4,069	357.9	3,544	6,137	7,334	
182.00)	5,137	339.8	4,593	10,729	8,397	
184.00)	7,127	365.6	12,210	22,939	10,008	
Device	Routing	Inve	rt Outle	et Devices			
#1 #2 #3 #4	Primary Device 1 Device 1 Device 1	181.9 182.0 182.8 183.5	5' 12.0' L= 9' Inlet n= 0 0' 1.0'' 4' 2.0'' 0' 48.0' Limit	" Round Culvert 0.0' CMP, square / Outlet Invert= 18 .013 Corrugated P W x 2.0" H Vert. O Vert. Orifice/Grate " x 48.0" Horiz. Ori ted to weir flow at lo	edge headwall, I 1.95' / 181.50' S E, smooth interio rifice/Grate C= C= 0.600 ifice/Grate C= (ow heads	Ke= 0.500 = 0.0050 '/' Cc= 0.90 r, Flow Area= 0.79 sf 0.600 0.600	0
Primary (1=Cul -2=(-3=(-4=(OutFlow M vert (Passe Drifice/Grat Drifice/Grat Drifice/Grat	ax=0.06 cf es 0.06 cfs e (Orifice e (Orifice e (Contro	s @ 17.2 of 2.00 c Controls Controls Is 0.00 c	23 hrs HW=182.88 cfs potential flow) 0.06 cfs @ 4.29 fp 0.00 cfs @ 0.68 fp fs)	' TW=181.59' (l s) s)	Dynamic Tailwater)	

Summary for Pond 6P: DMH#104

Inflow Area	=	0.979 ac, 3	31.18% Impe	rvious,	Inflow Depth >	0.73"	for 10	-YEAR event
Inflow =	=	0.06 cfs @	17.23 hrs,	Volume=	= 0.06	af		
Outflow =	=	0.06 cfs @	17.24 hrs, `	Volume=	= 0.06	af, Atte	en= 0%,	Lag= 0.5 min
Primary =	=	0.06 cfs @	17.24 hrs, `	Volume=	= 0.06	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Peak Elev= 181.59' @ 17.24 hrs Flood Elev= 186.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	181.45'	12.0" Round Culvert
			L= 110.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.45' / 180.85' S= 0.0055 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.06 cfs @ 17.24 hrs HW=181.59' TW=0.00' (Dynamic Tailwater) ↓ 1=Culvert (Barrel Controls 0.06 cfs @ 1.39 fps)

Summary for Pond 8P: CB#110

Inflow Area	a =	0.203 ac, 7	75.87% Impe	ervious,	Inflow Depth	> 3.26"	for 1	0-YEAR event
Inflow	=	0.76 cfs @	12.09 hrs,	Volume	= 0.06	6 af		
Outflow	=	0.76 cfs @	12.09 hrs,	Volume	= 0.06	3 af, Atte	en= 0%,	, Lag= 0.0 min
Primary	=	0.76 cfs @	12.09 hrs,	Volume	= 0.06	6 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 176.50' @ 12.52 hrs Flood Elev= 180.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	175.76'	12.0" Round Culvert
	-		L= 13.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 175.76' / 175.50' S= 0.0200 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.65 cfs @ 12.09 hrs HW=176.23' TW=176.01' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.65 cfs @ 2.64 fps)

Summary for Pond 9P: Bioretention Pond #2

Inflow Area	a =	0.343 ac, 4	4.83% Impervious	s, Inflow Depth >	2.34" f	or 10-YEAR event
Inflow	=	0.89 cfs @	12.09 hrs, Volum	ne= 0.07 a	af	
Outflow	=	0.21 cfs @	12.51 hrs, Volum	ne= 0.07 a	af, Atten=	77%, Lag= 25.2 min
Primary	=	0.21 cfs @	12.51 hrs, Volum	ne= 0.07 a	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 176.50' @ 12.51 hrs Surf.Area= 886 sf Storage= 823 cf Flood Elev= 178.10' Surf.Area= 1,676 sf Storage= 2,684 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 31.0 min (843.6 - 812.6)

Volume	Invert	Avail.Storage	Storage Description
#1	175.00'	2,684 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Flevation

Surf Area

Type III 24-hr 10-YEAR Rainfall=4.46"

Wet Area

Cum Store

Prepared by Keach	Nordstrom /	Associates, Ir	nc.
HydroCAD® 10.00-26	s/n 01045 © 2	2020 HydroCAI	<u> D Software Solutions LLC</u>

Printed 12/20/2021 Page 57

Elevatio	on >t)	Surf.Area	Perim. (feet)	Inc.Store	Cum.Store	Wet.Area (sq-ft)
175 (<u>, , , , , , , , , , , , , , , , , , , </u>	103	87.3	0	0	103
175.0	00 10	71/	1/0 7	426	426	1 376
170.0	00	1,080	196.1	891	1,317	2,664
178.0	00	1,676	200.8	1,367	2,684	2,912
Device	Routing	Invert	Outlet	Devices		
#1	Primary	175.00	10.000	in/hr Exfiltration o	over Surface area	
#2	Device 1	172.50	12.0"	Round Culvert		
			L= 18.0 Inlet / 0 n= 0.01)' CMP, square ed Dutlet Invert= 172.5 13 Corrugated PE,	lge headwall, Ke= i0' / 171.96' S= 0. smooth interior, F	0.500 0300 '/' Cc= 0.900 Flow Area= 0.79 sf
#3 #4	Device 1 Device 1	176.20 176.80	2.0" Ve 48.0" x Limited	ert. Orifice/Grate 48.0" Horiz. Orific to weir flow at low	C= 0.600 ce/Grate C= 0.60 heads	0

Inc Store

Primary OutFlow Max=0.21 cfs @ 12.51 hrs HW=176.50' TW=172.18' (Dynamic Tailwater) -**1=Exfiltration** (Exfiltration Controls 0.21 cfs)

2=Culvert (Passes < 4.63 cfs potential flow)

-3=Orifice/Grate (Passes < 0.05 cfs potential flow)

-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 10P: DMH#113

Inflow Area	=	0.398 ac, 4	9.42% Impe	ervious,	Inflow	Depth >	2.48"	for 1	0-YEAR event
Inflow	=	0.38 cfs @	12.10 hrs,	Volume	=	0.08 a	f		
Outflow	=	0.38 cfs @	12.10 hrs,	Volume	=	0.08 a	f, Atter	n= 0%,	Lag= 0.0 min
Primary	=	0.38 cfs @	12.10 hrs,	Volume	=	0.08 a	f		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 172.26' @ 12.10 hrs Flood Elev= 176.85'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.92'	12.0" Round Culvert
			L= 39.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.92' / 171.53' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.37 cfs @ 12.10 hrs HW=172.25' TW=171.89' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.37 cfs @ 2.42 fps)

Summary for Pond 11P: DMH#114

Inflow Area	=	0.466 ac, 🗄	50.76% Impervi	ous, Inflow [Depth >	2.50"	for 10	-YEAR event
Inflow	=	0.59 cfs @	12.09 hrs, Vo	lume=	0.10 a	f		
Outflow	=	0.59 cfs @	12.09 hrs, Vo	lume=	0.10 a	f, Atten	= 0%,	Lag= 0.0 min
Primary	=	0.59 cfs @	12.09 hrs, Vo	lume=	0.10 a	f		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Peak Elev= 171.89' @ 12.10 hrs Flood Elev= 177.35'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.48'	12.0" Round Culvert L= 38.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.48' / 171.10' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.58 cfs @ 12.09 hrs HW=171.89' TW=171.47' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.58 cfs @ 2.82 fps)

Summary for Pond 12P: DMH#123

Inflow Area	a =	2.149 ac, 6	2.12% Imp	ervious,	Inflow Depth	> 0.68	3" for 1	0-YEAR event
Inflow	=	0.59 cfs @	12.09 hrs,	Volume=	= 0.12	2 af		
Outflow	=	0.59 cfs @	12.09 hrs,	Volume=	= 0.12	2 af, At	tten= 0%,	Lag= 0.0 min
Primary	=	0.59 cfs @	12.09 hrs,	Volume=	= 0.12	2 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 171.47' @ 12.09 hrs Flood Elev= 176.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.05'	12.0" Round Culvert
	,		L= 20.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.05' / 170.85' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior. Flow Area= 0.79 sf

Primary OutFlow Max=0.58 cfs @ 12.09 hrs HW=171.47' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.58 cfs @ 2.80 fps)

Summary for Pond 13P: CB#111 - Filterra 4x4

Inflow Area	=	0.055 ac, 7	7.93% Imper	vious, Inflow [Depth >	3.34" f	or 10-	-YEAR event
Inflow	=	0.21 cfs @	12.09 hrs, V	/olume=	0.02 a	f		
Outflow	=	0.21 cfs @	12.09 hrs, V	/olume=	0.02 a	f, Atten=	:0%,	Lag= 0.2 min
Primary	=	0.21 cfs @	12.09 hrs, V	/olume=	0.02 a	f		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 175.04' @ 12.09 hrs Surf.Area= 16 sf Storage= 14 cf Flood Elev= 175.90' Surf.Area= 16 sf Storage= 16 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.9 min (795.6 - 794.7)

Volume	Invert	Avail.Storage	Storage Description
#1	174.19'	16 cf	4.00'W x 4.00'L x 1.00'H Prismatoid

 Type III 24-hr
 10-YEAR Rainfall=4.46"

 Printed
 12/20/2021

 ns LLC
 Page 59

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Device 3	174.19'	140.000 in/hr Exfiltration over Surface area
#2	Device 3	174.94'	1.7' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	172.02'	12.0" Round Culvert
	-		L= 5.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 172.02' / 171.97' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.21 cfs @ 12.09 hrs HW=175.04' TW=172.25' (Dynamic Tailwater) -3=Culvert (Passes 0.21 cfs of 6.01 cfs potential flow) -1=Exfiltration (Exfiltration Controls 0.05 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.16 cfs @ 0.90 fps)

Summary for Pond 14P: CB#112 - Filterra 4x4

Inflow Area	ı =	0.067 ac,	58.68% Impervic	ous, Inflow Depth >	2.66" for 10-YEAR eve	ent
Inflow	=	0.21 cfs @	12.09 hrs, Vol	ume= 0.01	af	
Outflow	=	0.21 cfs @	12.09 hrs, Vol	ume= 0.01	af, Atten= 0%, Lag= 0.0 n	nin
Primary	=	0.21 cfs @	12.09 hrs, Vol	ume= 0.01	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 175.04' @ 12.09 hrs Surf.Area= 16 sf Storage= 14 cf Flood Elev= 175.90' Surf.Area= 16 sf Storage= 16 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.8 min (819.1 - 818.4)

Volume	Invert	Avail.Stor	rage Storage Description
#1	174.19'	1	16 cf 4.00'W x 4.00'L x 1.00'H Prismatoid
Device	Routing	Invert	Outlet Devices
#1	Device 3	174.19'	140.000 in/hr Exfiltration over Surface area
#2	Device 3	174.94'	1.7' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	172.02'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 172.02' / 171.72' S= 0.0500 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.21 cfs @ 12.09 hrs HW=175.04' TW=171.89' (Dynamic Tailwater) **3=Culvert** (Passes 0.21 cfs of 6.01 cfs potential flow)

1=Exfiltration (Exfiltration Controls 0.05 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.16 cfs @ 0.90 fps)

Summary for Pond 15P: CB#113

Inflow Area	=	0.095 ac,	76.60% Impe	ervious,	Inflow Depth >	> 3.29"	for 2	10-YEAR event
Inflow	=	0.36 cfs @	12.09 hrs,	Volume	= 0.03	af		
Outflow	=	0.36 cfs @	12.09 hrs,	Volume	= 0.03	af, Atte	n= 0%	, Lag= 0.0 min
Primary	=	0.36 cfs @	12.09 hrs,	Volume	= 0.03	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 178.61' @ 12.54 hrs Flood Elev= 181.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	178.15'	12.0" Round Culvert
	·		L= 15.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 178.15' / 178.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.32 cfs @ 12.09 hrs HW=178.48' TW=178.31' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.32 cfs @ 2.12 fps)

Summary for Pond 16P: InfitIration Pond #3

Inflow Area	=	0.171 ac, 4	2.35% Impervious,	Inflow Depth >	2.29" fo	or 10-YEAR e	vent
Inflow	=	0.44 cfs @	12.09 hrs, Volume	= 0.03 a	f		
Outflow	=	0.09 cfs @	12.53 hrs, Volume	= 0.03 a	f, Atten=	79%, Lag= 26	6.4 min
Discarded	=	0.06 cfs @	12.53 hrs, Volume	= 0.03 a	f		
Primary	=	0.03 cfs @	12.53 hrs, Volume	= 0.00 a	f		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 178.60' @ 12.53 hrs Surf.Area= 864 sf Storage= 434 cf Flood Elev= 180.00' Surf.Area= 1,583 sf Storage= 2,141 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 50.8 min (864.6 - 813.8)

Volume	Invert	Avail.S	Storage	Storage Descriptio	n		
#1	178.00'	2	,141 cf	Custom Stage Dat	t a (Irregular) Listed	l below (Recalc)	
Elevatio	on Su	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(166	el)	(sq-it)	(leet)			(sq-it)	
178.0	00	585	143.3	0	0	585	
179.0	00	1,078	186.5	819	819	1,731	
180.0	00	1,583	162.2	1,322	2,141	2,427	
Device	Routing	Inve	rt Outle	et Devices			
#1	Discarded	178.0	0' 3.00	0 in/hr Exfiltration	over Surface area		
#2	Primary	172.1	0' 12.0	" Round Culvert			
	,		L= 1	3.0' CMP. square	edae headwall. Ke	= 0.500	
			Inlet	/ Outlet Invert= 172	10' / 171 45' S= (0.0500 '/' Cc= 0.900	
			n=0	013 Corrugated PI	= smooth interior	Elow Area = 0.79 sf	
#2	Dovice 2	170 5	0' 6 0''	Vort Orifice/Grote	-, should interior,		
#3	Device Z	U/0.0	U 0.U	vert. Ornice/Grate	U = 0.000		
Type III 24-hr 10-YEAR Rainfall=4.46" Printed 12/20/2021 ns LLC Page 61

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

#4 Device 2 179.50' **48.0" x 48.0" Horiz. Orifice/Grate** C= 0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.06 cfs @ 12.53 hrs HW=178.60' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=0.03 cfs @ 12.53 hrs HW=178.60' TW=171.39' (Dynamic Tailwater) 2=Culvert (Passes 0.03 cfs of 9.27 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.03 cfs @ 1.09 fps) -4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 17P: Roof Drain

Inflow Area	=	0.907 ac,10	0.00% Impe	rvious, In	flow Depth >	4.22" f	or 10-YEAR event
Inflow	=	3.95 cfs @	12.08 hrs, \	Volume=	0.32 a	f	
Outflow	=	3.95 cfs @	12.08 hrs, \	Volume=	0.32 a	f, Atten=	0%, Lag= 0.0 min
Primary	=	3.95 cfs @	12.08 hrs, \	Volume=	0.32 a	f	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 184.50' @ 12.08 hrs Flood Elev= 186.75'

Device	Routing	Invert	Outlet Devices
#1	Primary	183.43'	15.0" Round Culvert
	ŗ		L= 53.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 183.43' / 180.78' S= 0.0500 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.93 cfs @ 12.08 hrs HW=184.50' TW=181.88' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.93 cfs @ 3.52 fps)

Summary for Pond 18P: CB#120

Inflow Are	a =	1.045 ac, 9	8.13% Impervious	, Inflow Depth >	4.14" for	10-YEAR event
Inflow	=	4.51 cfs @	12.08 hrs, Volum	ie= 0.36 a	af	
Outflow	=	4.51 cfs @	12.08 hrs, Volum	ie= 0.36 a	af, Atten= 0	%, Lag= 0.0 min
Primary	=	4.51 cfs @	12.08 hrs, Volum	ie= 0.36 a	af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 182.18' @ 13.19 hrs Flood Elev= 185.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	180.68'	15.0" Round Culvert L= 17.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 180.68' / 180.00' S= 0.0400 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.33 cfs @ 12.08 hrs HW=181.88' TW=181.28' (Dynamic Tailwater) -1=Culvert (Outlet Controls 4.33 cfs @ 4.59 fps)

Summary for Pond 19P: Infiltration Pond #4

Inflow Area	=	1.512 ac, 6	7.86% Impervious,	Inflow Depth >	3.22" f	or 10-1	YEAR event
Inflow	=	4.86 cfs @	12.09 hrs, Volume	e= 0.41 a	af		
Outflow	=	0.40 cfs @	13.19 hrs, Volume	e= 0.37 a	af, Atten=	92%,	Lag= 66.3 min
Discarded	=	0.33 cfs @	13.19 hrs, Volume	e= 0.35 a	af		
Primary	=	0.07 cfs @	13.19 hrs, Volume	e= 0.02 a	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 182.17' @ 13.19 hrs Surf.Area= 4,710 sf Storage= 7,612 cf Flood Elev= 184.25' Surf.Area= 6,860 sf Storage= 18,117 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 161.5 min (928.5 - 767.0)

Volume	Invert	Avail.St	orage	ge Storage Description				
#1	#1 180.00' 18,11		117 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)		
Elevatio (fee	on Su et)	rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
180.0 182.0 184.0	00 00 00	2,396 4,527 6,860	320.8 397.5 378.5	0 6,811 11,306	0 6,811 18,117	2,396 6,839 8,245		
Device	Routing	Inver	t Outle	et Devices				
#1 #2	#1 Discarded 180.00' #2 Primary 175.75'		' 3.00 ' 12.0 L= 5 Inlet n= 0	0 in/hr Exfiltration of Round Culvert 5.0' CMP, square eq / Outlet Invert= 175.7 .013 Corrugated PE	ver Surface area dge headwall, Ke= 75' / 173.00' S= 0 , smooth interior, F	= 0.500 .0500 '/' Cc= 0.900 Flow Area= 0.79 sf		
#3 #4 #5	#3Device 2181.60'#4Device 2182.50'#5Device 2183.85'		' 2.0" ' 4.0" ' 48.0 ' Limit	 2.0" Vert. Orifice/Grate C= 0.600 4.0" Vert. Orifice/Grate C= 0.600 48.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads 				

Discarded OutFlow Max=0.33 cfs @ 13.19 hrs HW=182.17' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.33 cfs)

Primary OutFlow Max=0.07 cfs @ 13.19 hrs HW=182.17' TW=171.34' (Dynamic Tailwater) 2=Culvert (Passes 0.07 cfs of 9.20 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.07 cfs @ 3.37 fps) -4=Orifice/Grate (Controls 0.00 cfs) -5=Orifice/Grate (Controls 0.00 cfs)

Summary for Link A: Wetland

Inflow Area	a =	1.446 ac, 2	1.11% Imp	ervious,	Inflow Depth >	0.76	6" for 10	-YEAR event
Inflow	=	0.38 cfs @	12.11 hrs,	Volume	= 0.09 a	af		
Primary	=	0.38 cfs @	12.11 hrs,	Volume	= 0.09 a	af, A	tten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Central Street

Inflow Are	ea =	2.343 ac, 5	8.11% Imp	ervious,	Inflow	Depth >	0.74" f	or 10)-YEAR event
Inflow	=	0.89 cfs @	12.09 hrs,	Volume	=	0.15 af			
Primary	=	0.89 cfs @	12.09 hrs,	Volume	=	0.15 af	, Atten=	0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

 Type III 24-hr
 25-YEAR Rainfall=5.65"

 Printed
 12/20/2021

 ns LLC
 Page 64

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

> Time span=0.00-24.00 hrs, dt=0.02 hrs, 1201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Overland Flow to	Runoff Area=20,345 sf 0.00% Impervious Runoff Depth>1.44" Tc=6.0 min CN=56.7 Runoff=0.70 cfs 0.06 af
Subcatchment 2S: Overland Flow	Runoff Area=8,448 sf 13.75% Impervious Runoff Depth>2.24" Tc=6.0 min CN=66.7 Runoff=0.50 cfs 0.04 af
Subcatchment 3S: Roof Awning	Runoff Area=707 sf 100.00% Impervious Runoff Depth>5.41" Tc=6.0 min CN=98.0 Runoff=0.09 cfs 0.01 af
Subcatchment 4S: Flow to CB#100	Runoff Area=10,721 sf 65.43% Impervious Runoff Depth>4.19" Tc=6.0 min CN=87.1 Runoff=1.18 cfs 0.09 af
Subcatchment 5S: Roof Awning	Runoff Area=707 sf 100.00% Impervious Runoff Depth>5.41" Tc=6.0 min CN=98.0 Runoff=0.09 cfs 0.01 af
Subcatchment 6S: Flow to CB#101	Runoff Area=7,072 sf 68.89% Impervious Runoff Depth>4.11" Tc=6.0 min CN=86.3 Runoff=0.76 cfs 0.06 af
Subcatchment 7S: Flow to Stormwater Flow Length=142'	Runoff Area=23,453 sf 0.00% Impervious Runoff Depth>1.73" Slope=0.0140 '/' Tc=8.7 min CN=60.5 Runoff=0.93 cfs 0.08 af
Subcatchment 8S: Flow to CB#110	Runoff Area=8,827 sf 75.87% Impervious Runoff Depth>4.40" Tc=6.0 min CN=89.1 Runoff=1.01 cfs 0.07 af
Subcatchment 9S: Flow to Bioretention	Runoff Area=6,113 sf 0.00% Impervious Runoff Depth>1.70" Tc=6.0 min CN=60.1 Runoff=0.26 cfs 0.02 af
Subcatchment 10S: Flow to CB#111	Runoff Area=2,406 sf 77.93% Impervious Runoff Depth>4.48" Tc=6.0 min CN=89.8 Runoff=0.28 cfs 0.02 af
Subcatchment 11S: Flow to CB#112	Runoff Area=2,938 sf 58.68% Impervious Runoff Depth>3.73" Tc=6.0 min CN=82.7 Runoff=0.29 cfs 0.02 af
Subcatchment 12S: Flow to CB#113	Runoff Area=4,124 sf 76.60% Impervious Runoff Depth>4.43" Tc=6.0 min CN=89.3 Runoff=0.47 cfs 0.03 af
Subcatchment 13S: Flow to Bioretention	Runoff Area=3,336 sf 0.00% Impervious Runoff Depth>1.77" Tc=6.0 min CN=61.0 Runoff=0.15 cfs 0.01 af
Subcatchment 14S: Roof	Runoff Area=39,522 sf 100.00% Impervious Runoff Depth>5.41" Tc=6.0 min CN=98.0 Runoff=5.01 cfs 0.41 af
Subcatchment 15S: Flow to CB#120	Runoff Area=6,013 sf 85.83% Impervious Runoff Depth>4.81" Tc=6.0 min CN=92.8 Runoff=0.73 cfs 0.06 af
Subcatchment 16S: Flow to Infiltration Flow Length=184'	Runoff Area=20,315 sf 0.00% Impervious Runoff Depth>1.89" Slope=0.0109 '/' Tc=10.7 min CN=62.5 Runoff=0.84 cfs 0.07 af

POST DEVELOPMENT (2) Prepared by Keach Nordstrom Associates, Inc.

Type III 24-hr 25-YEAR Rainfall=5.65" Printed 12/20/2021

HydroCAD® 10.00-26 s/n 01045	5 © 2020 HydroCAD Software Solutions LLC	<u>Page 65</u>
Pond 1P: Roof Drain	Peak Elev=184.28' Inflow=0.09 cfs 6.0" Round Culvert n=0.013 L=45.0' S=0.0200 '/' Outflow=0.09 cfs	0.01 af 0.01 af
Pond 2P: CB#100	Peak Elev=183.33' Inflow=1.27 cfs 15.0" Round Culvert n=0.013 L=90.0' S=0.0100 '/' Outflow=1.27 cfs	0.09 af 0.09 af
Pond 3P: Roof Drain	Peak Elev=183.59' Inflow=0.09 cfs 6.0" Round Culvert n=0.013 L=37.0' S=0.0300 '/' Outflow=0.09 cfs	0.01 af 0.01 af
Pond 4P: CB#101	Peak Elev=183.18' Inflow=2.12 cfs 15.0" Round Culvert n=0.013 L=70.0' S=0.0100 '/' Outflow=2.12 cfs	0.16 af 0.16 af
Pond 5P: Stormwater Pond #	1 Peak Elev=183.18' Storage=17,444 cf Inflow=2.96 cfs Outflow=0.12 cfs	0.23 af 0.11 af
Pond 6P: DMH#104	Peak Elev=181.65' Inflow=0.12 cfs 12.0" Round Culvert n=0.013 L=110.0' S=0.0055 '/' Outflow=0.12 cfs	0.11 af 0.11 af
Pond 8P: CB#110	Peak Elev=176.98' Inflow=1.01 cfs 12.0" Round Culvert n=0.013 L=13.0' S=0.0200 '/' Outflow=1.01 cfs	0.07 af 0.07 af
Pond 9P: Bioretention Pond #	#2 Peak Elev=176.98' Storage=1,294 cf Inflow=1.27 cfs Outflow=0.25 cfs	0.09 af 0.09 af
Pond 10P: DMH#113	Peak Elev=172.31' Inflow=0.47 cfs 12.0" Round Culvert n=0.013 L=39.0' S=0.0100 '/' Outflow=0.47 cfs	0.11 af 0.11 af
Pond 11P: DMH#114	Peak Elev=171.96' Inflow=0.76 cfs 12.0" Round Culvert n=0.013 L=38.0' S=0.0100 '/' Outflow=0.76 cfs	0.14 af 0.14 af
Pond 12P: DMH#123	Peak Elev=171.55' Inflow=0.80 cfs 12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.80 cfs	0.21 af 0.21 af
Pond 13P: CB#111 - Filterra 4	Peak Elev=175.07' Storage=14 cf Inflow=0.28 cfs Outflow=0.28 cfs	0.02 af 0.02 af
Pond 14P: CB#112 - Filterra 4	Peak Elev=175.08' Storage=14 cf Inflow=0.29 cfs Outflow=0.29 cfs	0.02 af 0.02 af
Pond 15P: CB#113	Peak Elev=178.74' Inflow=0.47 cfs 12.0" Round Culvert n=0.013 L=15.0' S=0.0100 '/' Outflow=0.47 cfs	0.03 af 0.03 af
Pond 16P: InfitIration Pond #3	3 Peak Elev=178.74' Storage=554 cf Inflow=0.62 cfs Discarded=0.06 cfs 0.04 af Primary=0.15 cfs 0.01 af Outflow=0.22 cfs	0.05 af 0.05 af
Pond 17P: Roof Drain	Peak Elev=184.78' Inflow=5.01 cfs 15.0" Round Culvert n=0.013 L=53.0' S=0.0500 '/' Outflow=5.01 cfs	0.41 af 0.41 af
Pond 18P: CB#120	Peak Elev=182.76' Inflow=5.74 cfs 15.0" Round Culvert n=0.013 L=17.0' S=0.0400 '/' Outflow=5.74 cfs	0.46 af 0.46 af

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

 Pond 19P: Infiltration Pond #4
 Peak Elev=182.75' Storage=10,523 cf
 Inflow=6.40 cfs
 0.54 af

 Discarded=0.37 cfs
 0.40 af
 Primary=0.23 cfs
 0.07 af
 Outflow=0.60 cfs
 0.47 af

Link A: Wetland

Inflow=0.75 cfs 0.17 af Primary=0.75 cfs 0.17 af

Link B: Central Street

Inflow=1.30 cfs 0.25 af Primary=1.30 cfs 0.25 af

Total Runoff Area = 3.789 acRunoff Volume = 1.05 afAverage Runoff Depth = 3.31"56.01% Pervious = 2.122 ac43.99% Impervious = 1.667 ac

 Type III 24-hr
 25-YEAR Rainfall=5.65"

 Printed
 12/20/2021

 ns LLC
 Page 66

Summary for Subcatchment 1S: Overland Flow to Wetland

Runoff = 0.70 cfs @ 12.10 hrs, Volume= 0.06 af, Depth> 1.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-YEAR Rainfall=5.65"

Are	ea (sf)	CN	Descriptio	n			
	480	77.0	Woods, G	iood, HSG	D		
1	6,003	55.0	Woods, G	iood, HSG	В		
	3,862	61.0	>75% Gra	iss cover, C	Good, HSG B		
2	0,345	56.7	Weighted	Weighted Average			
2	0,345	56.7	100.00% I	Pervious Ar	rea		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment 2S: Overland Flow

Runoff = 0.50 cfs @ 12.09 hrs, Volume= 0.04 af, Depth> 2.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-YEAR Rainfall=5.65"

Ar	rea (sf)	CN	Description
	246	55.0	Woods, Good, HSG B
	632	98.0	Paved parking, HSG B
	530	98.0	Paved parking, HSG D
	6,698	61.0	>75% Grass cover, Good, HSG B
	342	80.0	>75% Grass cover, Good, HSG D
	8,448	66.7	Weighted Average
	7,286	61.7	86.25% Pervious Area
	1,162	98.0	13.75% Impervious Area
-			
IC	Length	Slope	Velocity Capacity Description
(min)	(feet)	(ft/ft)	(ft/sec) (cfs)
6.0			Direct Entry,

Summary for Subcatchment 3S: Roof Awning

Runoff	=	0.09 cfs @	12.08 hrs,	Volume=	0.01 af, Depth> 5.4	11"
--------	---	------------	------------	---------	---------------------	-----

 Type III 24-hr
 25-YEAR Rainfall=5.65"

 Printed
 12/20/2021

 ns LLC
 Page 68

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

CN	Descriptio	n	
98.0	Roofs, HS	SG B	
98.0	100.00%	Impervious	s Area
Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
			Direct Entry,
	CN 98.0 98.0 Slope (ft/ft)	CNDescription98.0Roofs, HS98.0100.00%SlopeVelocity (ft/ft)(ft/ft)(ft/sec)	CNDescription98.0Roofs, HSG B98.0100.00% ImperviousSlopeVelocity(ft/ft)(ft/sec)(cfs)

Summary for Subcatchment 4S: Flow to CB#100

Runoff = 1.18 cfs @ 12.09 hrs, Volume= 0.09 af, Depth> 4.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-YEAR Rainfall=5.65"

A	rea (sf)	CN	Description			
	2,792	98.0	Paved parking, HSG B			
	4,223	98.0	Paved parking, HSG D			
	2,020	61.0	>75% Grass cover, Good, HSG B			
	1,209	80.0	>75% Grass cover, Good, HSG D			
	477	55.0	Woods, Good, HSG B			
	10,721	87.1	Weighted Average			
	3,706	66.4	34.57% Pervious Area			
	7,015	98.0	65.43% Impervious Area			
Тс	Length	Slope	Velocity Capacity Description			
(min)	(feet)	(ft/ft)	(ft/sec) (cfs)			
6.0			Direct Entry,			

Summary for Subcatchment 5S: Roof Awning

Runoff = 0.09 cfs @ 12.08 hrs, Volume= 0.01 af, Depth> 5.41"

Ai	rea (sf)	CN	Descriptio	n	
	707	98.0	Roofs, HS	SG B	
	707	98.0	100.00%	Impervious	s Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 6S: Flow to CB#101

Runoff = 0.76 cfs @ 12.09 hrs, Volume= 0.06 af, Depth> 4.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-YEAR Rainfall=5.65"

A	rea (sf)	CN	Descriptic	n			
	2,027	61.0	>75% Gra	ass cover, (, Good, HSG B		
	173	55.0	Woods, G	Good, HSG	G B		
	4,872	98.0	Paved pa	rking, HSG	G B		
	7,072	86.3	Weighted	Average			
	2,200	60.5	31.11% Pervious Area				
	4,872	98.0	68.89% Ir	68.89% Impervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	y Description)		
6.0					Direct Entry,		

Summary for Subcatchment 7S: Flow to Stormwater Pond #1

Runoff = 0.93 cfs @ 12.13 hrs, Volume= 0.08 af, Depth> 1.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-YEAR Rainfall=5.65"

A	rea (sf)	CN	Descriptio	on	
	2,021	55.0	Woods, G	Good, HSG	В
	21,432	61.0	>75% Gra	ass cover, C	Good, HSG B
	23,453	60.5	Weighted	Average	
	23,453	60.5	100.00%	Pervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.9	50	0.0140	0.12		Sheet Flow,
1.9	92	0.0140	0.83		Grass: Short n= 0.150 P2= 2.84" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
07	140	Tatal			

8.7 142 Total

Summary for Subcatchment 8S: Flow to CB#110

Runoff = 1.01 cfs @ 12.09 hrs, Volume= 0.07 af, Depth> 4.40"

 Type III 24-hr
 25-YEAR Rainfall=5.65"

 Printed
 12/20/2021

 ns LLC
 Page 70

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

rea (sf)	CN	Descriptio	n					
2,130	61.0	>75% Gra	ass cover, (Good, HSG B				
5,476	98.0	Paved pa	Paved parking, HSG B					
1,221	98.0	Paved pa	Paved parking, HSG D					
8,827	89.1	Weighted	Average					
2,130	61.0	24.13% Pervious Area						
6,697	98.0	75.87% Impervious Area						
			-					
Length	Slope	Velocity	Capacity	Description				
(feet)	(ft/ft)	(ft/sec)	(cfs)					
				Direct Entry,				
	rea (sf) 2,130 5,476 1,221 8,827 2,130 6,697 Length (feet)	rea (sf) CN 2,130 61.0 5,476 98.0 1,221 98.0 8,827 89.1 2,130 61.0 6,697 98.0 Length Slope (feet) (ft/ft)	rea (sf) CN Description 2,130 61.0 >75% Grassing 5,476 98.0 Paved pa 1,221 98.0 Paved pa 8,827 89.1 Weighted 2,130 61.0 24.13% P 6,697 98.0 75.87% Ir Length Slope Velocity (feet) (ft/ft) (ft/sec)	rea (sf)CNDescription2,13061.0>75% Grass cover, 05,47698.0Paved parking, HSG1,22198.0Paved parking, HSG8,82789.1Weighted Average2,13061.024.13% Pervious Are6,69798.075.87% Impervious AreLengthSlopeVelocity(feet)(ft/ft)(ft/sec)(cfs)	rea (sf)CNDescription2,13061.0>75% Grass cover, Good, HSG B5,47698.0Paved parking, HSG B1,22198.0Paved parking, HSG D8,82789.1Weighted Average2,13061.024.13% Pervious Area6,69798.075.87% Impervious AreaLengthSlopeVelocityCapacityLengthSlopeVelocityCapacityDirect Entry,			

Summary for Subcatchment 9S: Flow to Bioretention Pond #2

Runoff = 0.26 cfs @ 12.10 hrs, Volume= 0.02 af, Depth> 1.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-YEAR Rainfall=5.65"

(sf)	CN	Descriptio	n				
932	55.0	Woods, G	lood, HSG	B			
,181	61.0	>75% Gra	>75% Grass cover, Good, HSG B				
,113	60.1	Weighted	Average				
,113	60.1	100.00%	100.00% Pervious Area				
ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
				Direct Entry,			
	<u>(sf)</u> 932 , <u>181</u> ,113 ,113 ength (feet)	(sf) CN 932 55.0 ,181 61.0 ,113 60.1 ,113 60.1 ,ength Slope (feet) (ft/ft)	(sf) CN Description 932 55.0 Woods, G ,181 61.0 >75% Grading ,113 60.1 Weighted ,113 60.1 100.00% ength Slope Velocity (feet) (ft/ft) (ft/sec)	(sf)CNDescription93255.0Woods, Good, HSG,18161.0>75% Grass cover,,11360.1Weighted Average,11360.1100.00% Pervious AengthSlopeVelocity(feet)(ft/ft)(ft/sec)(cfs)	(sf) CN Description 932 55.0 Woods, Good, HSG B ,181 61.0 >75% Grass cover, Good, HSG B ,113 60.1 Weighted Average ,113 60.1 100.00% Pervious Area ength Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)		

Summary for Subcatchment 10S: Flow to CB#111

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 0.02 af, Depth> 4.48"

A	rea (sf)	CN	Descriptio	Description					
	531	61.0	>75% Gra	ass cover, (Good, HSG B				
	917	98.0	Paved pa	rking, HSG	В				
	958	98.0	Paved pa	Paved parking, HSG D					
	2,406	89.8	Weighted Average						
	531	61.0	22.07% Pervious Area						
	1,875	98.0	77.93% Impervious Area						
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment 11S: Flow to CB#112

Runoff = 0.29 cfs @ 12.09 hrs, Volume= 0.02 af, Depth> 3.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-YEAR Rainfall=5.65"

A	rea (sf)	CN	Descriptio	n			
	1,214	61.0	>75% Gra	ass cover, C	Good, HSG B		
	1,704	98.0	Paved par	rking, HSG	В		
	20	98.0	Paved pa	rking, HSG	D		
	2,938	82.7	Weighted	Average			
	1,214	61.0	41.32% Pervious Area				
	1,724	98.0	58.68% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment 12S: Flow to CB#113

Runoff = 0.47 cfs @ 12.08 hrs, Volume= 0.03 af, Depth> 4.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-YEAR Rainfall=5.65"

A	rea (sf)	CN	Descriptio	n					
	965	61.0	>75% Gra	ass cover, (Good, HSG B				
	3,159	98.0	Paved pa	Paved parking, HSG B					
	4,124	89.3	Weighted	Average					
	965	61.0	23.40% Pervious Area						
	3,159	98.0	76.60% Ir	npervious A	Area				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				
					-				

Summary for Subcatchment 13S: Flow to Bioretention Pond #3

Runoff = 0.15 cfs @ 12.10 hrs, Volume= 0.01 af, Depth> 1.77"

Area (sf)	CN	Description
3,336	61.0	>75% Grass cover, Good, HSG B
3,336	61.0	100.00% Pervious Area

POST	DEVEL	OPMENT	(2)
------	-------	---------------	-----

(min)

6.0

(feet)

(ft/ft)

(ft/sec)

Prepared by Keach Nordstrom Associates, Inc.

Type III 24-hr 25-YEAR Rainfall=5.65" Printed 12/20/2021 HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Page 72

Tc Len (min) (fe	gth Slope et) (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)								
6.0		Direct Entry,								
Summary for Subcatchment 14S: Roof										
Runoff =	Runoff = 5.01 cfs @ 12.08 hrs, Volume= 0.41 af, Depth> 5.41"									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25-YEAR Rainfall=5.65"										
Area (s	f) CN	Description								
39,39	98.0 96 98.0	Roofs, HSG B								
39.52	<u>.0 30.0</u> 2 98.0	Weighted Average								
39,52	2 98.0	100.00% Impervious Area								
Tc Len (min) (fe	gth Slope et) (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)								
6.0		Direct Entry,								
	Su	ummary for Subcatchment 15S: Flow to CB#120								
Runoff =	0.73 cf	fs @ 12.08 hrs, Volume= 0.06 af, Depth> 4.81"								
Runoff by SC Type III 24-hr	S TR-20 met 25-YEAR R	thod, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Rainfall=5.65"								
Area (s	f) CN	Description								
63	9 98.0	Paved parking, HSG D								
4,52	98.0	Paved parking, HSG B								
85	61.0	>75% Grass cover, Good, HSG B								
6,02	3 92.8	Weighted Average								
_ 85	61.0	14.17% Pervious Area								
5,16	61 98.0	85.83% Impervious Area								
Tc Len	gth Slope	Velocity Capacity Description								

Summary for Subcatchment 16S: Flow to Infiltration Pond #4

Direct Entry,

Runoff = 0.84 cfs @ 12.16 hrs, Volume= 0.07 af, Depth> 1.89"

(cfs)

 Type III 24-hr
 25-YEAR Rainfall=5.65"

 Printed
 12/20/2021

 ns LLC
 Page 73

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

	A	rea (sf)	CN	Descriptio	on	
		2,499	55.0	Woods, G	Good, HSG	В
		15,393	61.0	>75% Gra	ass cover, (Good, HSG B
		2,423	80.0	>75% Gra	ass cover, (Good, HSG D
		20,315	62.5	Weighted	Average	
		20,315	62.5	100.00%	Pervious A	rea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.6	50	0.0109	0.11		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.84"
	3.1	134	0.0109	0.73		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps

10.7 184 Total

Summary for Pond 1P: Roof Drain

Inflow Area	=	0.016 ac,10	0.00% Impervious,	Inflow Depth >	5.41" for 2	5-YEAR event
Inflow	=	0.09 cfs @	12.08 hrs, Volume	= 0.01 a	ıf	
Outflow	=	0.09 cfs @	12.08 hrs, Volume	= 0.01 a	If, Atten= 0%,	Lag= 0.0 min
Primary	=	0.09 cfs @	12.08 hrs, Volume	= 0.01 a	ıf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 184.28' @ 12.08 hrs Flood Elev= 187.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	184.10'	6.0" Round Culvert L= 45.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 184.10' / 183.20' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.09 cfs @ 12.08 hrs HW=184.28' TW=183.33' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.09 cfs @ 1.43 fps)

Summary for Pond 2P: CB#100

Inflow Area	=	0.262 ac, 6	7.57% Impervious	s, Inflow Depth >	4.26" for	25-YEAR event
Inflow	=	1.27 cfs @	12.09 hrs, Volun	1e= 0.09 a	af	
Outflow	=	1.27 cfs @	12.09 hrs, Volun	ne= 0.09 a	af, Atten= 0%	%, Lag= 0.0 min
Primary	=	1.27 cfs @	12.09 hrs, Volun	1e= 0.09 a	af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.33' @ 12.09 hrs Flood Elev= 186.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	182.70'	15.0" Round Culvert
			L= 90.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 182.70' / 181.80' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.23 cfs @ 12.09 hrs HW=183.33' TW=182.78' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.23 cfs @ 2.89 fps)

Summary for Pond 3P: Roof Drain

Inflow Area	=	0.016 ac,10	0.00% Impe	ervious,	Inflow	Depth >	5.4	1" for 25	5-YEAR ev	/ent
Inflow	=	0.09 cfs @	12.08 hrs,	Volume	=	0.01	af			
Outflow	=	0.09 cfs @	12.08 hrs,	Volume	=	0.01 a	af, A	Atten= 0%,	Lag= 0.0	min
Primary	=	0.09 cfs @	12.08 hrs,	Volume	=	0.01 a	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.59' @ 12.08 hrs Flood Elev= 187.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	183.41'	6.0" Round Culvert
			L= 37.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 183.41' / 182.30' S= 0.0300 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.09 cfs @ 12.08 hrs HW=183.59' TW=182.78' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.09 cfs @ 1.43 fps)

Summary for Pond 4P: CB#101

Inflow Area	ı =	0.441 ac, 6	9.25% Impe	ervious,	Inflow Depth	ı> 4.2	5" for 25	-YEAR event
Inflow	=	2.12 cfs @	12.09 hrs,	Volume	= 0.1	l6 af		
Outflow	=	2.12 cfs @	12.09 hrs,	Volume	= 0.1	16 af, A	tten= 0%,	Lag= 0.0 min
Primary	=	2.12 cfs @	12.09 hrs,	Volume	= 0.1	l6 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.18' @ 15.83 hrs Flood Elev= 186.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	181.70'	15.0" Round Culvert L= 70.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.70' / 181.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.97 cfs @ 12.09 hrs HW=182.78' TW=182.53' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.97 cfs @ 2.35 fps)

Summary for Pond 5P: Stormwater Pond #1

Inflow Area	ı =	0.979 ac, 3	1.18% Impe	ervious,	Inflow Depth >	2.86"	for 25-	YEAR event	
Inflow	=	2.96 cfs @	12.10 hrs,	Volume=	= 0.23 a	af			
Outflow	=	0.12 cfs @	15.81 hrs,	Volume=	= 0.11 a	af, Atter	n= 96%,	Lag= 222.6 mir	n
Primary	=	0.12 cfs @	15.81 hrs,	Volume=	= 0.11 a	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Starting Elev= 182.00' Surf.Area= 5,137 sf Storage= 10,729 cf Peak Elev= 183.18' @ 15.81 hrs Surf.Area= 6,271 sf Storage= 17,444 cf (6,715 cf above start) Flood Elev= 185.00' Surf.Area= 7,127 sf Storage= 22,939 cf (12,210 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 245.2 min (1,062.0 - 816.8)

Volume	Invert	Avail.St	orage	Storage Description	n		
#1	179.00'	22,9	939 cf	Custom Stage Dat	a (Irregular) Listed	below (Recalc)	
Elevation	Su	f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>	
179.00		2,168	252.3	0	0	2,168	
180.00		3,043	312.6	2,593	2,593	4,893	
181.00		4,069	357.9	3,544	6,137	7,334	
182.00		5,137	339.8	4,593	10,729	8,397	
184.00		7,127	365.6	12,210	22,939	10,008	
Device R	outing	Invert	t Outle	et Devices			
#1 P	rimary	181.95	' 12.0 L= 9 Inlet n= 0	" Round Culvert 0.0' CMP, square e / Outlet Invert= 181 .013 Corrugated PE	edge headwall, Ke= .95' / 181.50' S= 0 E, smooth interior, I	= 0.500 .0050 '/' Cc= 0.900 Flow Area= 0.79 sf	
#2 D	evice 1	182.00	' 1.0"	W x 2.0" H Vert. Or	ifice/Grate C= 0.6	600	
#3 D	evice 1	182.84	2.0"	Vert. Orifice/Grate	C= 0.600		
#4 D	evice 1	183.50	' 48.0 Limit	" x 48.0" Horiz. Orif ted to weir flow at lov	ice/Grate C= 0.60 w heads	00	
Primary O 1=Culve -2=Oi -3=Oi	utFlow Ma ert (Passe rifice/Grate rifice/Grate	ax=0.12 cfs s 0.12 cfs c e (Orifice C e (Orifice C	@ 15.8 of 2.72 (controls controls	81 hrs HW=183.18' cfs potential flow) 0.07 cfs @ 5.04 fps 0.05 cfs @ 2.44 fps	TW=181.65' (Dyr ;) ;)	namic Tailwater)	
		ìonn	0.00		,		

-4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 6P: DMH#104

Inflow Area	ı =	0.979 ac, 3	31.18% Impervio	us, Inflow De	epth > 1	.35" for 25	5-YEAR event
Inflow	=	0.12 cfs @	15.81 hrs, Volu	ıme=	0.11 af		
Outflow	=	0.12 cfs @	15.80 hrs, Volu	ıme=	0.11 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	0.12 cfs @	15.80 hrs, Volu	ıme=	0.11 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Peak Elev= 181.65' @ 15.80 hrs

Prepared by Keach Nordstrom Associates, Inc.

Flood Elev= 186.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	181.45'	12.0" Round Culvert
			L= 110.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.45' / 180.85' S= 0.0055 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Summary for Pond 8P: CB#110

Inflow Area	a =	0.203 ac, 7	75.87% Impe	ervious,	Inflow Depth >	4.40"	for 25-YEAR event
Inflow	=	1.01 cfs @	12.09 hrs,	Volume=	= 0.07 ;	af	
Outflow	=	1.01 cfs @	12.09 hrs,	Volume=	= 0.07 ;	af, Atter	n= 0%, Lag= 0.0 min
Primary	=	1.01 cfs @	12.09 hrs,	Volume=	= 0.07 ;	af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 176.98' @ 12.55 hrs Flood Elev= 180.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	175.76'	12.0" Round Culvert
	Ē		L= 13.0' CMP, square edge headwall, Ke= 0.500
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.72 cfs @ 12.09 hrs HW=176.43' TW=176.33' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.72 cfs @ 1.82 fps)

Summary for Pond 9P: Bioretention Pond #2

Inflow Area	a =	0.343 ac, 4	14.83% Impervic	ous, Inflow Depth	> 3.30"	for 25-Y	EAR event
Inflow	=	1.27 cfs @	12.09 hrs, Vol	ume= 0.0	9 af		
Outflow	=	0.25 cfs @	12.54 hrs, Vol	ume= 0.0	9 af, Atten	= 80%, L	.ag= 26.9 min
Primary	=	0.25 cfs @	12.54 hrs, Vol	ume= 0.0	9 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 176.98' @ 12.54 hrs Surf.Area= 1,071 sf Storage= 1,294 cf Flood Elev= 178.10' Surf.Area= 1,676 sf Storage= 2,684 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 43.4 min (848.9 - 805.5)

Volume	Invert	Avail.Storage	Storage Description
#1	175.00'	2,684 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Type III 24-hr 25-YEAR Rainfall=5.65"

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Printed 12/20/2021 Page 77

Elevatio	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>
175.0	00	193	87.3	0	0	193
176.0	00	714	149.7	426	426	1,376
177.0)0	1,080	196.1	891	1,317	2,664
178.0)0	1,676	200.8	1,367	2,684	2,912
Device	Routing	Inve	rt Outlet	Devices		
#1	Primary	175.0	10.000	in/hr Exfiltration of	over Surface area	
#2	Device 1	172.5	D' 12.0'' I	Round Culvert		
			L= 18.0)' CMP, square ec	lge headwall, Ke=	= 0.500
			Inlet / C	Dutlet Invert= 172.5	50' / 171.96' S= 0	.0300 '/' Cc= 0.900
			n= 0.01	13 Corrugated PE,	smooth interior, F	Flow Area= 0.79 sf
#3	Device 1	176.20	D' 2.0" Ve	ert. Orifice/Grate	C= 0.600	
#4	Device 1	176.80	D' 48.0" x	48.0" Horiz. Orific	ce/Grate C= 0.60	00

Limited to weir flow at low heads

Primary OutFlow Max=0.25 cfs @ 12.54 hrs HW=176.98' TW=172.21' (Dynamic Tailwater) -1=Exfiltration (Exfiltration Controls 0.25 cfs)

2=Culvert (Passes < 5.32 cfs potential flow)

-3=Orifice/Grate (Passes < 0.09 cfs potential flow)

-4=Orifice/Grate (Passes < 3.95 cfs potential flow)

Summary for Pond 10P: DMH#113

Inflow Area	=	0.398 ac, 4	9.42% Impervi	ious, Inflow [Depth >	3.46" f	or 25-YEAR event
Inflow	=	0.47 cfs @	12.10 hrs, Vo	olume=	0.11 a	f	
Outflow	=	0.47 cfs @	12.10 hrs, Vo	olume=	0.11 a	f, Atten=	: 0%, Lag= 0.0 min
Primary	=	0.47 cfs @	12.10 hrs, Vo	olume=	0.11 a	f	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 172.31' @ 12.10 hrs Flood Elev= 176.85'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.92'	12.0" Round Culvert
			L= 39.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.92' / 171.53' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.46 cfs @ 12.10 hrs HW=172.31' TW=171.96' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.46 cfs @ 2.47 fps)

Summary for Pond 11P: DMH#114

Inflow Area	=	0.466 ac, 5	50.76% Impe	ervious,	Inflow	Depth >	3.50"	for 25	5-YEAR event
Inflow	=	0.76 cfs @	12.09 hrs,	Volume	=	0.14 a	af		
Outflow	=	0.76 cfs @	12.09 hrs,	Volume	=	0.14 a	af, Atter	n= 0%,	Lag= 0.0 min
Primary	=	0.76 cfs @	12.09 hrs,	Volume	=	0.14 a	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Peak Elev= 171.96' @ 12.10 hrs

Prepared by Keach Nordstrom Associates, Inc.

Flood Elev= 177.35'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.48'	12.0" Round Culvert L= 38.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.48' / 171.10' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.75 cfs @ 12.09 hrs HW=171.96' TW=171.54' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.75 cfs @ 2.93 fps)

Summary for Pond 12P: DMH#123

Inflow Area	a =	2.149 ac, 6	2.12% Imp	ervious, Ir	nflow Depth >	1.19"	for 25-	YEAR event
Inflow	=	0.80 cfs @	12.11 hrs,	Volume=	0.21 at	f		
Outflow	=	0.80 cfs @	12.11 hrs,	Volume=	0.21 at	f, Atten	= 0%, I	Lag= 0.0 min
Primary	=	0.80 cfs @	12.11 hrs,	Volume=	0.21 at	f		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 171.55' @ 12.11 hrs Flood Elev= 176.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.05'	12.0" Round Culvert
	,		L= 20.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.05' / 170.85' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.80 cfs @ 12.11 hrs HW=171.55' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.80 cfs @ 2.99 fps)

Summary for Pond 13P: CB#111 - Filterra 4x4

Inflow Area	=	0.055 ac, 7	7.93% Impe	ervious,	Inflow Dept	th >	4.48"	for 25	5-YEAR event
Inflow	=	0.28 cfs @	12.08 hrs,	Volume=	= 0.	.02 a	F		
Outflow	=	0.28 cfs @	12.09 hrs,	Volume=	= 0.	.02 a	f, Atten	= 0%,	Lag= 0.1 min
Primary	=	0.28 cfs @	12.09 hrs,	Volume=	- 0.	.02 a	f		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 175.07' @ 12.09 hrs Surf.Area= 16 sf Storage= 14 cf Flood Elev= 175.90' Surf.Area= 16 sf Storage= 16 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.9 min (787.6 - 786.7)

Volume	Invert	Avail.Storage	Storage Description
#1	174.19'	16 cf	4.00'W x 4.00'L x 1.00'H Prismatoid

 Type III 24-hr
 25-YEAR Rainfall=5.65"

 Printed
 12/20/2021

 ns LLC
 Page 79

Prepared by Keach	Nordstro	m Associates, Inc.
HydroCAD® 10.00-26	s/n 01045	© 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Device 3	174.19'	140.000 in/hr Exfiltration over Surface area
#2	Device 3	174.94'	1.7' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	172.02'	12.0" Round Culvert
	-		L= 5.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 172.02' / 171.97' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.28 cfs @ 12.09 hrs HW=175.07' TW=172.30' (Dynamic Tailwater) -3=Culvert (Passes 0.28 cfs of 6.04 cfs potential flow) -1=Exfiltration (Exfiltration Controls 0.05 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.22 cfs @ 1.01 fps)

Summary for Pond 14P: CB#112 - Filterra 4x4

Inflow Area	ı =	0.067 ac,	58.68% Impe	ervious,	Inflow Depth >	> 3.73	8" for 25	-YEAR event
Inflow	=	0.29 cfs @	12.09 hrs,	Volume	= 0.02	af		
Outflow	=	0.29 cfs @	12.09 hrs,	Volume	= 0.02	af, At	ten= 0%,	Lag= 0.1 min
Primary	=	0.29 cfs @	12.09 hrs,	Volume	= 0.02	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 175.08' @ 12.09 hrs Surf.Area= 16 sf Storage= 14 cf Flood Elev= 175.90' Surf.Area= 16 sf Storage= 16 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.9 min (809.6 - 808.7)

Volume	Invert	Avail.Stor	rage Storage Description
#1	174.19'	1	16 cf 4.00'W x 4.00'L x 1.00'H Prismatoid
Device	Routing	Invert	Outlet Devices
#1	Device 3	174.19'	140.000 in/hr Exfiltration over Surface area
#2	Device 3	174.94'	1.7' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	172.02'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 172.02' / 171.72' S= 0.0500 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.29 cfs @ 12.09 hrs HW=175.08' TW=171.96' (Dynamic Tailwater) **3=Culvert** (Passes 0.29 cfs of 6.05 cfs potential flow)

-1=Exfiltration (Exfiltration Controls 0.05 cfs)

2=Broad-Crested Rectangular Weir (Weir Controls 0.24 cfs @ 1.03 fps)

Summary for Pond 15P: CB#113

 Inflow Area =
 0.095 ac, 76.60% Impervious, Inflow Depth > 4.43" for 25-YEAR event

 Inflow =
 0.47 cfs @ 12.08 hrs, Volume=
 0.03 af

 Outflow =
 0.47 cfs @ 12.08 hrs, Volume=
 0.03 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.47 cfs @ 12.08 hrs, Volume=
 0.03 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 178.74' @ 12.39 hrs Flood Elev= 181.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	178.15'	12.0" Round Culvert
			Inlet / Outlet Invert= 178.15' / 178.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.39 cfs @ 12.08 hrs HW=178.58' TW=178.48' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.39 cfs @ 1.75 fps)

Summary for Pond 16P: InfitIration Pond #3

Inflow Area	=	0.171 ac, 4	2.35% Impervious,	Inflow Depth >	3.24" 1	for 25-Y	EAR event
Inflow	=	0.62 cfs @	12.09 hrs, Volume	= 0.05 a	f		
Outflow	=	0.22 cfs @	12.38 hrs, Volume	= 0.05 a	f, Atten=	= 65%, L	.ag= 17.7 min
Discarded	=	0.06 cfs @	12.38 hrs, Volume	= 0.04 a	f		
Primary	=	0.15 cfs @	12.38 hrs, Volume	= 0.01 a	f		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 178.74' @ 12.38 hrs Surf.Area= 934 sf Storage= 554 cf Flood Elev= 180.00' Surf.Area= 1,583 sf Storage= 2,141 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 48.6 min (855.3 - 806.7)

Volume	Invert	Avail.	Storage	Storage Descriptio	n		
#1	178.00	2	2,141 cf	Custom Stage Da	ta (Irregular) Liste	d below (Recalc)	
Elevatio	on S	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(166	el)	(sq-it)	(leel)	(cubic-leet)	(cubic-leet)	(sq-it)	
178.0	00	585	143.3	0	0	585	
179.0	00	1,078	186.5	819	819	1,731	
180.0	00	1,583	162.2	1,322	2,141	2,427	
Device	Routing	Inve	ert Outle	et Devices			
#1	Discarded	178.0	0' 3.00	0 in/hr Exfiltration	over Surface area	l	
#2	Primary	172.1	0' 12.0'	" Round Culvert			
	,		L= 1	3.0' CMP. square	edge headwall. Ke	e= 0.500	
			Inlet	/ Outlet Invert= 172	2.10' / 171.45' S=	0.0500 '/' Cc= 0.900	
			n= 0	013 Corrugated Pl	E smooth interior	Flow Area= 0.79 sf	
#3	Device 2	178.5	0' 6.0''	Vert. Orifice/Grate	C= 0.600		

Type III 24-hr 25-YEAR Rainfall=5.65" Printed 12/20/2021 ns LLC Page 81

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

#4 Device 2 179.50' **48.0" x 48.0" Horiz. Orifice/Grate** C= 0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.06 cfs @ 12.38 hrs HW=178.74' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=0.15 cfs @ 12.38 hrs HW=178.74' TW=171.51' (Dynamic Tailwater) 2=Culvert (Passes 0.15 cfs of 9.37 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.15 cfs @ 1.66 fps) -4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 17P: Roof Drain

Inflow Area	=	0.907 ac,10	0.00% Imperv	vious, Inflow	Depth >	5.41"	for 25-`	YEAR event
Inflow	=	5.01 cfs @	12.08 hrs, V	/olume=	0.41 a	f		
Outflow	=	5.01 cfs @	12.08 hrs, V	′olume=	0.41 a	f, Atten	=0%, L	.ag= 0.0 min
Primary	=	5.01 cfs @	12.08 hrs, V	′olume=	0.41 a	f		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 184.78' @ 12.08 hrs Flood Elev= 186.75'

Device	Routing	Invert	Outlet Devices
#1	Primary	183.43'	15.0" Round Culvert
	ŗ		L= 53.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 183.43' / 180.78' S= 0.0500 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.99 cfs @ 12.08 hrs HW=184.77' TW=182.56' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 4.99 cfs @ 4.07 fps)

Summary for Pond 18P: CB#120

Inflow Area	a =	1.045 ac, 9	98.13% Impe	ervious,	Inflow Depth	ו <mark>> 5</mark> .	33" for 25	-YEAR event
Inflow	=	5.74 cfs @	12.08 hrs,	Volume	= 0.4	16 af		
Outflow	=	5.74 cfs @	12.08 hrs,	Volume	= 0.4	16 af, .	Atten= 0%,	Lag= 0.0 min
Primary	=	5.74 cfs @	12.08 hrs,	Volume	= 0.4	16 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 182.76' @ 13.00 hrs Flood Elev= 185.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	180.68'	15.0" Round Culvert
	-		L= 17.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 180.68' / 180.00' S= 0.0400 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=5.39 cfs @ 12.08 hrs HW=182.56' TW=181.73' (Dynamic Tailwater) -1=Culvert (Inlet Controls 5.39 cfs @ 4.39 fps)

Summary for Pond 19P: Infiltration Pond #4

Inflow Area	ı =	1.512 ac, 6	7.86% Impe	ervious,	Inflow Depth >	> 4	.27" fo	or 25-	YEAR e	/ent
Inflow	=	6.40 cfs @	12.09 hrs,	Volume	= 0.54	af				
Outflow	=	0.60 cfs @	13.02 hrs,	Volume	= 0.47	af,	Atten=	91%,	Lag= 55	.7 min
Discarded	=	0.37 cfs @	13.02 hrs,	Volume	= 0.40	af			-	
Primary	=	0.23 cfs @	13.02 hrs,	Volume	= 0.07	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 182.75' @ 13.02 hrs Surf.Area= 5,348 sf Storage= 10,523 cf Flood Elev= 184.25' Surf.Area= 6,860 sf Storage= 18,117 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 156.4 min (921.0 - 764.6)

Volume	Invert	Avail.St	orage	Storage Description	1	
#1	180.00'	18,	117 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)
Elevatio (fee	on Su et)	rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
180.0 182.0 184.0	00 00 00	2,396 4,527 6,860	320.8 397.5 378.5	0 6,811 11,306	0 6,811 18,117	2,396 6,839 8,245
Device	Routing	Inver	t Outle	et Devices		
#1 #2	Discarded Primary	180.00 175.75	3.00 12.0 L= 5 Inlet n= 0) in/hr Exfiltration o ' Round Culvert 5.0' CMP, square e / Outlet Invert= 175. ⁻ .013 Corrugated PE	ver Surface area dge headwall, Ke= 75' / 173.00' S= 0 , smooth interior, F	= 0.500 .0500 '/' Cc= 0.900 Flow Area= 0.79 sf
#3 #4 #5	Device 2 Device 2 Device 2	181.60 182.50 183.85	' 2.0" ' 4.0" ' 48.0' Limit	Vert. Orifice/Grate Vert. Orifice/Grate ' x 48.0'' Horiz. Orifi ed to weir flow at low	C= 0.600 C= 0.600 ce/Grate C= 0.60 v heads	00

Discarded OutFlow Max=0.37 cfs @ 13.02 hrs HW=182.75' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.37 cfs)

Primary OutFlow Max=0.23 cfs @ 13.02 hrs HW=182.75' TW=171.45' (Dynamic Tailwater) 2=Culvert (Passes 0.23 cfs of 9.64 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.11 cfs @ 4.98 fps) -4=Orifice/Grate (Orifice Controls 0.12 cfs @ 1.71 fps) -5=Orifice/Grate (Controls 0.00 cfs)

Summary for Link A: Wetland

Inflow Area	a =	1.446 ac, 2	1.11% Imp	ervious,	Inflow Depth >	• 1	.38" for 2	25-YEAR event
Inflow	=	0.75 cfs @	12.10 hrs,	Volume	= 0.17	af		
Primary	=	0.75 cfs @	12.10 hrs,	Volume	= 0.17	af,	Atten= 0%	, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Central Street

Inflow Area	a =	2.343 ac, 5	8.11% Imp	ervious,	Inflow D)epth > 1	.27" fo	or 25	-YEAR even	ıt
Inflow	=	1.30 cfs @	12.10 hrs,	Volume	=	0.25 af				
Primary	=	1.30 cfs @	12.10 hrs,	Volume	=	0.25 af,	Atten=	0%,	Lag= 0.0 mi	n

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

 Type III 24-hr
 50-YEAR Rainfall=6.75"

 Printed
 12/20/2021

 ns LLC
 Page 84

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

> Time span=0.00-24.00 hrs, dt=0.02 hrs, 1201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: Overland Flow to	Runoff Area=20,345 sf 0.00% Impervious Runoff Depth>2.11" Tc=6.0 min CN=56.7 Runoff=1.09 cfs 0.08 af
Subcatchment 2S: Overland Flow	Runoff Area=8,448 sf 13.75% Impervious Runoff Depth>3.07" Tc=6.0 min CN=66.7 Runoff=0.69 cfs 0.05 af
Subcatchment 3S: Roof Awning	Runoff Area=707 sf 100.00% Impervious Runoff Depth>6.51" Tc=6.0 min CN=98.0 Runoff=0.11 cfs 0.01 af
Subcatchment 4S: Flow to CB#100	Runoff Area=10,721 sf 65.43% Impervious Runoff Depth>5.24" Tc=6.0 min CN=87.1 Runoff=1.46 cfs 0.11 af
Subcatchment 5S: Roof Awning	Runoff Area=707 sf 100.00% Impervious Runoff Depth>6.51" Tc=6.0 min CN=98.0 Runoff=0.11 cfs 0.01 af
Subcatchment 6S: Flow to CB#101	Runoff Area=7,072 sf 68.89% Impervious Runoff Depth>5.16" Tc=6.0 min CN=86.3 Runoff=0.95 cfs 0.07 af
Subcatchment 7S: Flow to Stormwater Flow Length=142'	Runoff Area=23,453 sf 0.00% Impervious Runoff Depth>2.47" Slope=0.0140 '/' Tc=8.7 min CN=60.5 Runoff=1.37 cfs 0.11 af
Subcatchment 8S: Flow to CB#110	Runoff Area=8,827 sf 75.87% Impervious Runoff Depth>5.47" Tc=6.0 min CN=89.1 Runoff=1.24 cfs 0.09 af
Subcatchment 9S: Flow to Bioretention	Runoff Area=6,113 sf 0.00% Impervious Runoff Depth>2.43" Tc=6.0 min CN=60.1 Runoff=0.39 cfs 0.03 af
Subcatchment 10S: Flow to CB#111	Runoff Area=2,406 sf 77.93% Impervious Runoff Depth>5.55" Tc=6.0 min CN=89.8 Runoff=0.34 cfs 0.03 af
Subcatchment 11S: Flow to CB#112	Runoff Area=2,938 sf 58.68% Impervious Runoff Depth>4.76" Tc=6.0 min CN=82.7 Runoff=0.37 cfs 0.03 af
Subcatchment 12S: Flow to CB#113	Runoff Area=4,124 sf 76.60% Impervious Runoff Depth>5.50" Tc=6.0 min CN=89.3 Runoff=0.58 cfs 0.04 af
Subcatchment 13S: Flow to Bioretention	Runoff Area=3,336 sf 0.00% Impervious Runoff Depth>2.52" Tc=6.0 min CN=61.0 Runoff=0.22 cfs 0.02 af
Subcatchment 14S: Roof	Runoff Area=39,522 sf 100.00% Impervious Runoff Depth>6.51" Tc=6.0 min CN=98.0 Runoff=6.00 cfs 0.49 af
Subcatchment 15S: Flow to CB#120	Runoff Area=6,013 sf 85.83% Impervious Runoff Depth>5.89" Tc=6.0 min CN=92.8 Runoff=0.88 cfs 0.07 af
Subcatchment 16S: Flow to Infiltration Flow Length=184'	Runoff Area=20,315 sf 0.00% Impervious Runoff Depth>2.66" Slope=0.0109 '/' Tc=10.7 min CN=62.5 Runoff=1.22 cfs 0.10 af

POST DEVELOPMENT (2) Prepared by Keach Nordstrom Associates, Inc.

Prepared by Keach Nordstro HydroCAD® 10.00-26 s/n 01045	m Associates, Inc. © 2020 HydroCAD So	ftware Solutions LLC	Printed	12/20/2021 Page 85
Pond 1P: Roof Drain	6.0" Round Culvert	Peak E n=0.013 L=45.0' S	Elev=184.30' Inflow=0.1 =0.0200 '/' Outflow=0.1	1 cfs 0.01 af 1 cfs 0.01 af
Pond 2P: CB#100	15.0" Round Culvert	Peak E n=0.013 L=90.0' S	Elev=183.50' Inflow=1.5 =0.0100 '/' Outflow=1.5	56 cfs 0.12 af 56 cfs 0.12 af
Pond 3P: Roof Drain	6.0" Round Culvert	Peak E n=0.013 L=37.0' S	Elev=183.61' Inflow=0.1 =0.0300 '/' Outflow=0.1	1 cfs 0.01 af 1 cfs 0.01 af
Pond 4P: CB#101	15.0" Round Culvert	Peak E n=0.013 L=70.0' S	Elev=183.50' Inflow=2.6 =0.0100 '/' Outflow=2.6	62 cfs 0.19 af 62 cfs 0.19 af
Pond 5P: Stormwater Pond #1	Peak	Elev=183.50' Storaç	ge=19,503 cf Inflow=3.8 Outflow=0.1	38 cfs 0.31 af 16 cfs 0.15 af
Pond 6P: DMH#104	12.0" Round Culvert	Peak E n=0.013 L=110.0' S	Elev=181.67' Inflow=0.1 =0.0055 '/' Outflow=0.1	l6 cfs 0.15 af l6 cfs 0.15 af
Pond 8P: CB#110	12.0" Round Culvert	Peak E n=0.013 L=13.0' S	Elev=177.38' Inflow=1.2 =0.0200 '/' Outflow=1.2	24 cfs 0.09 af 24 cfs 0.09 af
Pond 9P: Bioretention Pond #	2 Peal	k Elev=177.37' Stora	age=1,758 cf Inflow=1.6 Outflow=0.3	62 cfs 0.12 af 30 cfs 0.12 af
Pond 10P: DMH#113	12.0" Round Culvert	Peak E n=0.013 L=39.0' S	Elev=172.36' Inflow=0.5 =0.0100 '/' Outflow=0.5	56 cfs 0.15 af 56 cfs 0.15 af
Pond 11P: DMH#114	12.0" Round Culvert	Peak E n=0.013 L=38.0' S	Elev=172.03' Inflow=0.9 =0.0100 '/' Outflow=0.9	93 cfs 0.17 af 93 cfs 0.17 af
Pond 12P: DMH#123	12.0" Round Culvert	Peak E n=0.013 L=20.0' S	Elev=171.67' Inflow=1.1 =0.0100 '/' Outflow=1.1	7 cfs 0.33 af 7 cfs 0.33 af
Pond 13P: CB#111 - Filterra 4>	(4 P	eak Elev=175.09' St	torage=14 cf Inflow=0.3 Outflow=0.3	34 cfs 0.03 af 34 cfs 0.03 af
Pond 14P: CB#112 - Filterra 4>	(4 P	eak Elev=175.10' Si	torage=15 cf Inflow=0.3 Outflow=0.3	37 cfs 0.03 af 37 cfs 0.03 af
Pond 15P: CB#113	12.0" Round Culvert	Peak E n=0.013 L=15.0' S	Elev=178.85' Inflow=0.5 =0.0100 '/' Outflow=0.5	58 cfs 0.04 af 58 cfs 0.04 af
Pond 16P: InfitIration Pond #3	Pe Discarded=0.07 cfs 0.0	ak Elev=178.84' Sto 4 af Primary=0.28 o	orage=654 cf Inflow=0.8 ofs 0.02 af Outflow=0.3	30 cfs 0.06 af 35 cfs 0.06 af
Pond 17P: Roof Drain	15.0" Round Culvert	Peak E n=0.013 L=53.0' S	Elev=185.09' Inflow=6.0 =0.0500 '/' Outflow=6.0	00 cfs 0.49 af 00 cfs 0.49 af
Pond 18P: CB#120	15.0" Round Culvert	Peak E n=0.013 L=17.0' S	Elev=183.40' Inflow=6.8 =0.0400 '/' Outflow=6.8	38 cfs 0.56 af 38 cfs 0.56 af

Type III 24-hr 50-YEAR Rainfall=6.75" Prepared by Keach Nordstrom Associates, Inc. Printed 12/20/2021 HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Pond 19P: Infiltration Pond #4 Peak Elev=183.21' Storage=13,061 cf Inflow=7.85 cfs 0.66 af Discarded=0.41 cfs 0.44 af Primary=0.44 cfs 0.14 af Outflow=0.85 cfs 0.58 af

Link A: Wetland

Inflow=1.14 cfs 0.23 af Primary=1.14 cfs 0.23 af

Page 86

Link B: Central Street

Inflow=1.79 cfs 0.38 af Primary=1.79 cfs 0.38 af

Total Runoff Area = 3.789 ac Runoff Volume = 1.33 af Average Runoff Depth = 4.22" 56.01% Pervious = 2.122 ac 43.99% Impervious = 1.667 ac

Summary for Subcatchment 1S: Overland Flow to Wetland

Runoff = 1.09 cfs @ 12.10 hrs, Volume= 0.08 af, Depth> 2.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-YEAR Rainfall=6.75"

A	rea (sf)	CN	Descriptio	n		
	480	77.0	Woods, G	lood, HSG	D	
	16,003	55.0	Woods, G	lood, HSG	В	
	3,862	61.0	>75% Gra	ass cover, C	Good, HSG B	
	20,345	56.7	Weighted	Average		
	20,345	56.7	100.00%	Pervious A	rea	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry,	

Summary for Subcatchment 2S: Overland Flow

Runoff = 0.69 cfs @ 12.09 hrs, Volume= 0.05 af, Depth> 3.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-YEAR Rainfall=6.75"

Ai	rea (sf)	CN	Description
	246	55.0	Woods, Good, HSG B
	632	98.0	Paved parking, HSG B
	530	98.0	Paved parking, HSG D
	6,698	61.0	>75% Grass cover, Good, HSG B
	342	80.0	>75% Grass cover, Good, HSG D
	8,448	66.7	Weighted Average
	7,286	61.7	86.25% Pervious Area
	1,162	98.0	13.75% Impervious Area
Тс	l enath	Slope	Velocity Capacity Description
(min)	(feet)	(ft/ft)	(ft/sec) (cfs)
6.0	(1301)	(1919)	Direct Entry,

Summary for Subcatchment 3S: Roof Awning

Runoff = 0.11 cfs @ 12.08 hrs, Volume= 0.01	af, Depth> 6.51"	
---	------------------	--

 Type III 24-hr
 50-YEAR Rainfall=6.75"

 Printed
 12/20/2021

 ns LLC
 Page 88

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Area (sf)	CN	Descriptic	n	
707	98.0	Roofs, HS	SG B	
707	98.0	100.00%	Impervious	s Area
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0				Direct Entry,

Summary for Subcatchment 4S: Flow to CB#100

Runoff = 1.46 cfs @ 12.09 hrs, Volume= 0.11 af, Depth> 5.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-YEAR Rainfall=6.75"

A	rea (sf)	CN	Description				
	2,792	98.0	Paved parking, HSG B				
	4,223	98.0	Paved parking, HSG D				
	2,020	61.0	>75% Grass cover, Good, HSG B				
	1,209	80.0	>75% Grass cover, Good, HSG D				
	477	55.0	Woods, Good, HSG B				
	10,721	87.1	Weighted Average				
	3,706	66.4	34.57% Pervious Area				
	7,015	98.0	65.43% Impervious Area				
Тс	Length	Slope	Velocity Capacity Description				
(min)	(feet)	(ft/ft)	(ft/sec) (cfs)				
6.0			Direct Entry,				

Summary for Subcatchment 5S: Roof Awning

Runoff = 0.11 cfs @ 12.08 hrs, Volume= 0.01 af, Depth> 6.51"

Ai	rea (sf)	CN	Descriptio	n	
	707	98.0	Roofs, HS	SG B	
	707	98.0	100.00%	Impervious	s Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 6S: Flow to CB#101

Runoff = 0.95 cfs @ 12.09 hrs, Volume= 0.07 af, Depth> 5.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-YEAR Rainfall=6.75"

6.0					Direct Entry,			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
Тс	Length	Slope	Velocity	Capacity	Description			
	4,072	90.0	00.09 /0 11		Alea			
	1 872	08.0	68 80% In	69 90% Importious Area				
	2.200	60.5	31.11% Pervious Area					
	7,072	86.3	Weighted	Average				
	4,872	98.0	Paved pa	rking, HSG	В			
	173	55.0	Woods, G	Good, HSG	В			
	2,027	61.0	>75% Gra	ass cover, (Good, HSG B			
A	rea (sf)	CN	Descriptic	n				

Summary for Subcatchment 7S: Flow to Stormwater Pond #1

Runoff = 1.37 cfs @ 12.13 hrs, Volume= 0.11 af, Depth> 2.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-YEAR Rainfall=6.75"

A	rea (sf)	CN	Descriptio	on						
	2,021	55.0	Woods, G	Voods, Good, HSG B						
	21,432	61.0	>75% Gra	75% Grass cover, Good, HSG B						
	23,453	60.5	Weighted	Average						
	23,453	60.5	100.00%	Pervious A	rea					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.9	50	0.0140	0.12		Sheet Flow,					
1.9	92	0.0140	0.83		Grass: Short n= 0.150 P2= 2.84" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps					
07	140	Tatal								

8.7 142 Total

Summary for Subcatchment 8S: Flow to CB#110

Runoff = 1.24 cfs @ 12.08 hrs, Volume= 0.09 af, Depth> 5.47"

 Type III 24-hr
 50-YEAR Rainfall=6.75"

 Printed
 12/20/2021

 ns LLC
 Page 90

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Descriptio	on				
	2,130	61.0	>75% Gra	ass cover, (Good, HSG B			
	5,476	98.0	Paved pa	rking, HSG	В			
	1,221	98.0	Paved pa	rking, HSG	D			
	8,827	89.1	Weighted	Average				
	2,130	61.0	24.13% P	24.13% Pervious Area				
	6,697	98.0	75.87% Ir	75.87% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 9S: Flow to Bioretention Pond #2

Runoff = 0.39 cfs @ 12.09 hrs, Volume= 0.03 af, Depth> 2.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-YEAR Rainfall=6.75"

A	rea (sf)	CN	Descriptio	n					
	932	55.0	Woods, G	Good, HSG	3				
	5,181	61.0	>75% Gra	>75% Grass cover, Good, HSG B					
	6,113	60.1	Weighted	Average					
	6,113	60.1	100.00%	100.00% Pervious Area					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				
					. .				

Summary for Subcatchment 10S: Flow to CB#111

Runoff = 0.34 cfs @ 12.08 hrs, Volume= 0.03 af, Depth> 5.55"

rea (sf)	CN	Descriptio	n					
531	61.0	>75% Gra	ass cover, (ood, HSG B				
917	98.0	Paved pa	rking, HSG	В				
958	98.0	Paved pa	Paved parking, HSG D					
2,406	89.8	Weighted	Average					
531	61.0	22.07% Pervious Area						
1,875	98.0	77.93% Impervious Area						
Length	Slope	Velocity	Capacity	Description				
(feet)	(ft/ft)	(ft/sec)	(cfs)					
				Direct Entry,				
	rea (sf) 531 917 958 2,406 531 1,875 Length (feet)	rea (sf) CN 531 61.0 917 98.0 958 98.0 2,406 89.8 531 61.0 1,875 98.0 Length Slope (feet) (ft/ft)	rea (sf) CN Description 531 61.0 >75% Grages 917 98.0 Paved pa 958 98.0 Paved pa 2,406 89.8 Weighted 531 61.0 22.07% P 1,875 98.0 77.93% Ir Length Slope Velocity (feet) (ft/ft) (ft/sec)	rea (sf)CNDescription53161.0>75% Grass cover, G91798.0Paved parking, HSG95898.0Paved parking, HSG2,40689.8Weighted Average53161.022.07% Pervious Area1,87598.077.93% Impervious ALengthSlopeVelocity(feet)(ft/ft)(ft/sec)(cfs)	rea (sf)CNDescription53161.0>75% Grass cover, Good, HSG B91798.0Paved parking, HSG B95898.0Paved parking, HSG D2,40689.8Weighted Average53161.022.07% Pervious Area1,87598.077.93% Impervious AreaLengthSlopeVelocityCapacityLengthSlopeVelocityCapacityDirect Entry,			

Type III 24-hr 50-YEAR Rainfall=6.75" Prepared by Keach Nordstrom Associates, Inc. Printed 12/20/2021 HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 11S: Flow to CB#112

0.37 cfs @ 12.09 hrs, Volume= Runoff = 0.03 af, Depth> 4.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-YEAR Rainfall=6.75"

A	rea (sf)	CN	Descriptic	n				
	1,214	61.0	>75% Gra	ass cover, (Good, HSG B			
	1,704	98.0	Paved pa	rking, HSG	В			
	20	98.0	Paved pa	rking, HSG	D			
	2,938	82.7	Weighted	Average				
	1,214	61.0	41.32% P	41.32% Pervious Area				
	1,724	98.0	58.68% Ir	58.68% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 12S: Flow to CB#113

0.58 cfs @ 12.08 hrs, Volume= 0.04 af, Depth> 5.50" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Type III 24-hr 50-YEAR Rainfall=6.75"

A	rea (sf)	CN	Descriptio	n					
	965	61.0	>75% Gra	ass cover, (, Good, HSG B				
	3,159	98.0	Paved pa	Paved parking, HSG B					
	4,124	89.3	Weighted	Average					
	965	61.0	23.40% P	23.40% Pervious Area					
	3,159	98.0	76.60% Ir	76.60% Impervious Area					
Tc	Length	Slope	Velocity	Capacity	y Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				
					•				

Summary for Subcatchment 13S: Flow to Bioretention Pond #3

Runoff 0.22 cfs @ 12.09 hrs, Volume= 0.02 af, Depth> 2.52" =

Area (sf)	CN	Description
3,336	61.0	>75% Grass cover, Good, HSG B
3,336	61.0	100.00% Pervious Area

POST	DEVEL	OPMENT	(2)
------	-------	---------------	-----

(min)

6.0

(feet)

(ft/ft)

(ft/sec)

Prepared by Keach Nordstrom Associates, Inc.

Type III 24-hr 50-YEAR Rainfall=6.75" Printed 12/20/2021 HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Page 92

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descri	iption			
6.0					Direct	Entr	у,		
	Summary for Subcatchment 14S: Roof								
Runoff	=	6.00 cf	s@ 12.08	8 hrs, Volu	me=		0.49 af,	Depth> 6.51"	
Runoff by Type III 2	/ SCS TR 4-hr 50-1	-20 met /EAR R	hod, UH=S ainfall=6.7	CS, Weigh 5"	ited-CN	, Tim	e Span=	0.00-24.00 hrs, dt= 0.02 hrs	
Ar	ea (sf)	CN	Descriptic	on					
	39,396	98.0	Roofs, HS	SG B					
	126	98.0	Roofs, HS	<u>SG D</u>					
	39,522	98.0	Weighted	Average	Aree				
	59,522	96.0	100.00%	Impervious	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descri	iption			
6.0	6.0 Direct Entry,								
		0			.				
		Su	mmary to	or Subcat	cnme	nt 15	5: FION	7 to CB#120	
Runoff	=	0.88 cf	s@ 12.08	8 hrs, Volu	me=		0.07 af,	Depth> 5.89"	
Runoff by Type III 2	/ SCS TR 4-hr 50-1	-20 met ⁄EAR R	hod, UH=S ainfall=6.7	CS, Weigh 5"	ted-CN	, Tim	e Span=	0.00-24.00 hrs, dt= 0.02 hrs	
Ar	ea (sf)	CN	Descriptio	n					
	639	98.0	Paved pa	rking, HSG	D				
	4,522	98.0	Paved pa	rking, HSG	В				
	852	61.0	>75% Gra	ass cover, (Good, H	ISG E	3		
	6,013	92.8	Weighted	Average					
	852	61.0	14.17% P	ervious Are	ea				
	5,161	98.0	85.83% lr	npervious A	Area				
Тс	Length	Slope	Velocity	Capacity	Descri	iption			

Summary for Subcatchment 16S: Flow to Infiltration Pond #4

Direct Entry,

Runoff = 1.22 cfs @ 12.16 hrs, Volume= 0.10 af, Depth> 2.66"

(cfs)

 Type III 24-hr
 50-YEAR Rainfall=6.75"

 Printed
 12/20/2021

 ns LLC
 Page 93

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

	A	rea (sf)	CN	Descriptic	n	
		2,499	55.0	Woods, G	Good, HSG	В
		15,393	61.0	>75% Gra	ass cover, (Good, HSG B
		2,423	80.0	>75% Gra	ass cover, (Good, HSG D
		20,315	62.5	Weighted	Average	
		20,315	62.5	100.00%	Pervious A	rea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.6	50	0.0109	0.11		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.84"
	3.1	134	0.0109	0.73		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps

10.7 184 Total

Summary for Pond 1P: Roof Drain

Inflow Area	=	0.016 ac,10	0.00% Impervious,	Inflow Depth >	6.51" for 5	0-YEAR event
Inflow	=	0.11 cfs @	12.08 hrs, Volume	e 0.01 a	af	
Outflow	=	0.11 cfs @	12.08 hrs, Volume)= 0.01 a	af, Atten= 0%,	Lag= 0.0 min
Primary	=	0.11 cfs @	12.08 hrs, Volume	e 0.01 a	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 184.30' @ 12.08 hrs Flood Elev= 187.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	184.10'	6.0" Round Culvert L= 45.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 184.10' / 183.20' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.11 cfs @ 12.08 hrs HW=184.30' TW=183.44' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.11 cfs @ 1.50 fps)

Summary for Pond 2P: CB#100

Inflow Area	=	0.262 ac, 6	7.57% Impervious,	Inflow Depth >	5.32" for	50-YEAR event
Inflow	=	1.56 cfs @	12.08 hrs, Volume	e 0.12 a	ıf	
Outflow	=	1.56 cfs @	12.08 hrs, Volume	e 0.12 a	f, Atten= 0%	6, Lag= 0.0 min
Primary	=	1.56 cfs @	12.08 hrs, Volume	;= 0.12 a	ſ	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.50' @ 15.78 hrs Flood Elev= 186.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	182.70'	15.0" Round Culvert
			L= 90.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 182.70' / 181.80' S= 0.0100 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.49 cfs @ 12.08 hrs HW=183.44' TW=182.96' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.49 cfs @ 2.84 fps)

Summary for Pond 3P: Roof Drain

Inflow Area	=	0.016 ac,10	0.00% Impe	ervious,	Inflow	Depth >	6.51	" for 50	-YEAR ever	nt
Inflow	=	0.11 cfs @	12.08 hrs,	Volume	=	0.01 a	af			
Outflow	=	0.11 cfs @	12.08 hrs,	Volume	=	0.01 a	af, At	ten= 0%,	Lag= 0.0 m	in
Primary	=	0.11 cfs @	12.08 hrs,	Volume	=	0.01 a	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.61' @ 12.08 hrs Flood Elev= 187.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	183.41'	6.0" Round Culvert
			L= 37.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 183.41' / 182.30' S= 0.0300 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.11 cfs @ 12.08 hrs HW=183.61' TW=182.96' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.11 cfs @ 1.50 fps)

Summary for Pond 4P: CB#101

Inflow Area	a =	0.441 ac, 6	9.25% Impe	ervious,	Inflow Depth	ו <mark>> 5</mark> .3	31" for 50	-YEAR event
Inflow	=	2.62 cfs @	12.08 hrs,	Volume	= 0.1	19 af		
Outflow	=	2.62 cfs @	12.08 hrs,	Volume	= 0.1	19 af, 1	Atten= 0%,	Lag= 0.0 min
Primary	=	2.62 cfs @	12.08 hrs,	Volume	= 0.1	19 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.50' @ 15.76 hrs Flood Elev= 186.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	181.70'	15.0" Round Culvert L= 70.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.70' / 181.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.40 cfs @ 12.08 hrs HW=182.96' TW=182.71' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 2.40 cfs @ 2.40 fps)

Summary for Pond 5P: Stormwater Pond #1

Inflow Area	a =	0.979 ac, 3	1.18% Impe	ervious,	Inflow Depth :	> 3.75"	for 50-	YEAR event
Inflow	=	3.88 cfs @	12.10 hrs,	Volume	= 0.31	af		
Outflow	=	0.16 cfs @	15.75 hrs,	Volume	= 0.15	af, Attei	n= 96%,	Lag= 219.0 min
Primary	=	0.16 cfs @	15.75 hrs,	Volume	= 0.15	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Starting Elev= 182.00' Surf.Area= 5,137 sf Storage= 10,729 cf Peak Elev= 183.50' @ 15.75 hrs Surf.Area= 6,598 sf Storage= 19,503 cf (8,773 cf above start) Flood Elev= 185.00' Surf.Area= 7,127 sf Storage= 22,939 cf (12,210 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 251.1 min (1,062.6 - 811.5)

Invert	Avail.Sto	rage Stor	age Description			
179.00'	22,93	39 cf Cus	tom Stage Data	(Irregular) Listed	below (Recalc)	
Surf.	Area P	erim.	Inc.Store	Cum.Store	Wet.Area	
(:	sq-ft) (feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>	
2	2,168 2	252.3	0	0	2,168	
3	3,043 3	312.6	2,593	2,593	4,893	
2	1,069 3	857.9	3,544	6,137	7,334	
5	5,137 3	339.8	4,593	10,729	8,397	
7	7,127 3	865.6	12,210	22,939	10,008	
outing	Invert	Outlet De	evices			
#1 Primary 181.95' 12.0" Round Culvert L= 90.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.95' / 181.50' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf						
evice 1	182.00'	1.0" W x	2.0" H Vert. Orific	ce/Grate C= 0.6	600	
evice 1	182.84'	2.0" Vert	. Orifice/Grate	C= 0.600		
#4 Device 1 183.50' 48.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads						
itFlow Max rt (Passes ifice/Grate ifice/Grate	=0.16 cfs (0.16 cfs of (Orifice Co (Orifice Co	2) 15.75 hrs 3.03 cfs po ntrols 0.08 ntrols 0.08	s HW=183.50' T otential flow) cfs @ 5.73 fps) cfs @ 3.65 fps)	W=181.67' (Dyn	amic Tailwater)	
	Invert 179.00' Surf. (3 2 2 2 2 2 2 2 2 2 2 2 2 2	Invert Avail.Stor 179.00' 22,93 Surf.Area Product (sq-ft) () 2,168 2 3,043 3 4,069 3 5,137 3 7,127 3 puting Invert imary 181.95' evice 1 182.84' evice 1 183.50' atFlow Max=0.16 cfs () rt (Passes 0.16 cfs of 0 ifice/Grate (Orifice Co ifice/Grate (Orifice Co	Invert Avail. Storage Stor 179.00' 22,939 cf Cus Surf.Area Perim. (feet) 2,168 252.3 3,043 312.6 4,069 357.9 5,137 339.8 7,127 365.6 5000000000000000000000000000000000000	Invert Avail. Storage Storage Description 179.00' 22,939 cf Custom Stage Data (Surf.Area Perim. Inc.Store (sq-ft) (feet) (cubic-feet) 2,168 252.3 0 3,043 312.6 2,593 4,069 357.9 3,544 5,137 339.8 4,593 7,127 365.6 12,210 Duting Invert Outlet Devices imary 181.95' 12.0" Round Culvert L= 90.0' CMP, square edg Inlet / Outlet Invert= 181.95 n= 0.013 evice 1 182.00' 1.0" W x 2.0" H Vert. Orifice evice 1 182.84' 2.0" Vert. Orifice/Grate evice 1 183.50' 48.0" x 48.0" Horiz. Orifice trited to weir flow at low f 100' M x 2.0.16 cfs of 3.03 cfs potential flow) ifice/Grate (Orifice Controls 0.08 cfs @ 5.73 fps) ifice/Grate (Orifice Controls 0.08 cfs @ 3.65 fps)	Invert Avail. Storage Storage Description 179.00' 22,939 cf Custom Stage Data (Irregular) Listed Surf.Area Perim. Inc.Store Cum.Store (sq-ft) (feet) (cubic-feet) (cubic-feet) 2,168 252.3 0 0 3,043 312.6 2,593 2,593 4,069 357.9 3,544 6,137 5,137 339.8 4,593 10,729 7,127 365.6 12,210 22,939 outing Invert Outlet Devices timary 181.95' 12.0" Round Culvert L= 90.0' CMP, square edge headwall, Ke= Inlet / Outlet Invert= 181.95' / 181.50' S= 0 n= 0.013 Corrugated PE, smooth interior, F evice 1 182.00' 1.0" W x 2.0" H Vert. Orifice/Grate C= 0.60 evice 1 182.84' 2.0" Vert. Orifice/Grate C= 0.60 evice 1 183.50' 48.0" x 48.0" Horiz. Orifice/Grate C= 0.60 evice 1 183.50' 48.0" x 48.0"	Invert Avail.Storage Storage Description 179.00' 22,939 cf Custom Stage Data (Irregular) Listed below (Recalc) Surf.Area Perim. Inc.Store Cum.Store Wet.Area (sq-ft) (feet) (cubic-feet) (cubic-feet) (sq-ft) 2,168 252.3 0 0 2,168 3,043 312.6 2,593 2,593 4,893 4,069 357.9 3,544 6,137 7,334 5,137 339.8 4,593 10,729 8,397 7,127 365.6 12,210 22,939 10,008 buting Invert Outlet Devices imary 181.95' 12.0" Round Culvert L= 90.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.95' / 181.50' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf evice 1 182.84' 2.0" Vert. Orifice/Grate C= 0.600 evice 1 182.84' 2.0" Vert.

4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 6P: DMH#104

Inflow Area	=	0.979 ac, 3	31.18% Impervious,	Inflow Depth >	1.82" for \$	50-YEAR event
Inflow	=	0.16 cfs @	15.75 hrs, Volume	;≕ 0.15 af	f	
Outflow	=	0.16 cfs @	15.75 hrs, Volume	;= 0.15 af	f, Atten= 0%	, Lag= 0.2 min
Primary	=	0.16 cfs @	15.75 hrs, Volume	⊭ 0.15 af	f	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Peak Elev= 181.67' @ 15.75 hrs Flood Elev= 186.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	181.45'	12.0" Round Culvert
			L= 110.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 181.45' / 180.85' S= 0.0055 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Summary for Pond 8P: CB#110

Inflow Area	a =	0.203 ac, 7	75.87% Impe	ervious,	Inflow Depth >	5.47"	for 50-YEAR event
Inflow	=	1.24 cfs @	12.08 hrs,	Volume=	= 0.09 a	af	
Outflow	=	1.24 cfs @	12.08 hrs,	Volume=	= 0.09 a	af, Atter	n= 0%, Lag= 0.0 min
Primary	=	1.24 cfs @	12.08 hrs,	Volume=	= 0.09 ;	af	2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 177.38' @ 12.56 hrs Flood Elev= 180.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	175.76'	12.0" Round Culvert
	-		L= 13.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 175.76' / 175.50' S= 0.0200 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.57 cfs @ 12.08 hrs HW=176.66' TW=176.63' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.57 cfs @ 1.00 fps)

Summary for Pond 9P: Bioretention Pond #2

Inflow Area	a =	0.343 ac, 4	4.83% Impervi	ous, Inflow D	epth > 4.23	" for 50-1	/EAR event
Inflow	=	1.62 cfs @	12.09 hrs, Vo	lume=	0.12 af		
Outflow	=	0.30 cfs @	12.55 hrs, Vo	lume=	0.12 af, Att	en= 82%,	Lag= 27.6 min
Primary	=	0.30 cfs @	12.55 hrs, Vo	lume=	0.12 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 177.37' @ 12.55 hrs Surf.Area= 1,287 sf Storage= 1,758 cf Flood Elev= 178.10' Surf.Area= 1,676 sf Storage= 2,684 cf

Plug-Flow detention time= 53.3 min calculated for 0.12 af (100% of inflow) Center-of-Mass det. time= 53.2 min (853.5 - 800.3)

Volume	Invert	Avail.Storage	Storage Description
#1	175.00'	2,684 cf	Custom Stage Data (Irregular) Listed below (Recalc)
Type III 24-hr 50-YEAR Rainfall=6.75"

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Printed 12/20/2021 Page 97

Elevatio (fee	Elevation Surf		Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
175.0	00	193	87.3	0	0	193			
176.0	00	714	149.7	426	426	1,376			
177.0	00	1,080	196.1	891	1,317	2,664			
178.0	00	1,676	200.8	1,367	2,684	2,912			
Device	Routing	Inve	rt Outlet	Devices					
#1	Primary	175.0	0' 10.000	in/hr Exfiltration	over Surface area				
#2	Device 1	l 172.5	O' 12.0''	Round Culvert					
			L= 18.0	0' CMP, square e	dge headwall, Ke=	= 0.500			
			Inlet / (Outlet Invert= 172.	50' / 171.96' S= 0	.0300 '/' Cc= 0.900			
			n= 0.0	13 Corrugated PE	, smooth interior, I	-low Area= 0.79 sf			
#3	Device 1	176.2	D' 2.0" V e	2.0" Vert. Orifice/Grate C= 0.600					
#4 Device 1 176.80' 48.0" x 48.0" Horiz. Orifice/Grate				ce/Grate C= 0.60	00				
			Limited	to weir flow at lov	v heads				

Primary OutFlow Max=0.30 cfs @ 12.55 hrs HW=177.37' TW=172.25' (Dynamic Tailwater)

2=Culvert (Passes < 5.83 cfs potential flow)

-3=Orifice/Grate (Passes < 0.11 cfs potential flow)

-4=Orifice/Grate (Passes < 22.72 cfs potential flow)

Summary for Pond 10P: DMH#113

Inflow Area	=	0.398 ac, 4	19.42% Impe	ervious,	Inflow !	Depth >	4.41"	for 50	-YEAR event
Inflow	=	0.56 cfs @	12.10 hrs,	Volume=	=	0.15 a	f		
Outflow	=	0.56 cfs @	12.10 hrs,	Volume=	=	0.15 a	f, Atten	i= 0%,	Lag= 0.0 min
Primary	=	0.56 cfs @	12.10 hrs,	Volume=	=	0.15 a	f		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 172.36' @ 12.11 hrs Flood Elev= 176.85'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.92'	12.0" Round Culvert
			L= 39.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.92' / 171.53' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.55 cfs @ 12.10 hrs HW=172.35' TW=172.03' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.55 cfs @ 2.48 fps)

Summary for Pond 11P: DMH#114

Inflow Area	=	0.466 ac,	50.76% Impe	ervious,	Inflow [Depth >	4.4	6" for 50	-YEAR even	۱t
Inflow	=	0.93 cfs @	12.09 hrs,	Volume	=	0.17 a	af			
Outflow	=	0.93 cfs @	12.09 hrs,	Volume	=	0.17 a	af, A	tten= 0%,	Lag= 0.0 mi	n
Primary	=	0.93 cfs @	12.09 hrs,	Volume	=	0.17 a	af		-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Peak Elev= 172.03' @ 12.10 hrs Flood Elev= 177.35'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.48'	12.0" Round Culvert
	·		L= 38.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.48' / 171.10' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.90 cfs @ 12.09 hrs HW=172.03' TW=171.64' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.90 cfs @ 2.93 fps)

Summary for Pond 12P: DMH#123

Inflow Area	a =	2.149 ac, 6	2.12% Impe	ervious,	Inflow Depth >	1.83"	for 50-	YEAR event
Inflow	=	1.17 cfs @	12.33 hrs,	Volume	= 0.33	af		
Outflow	=	1.17 cfs @	12.33 hrs,	Volume	= 0.33	af, Atter	n= 0%, I	Lag= 0.0 min
Primary	=	1.17 cfs @	12.33 hrs,	Volume	= 0.33	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 171.67' @ 12.33 hrs Flood Elev= 176.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	171.05'	12.0" Round Culvert
	,		L= 20.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 171.05' / 170.85' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.17 cfs @ 12.33 hrs HW=171.67' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.17 cfs @ 3.25 fps)

Summary for Pond 13P: CB#111 - Filterra 4x4

Inflow Area	=	0.055 ac, 7	7.93% Imperviou	is, Inflow De	epth >	5.55"	for 50	-YEAR event
Inflow	=	0.34 cfs @	12.08 hrs, Volu	me=	0.03 a	f		
Outflow	=	0.34 cfs @	12.09 hrs, Volu	me=	0.03 at	f, Atten:	= 0%,	Lag= 0.1 min
Primary	=	0.34 cfs @	12.09 hrs, Volu	me=	0.03 at	f		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 175.09' @ 12.09 hrs Surf.Area= 16 sf Storage= 14 cf Flood Elev= 175.90' Surf.Area= 16 sf Storage= 16 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.7 min (781.7 - 781.0)

Volume	Invert	Avail.Storage	Storage Description
#1	174.19'	16 cf	4.00'W x 4.00'L x 1.00'H Prismatoid

Type III 24-hr 50-YEAR Rainfall=6.75" Printed 12/20/2021 ns LLC Page 99

Prepared by Keach	Nordstro	m Associ	ates, In	C.	
HydroCAD® 10.00-26	s/n 01045	© 2020 H	ydroCAD	Software	Solutions LL

Device	Routing	Invert	Outlet Devices
#1	Device 3	174.19'	140.000 in/hr Exfiltration over Surface area
#2	Device 3	174.94'	1.7' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	172.02'	12.0" Round Culvert
	-		L= 5.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 172.02' / 171.97' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.34 cfs @ 12.09 hrs HW=175.09' TW=172.35' (Dynamic Tailwater) -3=Culvert (Passes 0.34 cfs of 6.07 cfs potential flow) -1=Exfiltration (Exfiltration Controls 0.05 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 0.29 cfs @ 1.10 fps)

Summary for Pond 14P: CB#112 - Filterra 4x4

Inflow Area	a =	0.067 ac,	58.68% Impe	rvious,	Inflow Depth >	4.76	" for 50	-YEAR event
Inflow	=	0.37 cfs @	12.09 hrs, `	Volume=	= 0.03	af		
Outflow	=	0.37 cfs @	12.09 hrs, `	Volume=	= 0.03	af, Att	ten= 0%,	Lag= 0.1 min
Primary	=	0.37 cfs @	12.09 hrs, 1	Volume=	= 0.03	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 175.10' @ 12.09 hrs Surf.Area= 16 sf Storage= 15 cf Flood Elev= 175.90' Surf.Area= 16 sf Storage= 16 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.9 min (802.8 - 801.9)

Volume	Invert	Avail.Stor	rage Storage Description
#1	174.19'	1	16 cf 4.00'W x 4.00'L x 1.00'H Prismatoid
Device	Routing	Invert	Outlet Devices
#1	Device 3	174.19'	140.000 in/hr Exfiltration over Surface area
#2	Device 3	174.94'	1.7' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Primary	172.02'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 172.02' / 171.72' S= 0.0500 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.37 cfs @ 12.09 hrs HW=175.10' TW=172.03' (Dynamic Tailwater) **3=Culvert** (Passes 0.37 cfs of 6.08 cfs potential flow)

-1=Exfiltration (Exfiltration Controls 0.05 cfs)

2=Broad-Crested Rectangular Weir (Weir Controls 0.32 cfs @ 1.13 fps)

Summary for Pond 15P: CB#113

Inflow Area	=	0.095 ac,	76.60% Impe	ervious,	Inflow Depth >	· 5.50"	for 50-YEAR event
Inflow	=	0.58 cfs @	12.08 hrs,	Volume	= 0.04	af	
Outflow	=	0.58 cfs @	12.08 hrs,	Volume	= 0.04	af, Atter	n= 0%, Lag= 0.0 min
Primary	=	0.58 cfs @	12.08 hrs,	Volume	= 0.04	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 178.85' @ 12.29 hrs Flood Elev= 181.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	178.15'	12.0" Round Culvert
	·		L= 15.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 178.15' / 178.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.41 cfs @ 12.08 hrs HW=178.70' TW=178.64' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.41 cfs @ 1.36 fps)

Summary for Pond 16P: InfitIration Pond #3

Inflow Area	=	0.171 ac, 4	2.35% Impe	rvious,	Inflow Der	pth >	4.17"	for 50-	YEAR e	event
Inflow	=	0.80 cfs @	12.09 hrs, 1	Volume=	=	0.06 a	ıf			
Outflow	=	0.35 cfs @	12.29 hrs, \	Volume=	=	0.06 a	if, Atte	en= 56%,	Lag= 1	2.0 min
Discarded	=	0.07 cfs @	12.29 hrs, \	Volume=	=	0.04 a	ıf			
Primary	=	0.28 cfs @	12.29 hrs, V	Volume=	= (0.02 a	ıf			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 178.84' @ 12.29 hrs Surf.Area= 989 sf Storage= 654 cf Flood Elev= 180.00' Surf.Area= 1,583 sf Storage= 2,141 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 46.1 min (847.7 - 801.5)

Volume	Invert	Avail.S	Storage	Storage Descriptio	n		
#1	178.00'	2	,141 cf	Custom Stage Dat	ta (Irregular) Liste	d below (Recalc)	
Elevatio	on Si	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(166	et)	(sq-tt)	(teet)	(CUDIC-TEET)	(CUDIC-TEET)	(sq-ft)	
178.0	00	585	143.3	0	0	585	
179.0	00	1,078	186.5	819	819	1,731	
180.0	00	1,583	162.2	1,322	2,141	2,427	
Device	Routing	Inve	rt Outle	et Devices			
#1	Discarded	178.0	0' 3.00	0 in/hr Exfiltration	over Surface area		
#2	Primary	172.1	0' 12.0 '	" Round Culvert			
	,		L= 1	3.0' CMP, square	edge headwall, Ke	= 0.500	
			Inlet	/ Outlet Invert= 172	2.10'/171.45' S=	0.0500 '/' Cc= 0.900	
			n= 0	013 Corrugated Pl	= smooth interior	Flow Area= 0 79 sf	
#3	Device 2	178.5	0' 6.0''	Vert. Orifice/Grate	C= 0.600		

 Type III 24-hr
 50-YEAR Rainfall=6.75"

 Printed
 12/20/2021

 ns LLC
 Page 101

Prepared by Keach Nordstrom Associates, Inc. HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

#4 Device 2 179.50' **48.0" x 48.0" Horiz. Orifice/Grate** C= 0.600 Limited to weir flow at low heads

Discarded OutFlow Max=0.07 cfs @ 12.29 hrs HW=178.84' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.07 cfs)

Primary OutFlow Max=0.28 cfs @ 12.29 hrs HW=178.84' TW=171.67' (Dynamic Tailwater) 2=Culvert (Passes 0.28 cfs of 9.45 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.28 cfs @ 1.99 fps) -4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 17P: Roof Drain

Inflow Area	=	0.907 ac,10	0.00% Impe	ervious,	Inflow Depth >	> 6.51"	for 50-`	YEAR event
Inflow	=	6.00 cfs @	12.08 hrs,	Volume	= 0.49	af		
Outflow	=	6.00 cfs @	12.08 hrs,	Volume	= 0.49	af, Atte	en= 0%, L	.ag= 0.0 min
Primary	=	6.00 cfs @	12.08 hrs,	Volume	= 0.49	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 185.09' @ 12.08 hrs Flood Elev= 186.75'

Device	Routing	Invert	Outlet Devices
#1	Primary	183.43'	15.0" Round Culvert
	ŗ		L= 53.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 183.43' / 180.78' S= 0.0500 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=5.97 cfs @ 12.08 hrs HW=185.08' TW=183.35' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 5.97 cfs @ 4.87 fps)

Summary for Pond 18P: CB#120

Inflow Are	a =	1.045 ac, 9	98.13% Impe	rvious,	Inflow Depth >	6.43"	for 50	-YEAR event
Inflow	=	6.88 cfs @	12.08 hrs, 1	Volume=	= 0.56 a	af		
Outflow	=	6.88 cfs @	12.08 hrs, \	Volume=	= 0.56 a	af, Atten	= 0%,	Lag= 0.0 min
Primary	=	6.88 cfs @	12.08 hrs, \	Volume=	= 0.56 a	af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.40' @ 12.10 hrs Flood Elev= 185.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	180.68'	15.0" Round Culvert L= 17.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 180.68' / 180.00' S= 0.0400 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.55 cfs @ 12.08 hrs HW=183.35' TW=182.12' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 6.55 cfs @ 5.34 fps)

Summary for Pond 19P: Infiltration Pond #4

Inflow Area	ı =	1.512 ac, 6	7.86% Impe	rvious, Inflov	v Depth >	5.26" fo	or 50-`	YEAR event
Inflow	=	7.85 cfs @	12.09 hrs, \	Volume=	0.66 af			
Outflow	=	0.85 cfs @	12.89 hrs, \	Volume=	0.58 af	, Atten=	89%,	Lag= 47.9 min
Discarded	=	0.41 cfs @	12.89 hrs, \	Volume=	0.44 af			-
Primary	=	0.44 cfs @	12.89 hrs, V	Volume=	0.14 af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs Peak Elev= 183.21' @ 12.89 hrs Surf.Area= 5,875 sf Storage= 13,061 cf Flood Elev= 184.25' Surf.Area= 6,860 sf Storage= 18,117 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 145.4 min (908.2 - 762.8)

Volume	Invert	Avail.S	Storage	e Storage Description							
#1	180.00'	18	8,117 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)					
Elevatio (fee	on Su et)	rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)					
180.0 182.0 184.0	00 00 00	2,396 4,527 6,860	320.8 397.5 378.5	0 6,811 11,306	0 6,811 18,117	2,396 6,839 8,245					
Device	Routing	Inve	ert Outle	et Devices							
#1 #2	Discarded Primary	180.0 175.7	0' 3.00 5' 12.0' L= 5 Inlet n= 0	3.000 in/hr Exfiltration over Surface area 12.0" Round Culvert L= 55.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 175.75' / 173.00' S= 0.0500 '/' Cc= 0.900 n= 0.013 Corrugated PE smooth interior. Flow Area= 0.79 sf							
#3 #4 #5	Device 2 Device 2 Device 2	181.6 182.5 183.8	0' 2.0'' 0' 4.0'' 5' 48.0' Limit	Vert. Orifice/Grate Vert. Orifice/Grate ' x 48.0" Horiz. Orifi ed to weir flow at low	C= 0.600 C= 0.600 ce/Grate C= 0.60 v heads	00					

Discarded OutFlow Max=0.41 cfs @ 12.89 hrs HW=183.21' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.41 cfs)

Primary OutFlow Max=0.44 cfs @ 12.89 hrs HW=183.21' TW=171.58' (Dynamic Tailwater) 2=Culvert (Passes 0.44 cfs of 9.97 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.13 cfs @ 5.94 fps) -4=Orifice/Grate (Orifice Controls 0.31 cfs @ 3.53 fps) 5=Orifice/Grate (Controls 0.00 cfs)

Summary for Link A: Wetland

Inflow Area	a =	1.446 ac, 2	21.11% Imp	ervious,	Inflow Dep	oth > 1	.92" for 5	0-YEAR event
Inflow	=	1.14 cfs @	12.10 hrs,	Volume	= (0.23 af		
Primary	=	1.14 cfs @	12.10 hrs,	Volume	= (0.23 af,	Atten= 0%	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

Summary for Link B: Central Street

Inflow Are	ea =	2.343 ac, 5	58.11% Impervious	, Inflow Depth >	1.94" for 50	0-YEAR event
Inflow	=	1.79 cfs @	12.11 hrs, Volum	ie= 0.38 af		
Primary	=	1.79 cfs @	12.11 hrs, Volum	ie= 0.38 af	, Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.02 hrs

18. RIP RAP APRON CALCULATIONS

KA KEACH-NORDSTROM ASSOCIATES, INC.

RIP RAP OUTLET PROTECTION APRON CALCULATIONS

12/15/2021

The purpose of this spreadsheet is to calculate the dimensions of rip rap required to help prevent soil loss for the 25 year storm event.

Required input to the spreadsheet is

Q	peak flow in CFS
Do	diameter in feet of outlet or width of channel
Tw	tail water at end of apron

Depending on the tail water conditions either column 1 or column 2 is used for calculations Column One where Tw<1/2Do Column One where Tw>1/2Do

Length of Apron

 $La = (1.8Q/Do^{3}/2)+7Do$

La = 3*Q/Do^3/2+7Do

W1=3*Do

W2=3Do+0.4*La

Width of Apron at outfall $W1=3^*Do$ W2 = 3Do + LaIf defined channel use channel width for W1 and W2 Rock Rip Rap $d50 = (0.02^*Q^4/3)/(Tw^*Do)$

RIRAP GRADATION EI Same d100 d85 USE W2 FROM Input to Chart Calculated Output FROM ТΟ FROM ΤO Description (Optional) Q 25 (cfs) Do (ft) Tw (ft) W1 no channel d50, ft d50 in d50 in. in in in in La in HW#102 Headwall #102 outlet 2.12 1.25 1.48 13 4 9 0.0 0.35 6 9 12 8 11 6 HW#105 Headwall #105 outlet 7 3 0.0 0.02 3 3 0.12 1.00 0.80 6 5 6 4 5 HW#111 Headwall #111 outlet 1.01 1.00 1.48 0.0 0.16 6 4 5 3 10 3 3 5 7 HW#121 Headwall #121 outlet 0.47 1.00 0.74 8 3 6 0.0 0.12 3 5 6 5 3 4 9 9 HW#131 Headwall #131 outlet 5.74 1.25 2.76 21 12 0.1 14 12 16 4 0.71 18

-		· ·	~	_
-	N۱	/⊢।	()	PF
- 1				-

d50		ď	15		
Ν	TO	FROM	TO	depth	USE depth
	in	in	in	in	in.
	9	2	3	15	18
	5	1	2	7.5	9
	5	1	2	7.5	9
	5	1	2	7.5	9
	14	3	5	22.5	24

19. SITE SPECIFIC SOIL REPORT

SITE-SPECIFIC SOIL SURVEY REPORT 196-202 Central Street Hudson

1. MAPPING STANDARDS

Site-Specific Soil Mapping Standards for New Hampshire and Vermont. SSSNNE Special Publication No. 3, Version 7.0, July, 2021. This map product is within the technical standards of the National Cooperative Soil Survey. It is a special product, intended for the submission to NH DES Alteration of Terrain. It was produced by a professional soil scientist and is not a product of the USDA Natural Resource Conservation Service.

- DATE SOIL MAP PRODUCED
 Soil Mapping was performed on November 4, 2021
 Test pits were performed by Gifford Colburn of KNA, Inc. on October 1, 2021
- 3. GEOGRAPHIC LOCATION AND SIZE OF SITE Approximately 5 acres. Tax map 176, Lots 21/22. The site is located in the Town of Hudson, NH. This is a combination of two single family lots, with homes, driveways and outbuildings.
- 4. PURPOSE OF THE SOIL MAP The preparation of this map was requested by KNA, Inc. The purpose was to meet the requirements of NH Alteration of Terrain.
- 5. SOIL IDENTIFICATION LEGEND

MAP UNIT GROUP	MAP NAME	HISS Conversion	HYDROLOGIC SOIL
24	Agawam	211	В
299hghdd	Udorthents,	766	D
115/VP	Scarboro, Very Poorly Draine	ed 611	D
SLOPE PHA	SE:		
0-8%	В		
8-15%	С		
15-25%	D		
25-35%	Е		

8 Continental Dr Bldg 2 Unit H, Exeter, NH 03833-7526 Ph (603) 778 0644 / Fax (603) 778 0654 info@gesinc.biz www.gesinc.biz

6. SOIL MAP UNIT DESCRIPTIONS

24 Agawam. The Agawam series consists of very deep, well drained soils formed in sandy, water deposited materials. They are level to steep soils on outwash plains and high stream terraces. Slope ranges from 0 to 15 percent. Saturated hydraulic conductivity is moderately high or high in the upper solum and high or very high in the lower solum and substratum. These soils are found throughout the upland area of the site and on the side slopes. They are derived from outwash and are primarily composed of sand and gravel in the lower layers. No ESHWT was encountered with in 40" and no ledge was observed.

299 Udorthents. The Udorthents map unit comprises all of the areas with impervious surfaces of pavement, walkways and buildings. These are classified as HSG D.

115/VP Scarboro. The Scarboro series consists of very deep, very poorly drained soils in sandy glaciofluvial deposits on outwash plains, deltas, and terraces. They are nearly level soils in depressions. Slope ranges from 0 through 3 percent. Saturated hydraulic conductivity is high or very high.

7. RESPONSIBLE SOIL SCIENTIST Luke D. Hurley, CSS#095

8. OTHER DISTINGUISHING FEATURES OF SITE No other distinguishing features are on the site.

9. MAXIMUM SIZE OF LIMITING INCLUSIONS No inclusions were mapped.

10. SPECIAL FEATURE SYMBOLS None used.

20. INFILTRATION FEASIBILITY REPORT

INFILTRATION FEASIBILITY REPORT

Bluebird Self Storage

Map 176; Lots 21,22,&23 196-202 Central Street Hudson, New Hampshire

December 17, 2021

TABLE OF CONTENTS:

- I. Location of Infiltration Practices
- II. Existing Topography
- III. Test Pit Locations
- IV. Seasonal High Water Table Elevation Summaries
- V. Infiltration Rate Summary
- VI. Profile Descriptions

I. Location of Practice

Two (2) infiltration practices are proposed for this project. Both infiltration ponds along the southern portion of the development adjacent to Central Street will collect, treat, and recharge storm water.

II. Existing Topography

The existing topography within the area of the proposed infiltration pond is moderate with grades ranging between 10% and 15%.

III. Test Pit Locations

Data from test pits performed within the area of the proposed infiltration basins were used to determine infiltration rates and depth to seasonal high water table.

IV. Seasonal High Water Table Elevation Summaries

The results from the test pit performed is as follows:

Test Pit #2 The existing elevation of the ground Distance to SHWT Elevation of SHWT Lowest Elevation of Test Pit	= 182.1 (approx. original grade) = 64" (5.33' bottom of pit) = 176.77 = 176.77
In area of Practice (adjacent to TP#2) The existing elevation of the ground Distance to SHWT (same as TP#2) Elevation of SHWT Lowest Elevation of Test Pit	= 182 = 64" (5.33') = 176.67 = 176.67
Test Pit #3 The existing elevation of the ground Distance to SHWT Elevation of SHWT Lowest Elevation of Test Pit	= 180.0 (approx. original grade) = 60" (5.0' bottom of pit) = 175.0 = 175.0
In area of Practice (adjacent to TP#3) The existing elevation of the ground Distance to SHWT (same as TP#3) Elevation of SHWT Lowest Elevation of Test Pit	= 180 = 60" (5') = 175.0 = 175.0

V. Infiltration Rate Summary

Soils in the area of the infiltration practice were determined to be Agawam, loamy sand. Agawam soils are classified as having a Ksat value of 6.0 inches/hour by the <u>New Hampshire Stormwater Manual; Volume 2</u> dated December, 2008. By applying a 50% factor of safety, as required, a rate of 3.0 inches/hour was used in the analysis.

VI. Profile Descriptions

o" W	TP #2 LOGGED BY GPC PERC TEST © 20" DATE: 10-1-2021 PERC RATE: 2 MIN./INCH IMPERVIOUS LAYER: NONE (ATER ENCOUNTERED: NON	E <u>0*</u>	TP #3 LOGGED BY GPC PERC TEST @ 20" DATE: 10-1-2021 PERC RATE: 2 MIN./INCH IMPERVIOUS LAYER: NONE WATER ENCOUNTERED: NONE
12"	TOPSOIL	8"	TOPSOIL
	10YR 5/8.	14"	10YR 5/8, GRANULAR, FRIABLE LOAMY SAND, ROOTS
24"	GRANULAR, FRIABLE SAND, ROOTS	26"	10YR 6/2, GRANULAR, FRIABLE SAND, ROOTS
	-	<u>30"</u>	BURIED "A"
	10YR 7/2, GRANULAR, FRIABLE, SAND, FEW ROOTS	48"	10YR 4/6, GRANULAR, FRIABLE, SAND, FEW ROOTS
			10YR 7/4, SAND,
64" BOTTOM OF		60" BOTTOM OF HOLE	

Profile descriptions are provided as follows.

21. OPERATION AND MAINTENANCE PLAN WITH CHECKLISTS

STORMWATER

OPERATION & MAINTENANCE PLAN

BLUEBIRD SELF STORAGE 196-202 Central Street Hudson, New Hampshire

Map 176; Lots 21,22,&23

December 17, 2021

TABLE OF CONTENTS:

I. General

Introduction General Maintenance Requirements

II. Supporting Documents

Annual Inspection & Maintenance Reporting Form Long-Term Inspection & Maintenance Plan Checklist Long-Term Inspection & Maintenance Log Anti-Icing Route Data Form

III. Control of Invasive Plants

Invasive Plant Guide

IV. Stormwater Practice Location Plan

11"x17" "Stormwater BMP Plan"

I. General

Introduction

The project owner or their assigned heirs will maintain the stormwater treatment facilities after construction is completed. The Applicant of the project is Bluebird Self Storage LLC located at 1 Bayside Road, Greenland, NH. The Applicant will maintain the stormwater management system through the entirety of ownership.

The subject properties are referenced on Map 176; Lots 21,22,&23 in Hudson, New Hampshire. Any transfer of responsibility for inspection and maintenance activities or transfer of ownership shall be documented to the New Hampshire Department of Environmental Services and Hudson in writing. The contract documents will require the contractor to designate a person responsible for maintenance of the sedimentation control features during construction. Longterm operation and maintenance for the stormwater management facilities are presented below.

Maintenance will be performed as described and required in the Alteration of Terrain Permit unless and until the system is formally accepted by a municipality or quasi-municipal district or is placed under the jurisdiction of a legally created association that will be responsible for the maintenance of the system.

Post Construction:

The following standards will be met after construction is complete:

Documentation:

A maintenance log will be kept summarizing inspections, maintenance, and any corrective actions taken. The log will include the date on which each inspection or maintenance task was performed, a description of the inspector findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. If a maintenance task requires the clean out of any sediments or debris, the location where the sediment and debris was disposed after removal will be indicated. The log will be made accessible to department and/or Hudson staff and a copy provided upon request.

Maintenance Requirements

Stormwater Ponds:

• Systems should be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24-hour period, with maintenance or rehabilitation conducted as warranted by such inspection.

- System embankments should be mowed periodically to maintain grass cover and any other vegetation found on the embankment should be removed at each inspection.
- Trash and debris found within the pond or in the outlet structure should be removed at each inspection.
- Removal of accumulated sediment
- Inspection and repair of embankments, inlet and outlet structures, and appurtenances

Infiltration Ponds:

- Systems should be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24-hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Trash and debris should be removed at each inspection.
- Inspection of pre-treatment measures at least twice annually and removal of accumulated sediment as warranted by inspection, but no less than once annually.
- At least once annually, the system should be inspected for drawdown time. If the pond does not drain within 72-hours following a rainfall event, a qualified professional should assess the condition of the facility to determine measures required to restore filtration function or infiltration function (as applicable), including but not limited to the removal of accumulated sediments or reconstruction of the basin bottom.

Sediment Forebays:

- Forebays help reduce the sediment load to downstream BMP's, and will therefore require more frequent cleaning.
- Systems should be inspected at least annually.
- Conduct periodic mowing of embankments (generally two times per year) to control growth of woody vegetation.
- Trash and debris should be removed at each inspection.
- Accumulated sediment should be removed as warranted by such inspection.
- Install and maintain a staff gage or other measuring device, to indicate depth of sediment accumulation and level at which clean-out is required.

Level Spreaders:

- Systems should be inspected at least annually with maintenance or rehabilitation conducted as warranted by such inspection.
- Remove debris and accumulated sediment when exceeds 25% of spreader depth. Disposal of sediment to be done properly.
- Repair eroded areas; remove invasive species and dead vegetation.
- Perform periodic mowing.
- Snow should not be stored within or down-slope of the level spreader.

- Repair any erosion and re-grade was warranted by inspection.
- Reconstruct the spreader if down-slope channelization indicates that the spreader is not level or that discharge has become concentrated, and corrections cannot be made through minor re-grading.

Conveyance Swale:

- Systems should be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24-hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Conduct periodic mowing of embankments (generally two times per year) to control growth of woody vegetation.
- Trash and debris should be removed at each inspection.
- Accumulated sediment should be removed as warranted by such inspection.
- Install and maintain a staff gage or other measuring device, to indicate depth of sediment accumulation and level at which clean-out is required.

Catch Basins and Closed Drainage Network:

- Catch basins may require frequent maintenance. This may require several cleanings of the sumps each year. At a minimum, it is recommended that catch basins be inspected at least twice annually.
- Sediment should be removed when it approaches half of the sump depth.
- If floating hydrocarbons are observed during an inspection, the material should be removed immediately by skimming, absorbent materials, or other methods and disposed in conformance with the applicable state and federal regulations.

Outlet Protection:

• Inspect the outlet protection annually for damage and deterioration. Repair damages immediately.

General:

- If any invasive species begin to grow in the stormwater management practices the species shall be disposed of in an appropriate manner that will not allow the pest to survive or spread. The disposal of such species shall be witnessed or approved by a state inspector. Methods for disposal may include, but not be limited to:
 - Encapsulating the plant(s) in plastic bags and disposing of the plant material in one of the following ways:
 - Trash pickup;
 - Discarding;
 - Open burning;
 - Incineration; or
 - Burial of infested nursery.

II. Supporting Documents

Annual Inspection and Maintenance Reporting Form for Bluebird Self Storage Hudson, New Hampshire

Date:						
To:	Bluebird Self Storage LLC					
Re:	Certification of Inspection and Maintenance; Submittal of Forms					
Prope	Property Name:					
Property Address:						
Contact Name:						
Contact Phone #:						
Conta	act Email Address:					

I verify that the required stormwater facility inspections and required maintenance have been completed in accordance with the <u>Operation & Maintenance Plan</u> associated with the above referenced property.

The required Long-Term Inspection & Maintenance Plan Checklist is attached to this form.

Name of Party Responsible for Inspection & Maintenance

Property Owner

Authorized Signature

Signature

Long-Term Inspection & Maintenance Plan Checklist Bluebird Self Storage – Hudson, NH

Current Owner Name:				Date:			
Business Address:				Inspector:			
Weather:							
Date of Last Rainfall:				An	nount:		Inches:
Best Management Practice							
Stormwater Ponds				Re	eason for	Ins	pection
	Sprir	ng [Fa	all/Yearly		After Major Storm
Maintenance Required? Corrective Action Needed & Notes:	Yes		Ν	lo			
Sideslopes & berms need repair? Clean inlet & outlet structures?	Yes Yes		N N	10 10			
Infiltration Ponds				Reason for Inspection			
	Sprir	ng [Fa	all/Yearly		After Major Storm
Maintenance Required? Corrective Action Needed & Notes:	Yes		Ν	lo			
Visual Inspection of vegetation? Maintenance Required? Corrective Action Needed & Notes:	Yes Yes		٩ ١	No No			
Visual inspection of drawdown time? Drawdown time less than 72 hours? (if no, call a qualified professional for insp	Yes Yes ection		N N	10 10			
Sediment Forebays				Re	eason for	Ins	pection
	Sprir	ng [Fa	all/Yearly		After Major Storm
Maintenance Required? Corrective Action Needed & Notes:	Yes		Ν	10			

Level Spreaders	Reason for Inspection			
	Spring 📋 Fall/Yearly 📋 After Major Storm 🗋			
Maintenance Required? Corrective Action Needed & Notes:	Yes 🗆 No 🗆			
Need Repairs?	Yes 🗆 No 🗆			
Conveyance Swale	Reason for Inspection			
	Spring Fall/Yearly After Major Storm			
Maintenance Required? Corrective Action Needed & Notes:	Yes 🗆 No 🗆			
Catch Basins & Closed Drainage	Reason for Inspection			
Network	Spring Fall/Yearly After Major Storm			
Maintenance Required? Corrective Action Needed & Notes:	Yes 🗆 No 🗆			
Outlet Protection	Reason for Inspection			
	Spring Fall/Yearly After Major Storm			
Maintenance Required? Corrective Action Needed & Notes:	Yes 🗆 No 🗆			
General	Reason for Inspection			
	Spring 🔲 Fall/Yearly 🗌 After Major Storm 🗌			
Maintenance Required? Corrective Action Needed & Notes:	Yes 🗆 No 🗆			

Long-Term Inspection & Maintenance Log Bluebird Self Storage – Hudson, NH

Date	Inspection (Yes or No)	Maintenance (Yes or No)	List BMPs Inspected and/or Provide Comments	Inspected By:

III. Control of Invasive Plants

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some Exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

During maintenance activities, check for the presence of invasive plants and suitably remove according to the methods provided in the table below. The following table, based on the "Control of Invasive Plants" published by the New Hampshire Department of Agriculture, describes the most common invasive plants in this region and proper methods of disposal.

Name	Description	Invasive Qualities	Control Methods						
Invasive Trees									
Norway Maple	 Large leaves Will exude milky white sap when leaves are broken Leaves turn color in Late October (fall foliage is yellow) 	 Suppresses growth of grass, garden plants, and forest understory Wind-borne seeds can germinate and grow in deep shade 	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out plants, including the root systems. Use a forked spade or weed wrench. Cut down the tree. Grind out the stump, or clip off re-growth. Girdle¹ Frill² Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray with glyphosate ^{3*} (mid-October to early November). 						
Tree of Heaven	 Long compound leaves with 11-25 lance shaped leaflets Smell like peanut butter or burnt coffee when crushed 	 Tough, can grow in poor conditions Produces large quantities of wind-borne seeds Grows rapidly Secretes a toxin that kills other plants Cannot be removed by mechanical means alone 	 Pull seedlings when soil is moist. Frill² (no more than 1" gap between cuts). Use Garlon 3a herbicide. Cut stem/ cut stump with Garlon 3a. Follow label directions for cut stump application. Clip off sucker sprouts or paint with Garlon 3a.* Foliar spray^{3*} (on regrowth) Paint bottom 12" of bark with Garlon 4 Ultra (February/March). Use maximum strength specified on label for all herbicide applications. 						

Invasive Shrubs				
Autumn Olive	- Formerly recommended for erosion control and wildlife value	- Highly invasive, diminishes the overall quality of wildlife habitat	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs (up to 4" diameter trunks). Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Bury stump Do not mow 	

Invasive Shrubs (continued)			
Multiflora Rose	 Formerly recommended for erosion control, hedges, and wildlife habitat Covered in white flowers in June Very hard, curved thorns Fringed edge to leaf stalk 	 Huge shrub that chokes out all other vegetation Too dense for most birds to nest in Grows up trees like a vine in Shade 	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems (at least 6" from the crown and 6" down). Use a forked spade or weed wrench for trees or shrubs. Controlled burning⁴ (on extensive infestations) Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*} (mix Rodeo with extra sticker-spreader, or use Roundup Sure Shot Foam on small plants) Herbicide may be applied in winter when other plants are dormant.
Bush Honeysuckles	- Includes Belle, Amur, Morrow's, and Tatarian Honeysuckle	- Creates dense shade reducing plant diversity and eliminating nest sites in forest interior spaces	 Deadhead to prevent spread of seeds (on ornamentals). Cut off seeds or fruits before they ripen. Bag and burn, or send to a landfill. Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year (on shady sites only, brush cut in early spring and fall). Controlled burning⁴ (during growing season) Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate (late in the growing season). Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.*

Invasive Shrubs (continued)			
Blunt-Leaved Privet	 Medium sized shrub Simple, oblong, dark green leaves 1-2" in length Fragrant white flowers (spring) Blackish-purple fruit (late summer) 	- Toxic to mammals - Loss of valuable habitat	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers Do not cut back or mow
Burning Bush, Winged Euonymus	 Wide, corky wings on the Branches Brilliant red autumn leaves Fruit 	- High seed production	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers
Japanese Barberry	- Spiny deciduous shrub - Small leaves	 Very dense, displaces native plants Can change chemistry of soil 	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers

Invasive Woody Vines			
Japanese Honeysuckle	- Gold and White flowers - Heavy scent and sweet nectar in June	 Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle Rampant grower Spirals around trees, often strangling them 	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*} (fall or early spring when native vegetation is dormant) Plan to re-treat repeatedly
Oriental Bittersweet	 Bright orange seed capsules in clusters all along the stem Flowers 	- Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Keep ornamental plants cut back, remove all fruits as soon as they open, and bag or burn fruits. Cut stem/ cut stump with Garlon 3a. Follow label directions for cut stump application. Clip off sucker sprouts or paint with Garlon 3a.*
Japanese Knotweed, Mexican Bamboo	 The stems have knotty joints, similar to bamboo Grows 6-10' tall Large, pointed oval or triangular leaves 	 Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle Can grow in shade 	 Cut stem/ cut stump with Glyphosate (at least 3 times each during growing season). Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*} Treat with Rodeo In gardens, heavy mulch or dense shade may kill it.

Invasive Herbaceous Plants			
Garlic Mustard	 White-flowered biennial Rough scalloped leaves (kidney, heart, or arrow shaped) Garlic smell, mustard taste when its leaves are crushed 	 Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle Rampant grower Spirals around trees, often strangling them 	 Pull seedlings and small or shallow-rooted plants when soil is moist (before it flowers in spring). Dig out larger plants, including the crown and root systems. Use a forked spade or weed wrench for trees or shrubs. Tamp down soil afterwards. Deadhead to prevent spread of seeds. Cut off seeds or fruits before they ripen. Bag and burn or send to a landfill. Foliar spray^{3*} (may be appropriate in some settings)
Japanese Stilt Grass	- Lime green color - Line of silvery hairs down the middle of the 2-3" long blade	 Tolerates sun or dense shade Quickly invades areas left bare or disturbed by tilling or flooding Builds a large seed bank in the soil 	 Pull seedlings and small or shallow-rooted plants when soil is moist (pulled easily in early to mid- summer).Dig out larger plants, including root systems. Use a forked spade or weed wrench for trees or shrubs. Be sure to pull before it goes to seed. If seeds have formed, bag and burn or send to a landfill. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Mowing weekly or when it has just begun to flower may prevent it from setting seed. Foliar spray^{3*} (use glyphosate or herbicidal soap on large infestations. Use a corn-based pre-emergence herbicide on annual weeds (spring). This product is also an organic fertilizer, i.e., it can stimulate growth of existing plants, including weeds, so it is appropriate for lawns and gardens but may not be appropriate in woodlands.

Invasive Herbaceous Plants (continued)			
Mile-A-Minute Vine, Devil's Tail Tearthumb	- Triangular leaves - Barbed stems - Turquoise berries	- Rapid growth - Quickly covers and shades out herbaceous plants	 Pull seedlings and small or shallow-rooted plants when soil is moist (pulled easily in early to mid- summer).Dig out larger plants, including root systems. Use a forked spade or weed wrench for trees or shrubs. Be sure to pull before it goes to seed. If seeds have formed, bag and burn or send to a landfill. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Mowing weekly or when it has just begun to flower may prevent it from setting seed. Foliar spray^{3*} (use glyphosate or herbicidal soap on large infestations. Use a corn-based pre-emergence herbicide on annual weeds (spring). This product is also an organic fertilizer, i.e., it can stimulate growth of existing plants, including weeds, so it is appropriate for lawns and gardens but may not be appropriate in woodlands.
Spotted Knapweed	- Thistle-like flowers	- Dense, crowds out native species	 Do not pull unless the plant is young and the ground is very soft. The root will break and produce several new plants. Wear sturdy gloves Deadhead to prevent spread of seeds. Cut off seeds or fruits before they ripen. Bag and burn, or send to a landfill. In lawns, spot treat with broad-leaf weed killer. Good lawn care practices (test soil; use lime and fertilizer only when soil test shows a need; mow high and frequently; leave clippings on lawn) reduce weed infestations. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*}

<u>1Girdle:</u> Cut through the bark and growing layer all around the trunk, about 6" above the ground. Girdling is most effective in spring (when the sap is rising) & middle-late summer (when the tree is sending food to the roots). Clip off sucker sprouts.

²<u>Frill:</u> Using a machete, hatchet, or similar device, hack scars (several holes in larger trees) downward into the growing layer, and squirt in glyphosate (or triclopyr if specified in table). Follow label directions for injection and frill applications. This is most effective from middle to late summer. Clip off any sucker sprouts or treat with glyphosate.

<u>³Foliar Spray:</u> Use a backpack or garden sprayer or mist blower, following label directions. Avoid overspray and/or dripping onto non-target plants, because glyphosate kills most plants except moss. If it rolls off waxy or grass-like foliage, use additional sticker-spreader. Deciduous trees, shrubs, and perennials move nutrients down to the roots in late summer. Glyphosate is particularly effective at this time and when plants have just gone out of flowering. Several invasive species retain their foliage after native plants have lost theirs, and resume growth earlier in spring than most natives. This allows you to treat them without harming the natives. However, the plant must be actively growing for the herbicide to work. Retreatments may be necessary the following year if suckering occurs or the plant hasn't been entirely killed.

⁴<u>Controlled Burning</u>: Burning during the spring (repeated over several years) will allow native vegetation to compete more effectively with the invasive species. This requires a permit. Spot treatment with glyphosate in late fall can be used to make this method more effective

<u>*Herbicides:</u> It is highly recommended that small populations try to be controlled using nonchemical methods where feasible. However, for large infestations, and for a few plants herbicide use is essential. Apply herbicides carefully to avoid non-target plants, glyphosate is the least environmentally damaging herbicide in most cases. Add food coloring for visibility, and a soapbased sticker such as Cide-Kick. Glyphosate is ineffective on some plants; for these, triclopyr or Garlon 3a may be indicated. When using herbicides read the entire label and observe all precautions listed, including proper disposal. If in doubt, call your local Cooperative Extension Service.
22. PLANS

NON-RESIDENTIAL PLAN SET (22" X 34") PRE-DEVELOPMENT DRAINAGE AREAS PLAN (22" X 34") POST-DEVELOPMENT DRAINAGE AREAS PLANS (22" X 34") PRE-DEVELOPMENT DRAINAGE AREAS PLAN (22" X 34" – COLOR) POST-DEVELOPMENT DRAINAGE AREAS PLANS (22" X 34" – COLOR)

SLOPE CLASS	DRAINAGE CLASS	HSG	
0-8%	WELL DRAINED	В	
8-15%	WELL DRAINED	В	
15-25%	WELL DRAINED	В	
3-8%	VERY POORLY DRAINED	D	
3-8%	POORLY DRAINED	D	
NDARDS OF THE NATIONAL COOPERATIVE SOILS SURVEY. Y A CERTIFIED SOIL SCIENTIST, AND IS NOT A PRODUCT			

SCS SOILS LEGEND

WdB WINDSOR LOAM SAND, 3-8% SLOPES **WdC** WINDSOR LOAM SAND, 8-15% SLOPES SOURCE: USDA-SCS WEB SOIL SURVEY

THE LEGER	DRAINAGE	ECTS THE HYDROCAD MODEL	
USED FOR	DRAINAGE CAL	SCS SOIL LINES	
		SITE SPECIFIC SOIL LINES	
	400B	DENOTES SOIL TYPE	
L	P	DENOTES POND	
\langle	s	DENOTES SUBCATCHMENT ARE	A
	R	DENOTES REACH	
		DENOTES POINT OF INTEREST	
		LIMIT OF SUBCATCHMENT AREA	N
— → —	→ — →-	TIME OF CONCENTRATION	
		REACH	
GT.	THE STORE ROR OUND P	811 CALL PREFERING	
GRA	PHIC SCA	LE	
30 0 15 30	60	120 120	
(1 ii	(IN FEET $)nch = 30 ft.$		
PRE DEVELOPMENT I BLUEBIRD SI MAP 176 LC 196-202 CEN HUDSON, NE HILLSBORO OWNER OF RECORD: RONALD CRAVEN TRUST c/o NANCY CRAVEN TRUST 88 SPEARE ROAD	DRAINA ELF S DTS 21, 22 TRAL ST W HAMP UGH CO	AGE AREA PLA <i>TORAGE</i> & 23 REET SHIRE UNTY <u>APPLICANT:</u> EBIRD SELF STORAGE LLC 125 OCEAN ROAD GREENLAND, NH 03840	AN
HUDSON, NH 03051 H.C.R.D. BK. 6079 PG. 1294			
Civil Engineering Land Sur 10 Commerce Park North, Suite 3B,	RDSTROM AS rveying Lands Bedford, NH 0	SSOCIATES, INC. cape Architecture 3110 Phone (603) 627-2881	
	REV	VISIONS	_
No. DATE		DESCRIPTION	BY

DATE: DECEMBER 20, 2021

PROJECT NO: 21-0709-3

SCALE: 1" = 30'SHEET 1 OF 4

YMBOL	MAP UNIT	SLOPE CLASS	DRAINAGE CLASS	HSG
4B	AGAWAM LOAMY SAND	0-8%	WELL DRAINED	В
4C	AGAWAM LOAMY SAND	8-15%	WELL DRAINED	В
4D	AGAWAM LOAMY SAND	15-25%	WELL DRAINED	В
15/VP	SCARBORO MUCKY FINE SANDY LOAM	3-8%	VERY POORLY DRAINED	D
99	UDORTHENTS, URBAN LAND	3-8%	POORLY DRAINED	D
HIS MAP P IS A SPE	RODUCT IS WITHIN THE TECHNICAL STAN CIAL PURPOSE PRODUCT, PRODUCED BY	IDARDS OF THE N	ATIONAL COOPERATIVE SOILS S SCIENTIST, AND IS NOT A PR	URVEY. ODUCT

OF THE USDA NATURAL RESOURCE CONSERVATION SERVICE. THERE IS A NARRATIVE REPORT THAT ACCOMPANIES THIS MAP AND MAP KEY.

SITE SPECIFIC SOIL MAP UNIT KEY

SCS SOILS LEGEND

WdB WINDSOR LOAM SAND, 3-8% SLOPES **WdC** WINDSOR LOAM SAND, 8-15% SLOPES SOURCE: USDA-SCS WEB SOIL SURVEY

THE LEGE		ECTS THE HYDROCAD MODEL	
USED FOR	VRAINAGE CAL	SCS SOIL LINES	
		SITE SPECIFIC SOIL LINES	
	400B ∧	DENOTES SOIL TYPE	
Z	P	DENOTES POND	
\langle	$\left(S \right)$	DENOTES SUBCATCHMENT ARE	Ā
	R	DENOTES REACH	
	L	DENOTES POINT OF INTEREST	
		LIMIT OF SUBCATCHMENT ARE	4
— → —	→ — →-	TIME OF CONCENTRATION	
		REACH	
	ALLING ROR OUND F	8.1.1 CAL PREVENTIONS	
GRA	PHIC SCA	ALE	
30 0 15 30	60 	12C)
1 i	(IN FEET $)inch = 30 ft$		
POST DEVELOPMENT BLUEBIRD SI MAP 176 LC 196-202 CEN HUDSON, NE HILLSBORO	DRAIN ELF S DTS 21, 22 TRAL ST EW HAMI DUGH CO	AGE AREA PL S TORAGE 2 & 23 REET PSHIRE UNTY	AN
OWNER OF RECORD: RONALD CRAVEN TRUST c/o NANCY CRAVEN TRUST 88 SPEARE ROAD HUDSON, NH 03051 H.C.R.D. BK. 6079 PG. 1294	BLU	<u>APPLICANT:</u> JEBIRD SELF STORAGE LLC 125 OCEAN ROAD GREENLAND, NH 03840	2.
Civil Engineering Land Sur 10 Commerce Park North, Suite 3B,	ORDSTROM A rveying Lands Bedford, NH (SSOCIATES, INC. scape Architecture 03110 Phone (603) 627-2881	
	RE	VISIONS	
No. DATE		DESCRIPTION	BY

DATE: DECEMBER 20, 2021

PROJECT NO: 21–0709–3

SCALE: 1" = 30'

SHEET 2 OF 4

SYMBOL	MAP UNIT
24B	AGAWAM LOAMY SAND
24C	AGAWAM LOAMY SAND
24D	AGAWAM LOAMY SAND
115/VP	SCARBORO MUCKY FINE SANDY LOAM
299	UDORTHENTS, URBAN LAND
THIS MAP PE	RODUCT IS WITHIN THE TECHNICAL STAL

