Hayner/Swanson, Inc. Civil Engineers/Land Surveyors

LETTER OF TRANSMITTAL

Civil Engineers/Land Surveyors
Three Congress Street, Nashua, NH 03062-3399

To:		
	Brian Groth, AICP, Town Planner	
	Town of Hudson Planning Dept.	
	12 School Street	
	Hudson, NH	
	Hudson, NH	

Date:	March 17, 2022	Job #5734			
Attn:					
Re:	PROPOSED BUILDING ADDITIONS - SITE PLAN				
	22 Friars Drive				
	Hudson, NH				

WE ARE SENDING YOU		☑ Attached		Under separate cover via				the following items:	
	Shop drawings		Prints	\square	Plans		Samples		Specifications
	Copy of letter		Change order		Fed Ex Standard Deliv	ery_			

Scope:

COPIES	DATE	NO.	DESCRIPTION
15		100 miles - 100 mi	11 x17 Plan – Please replace previously submitted plans
1	A. A		Resubmittal Letter to Messrs. Groth and Dhima
1			Sidewalk Connection Sketch
1			Set of Supplemental Stormwater Information
1			Waiver Request Letter
			Re-submittal for March 23, 2022 Hudson Planning Board meeting
		17.00	Electronic (PDF) Set – Submitted via Email to Brian Groth

James N. Petropulos, P.E.
President/Principal Engineer

Civil Engineers/Land Surveyors

March 17, 2022 Job# 5734

Mr. Brian Groth, AICP – Town Planner Mr. Elvis Dhima, P.E. – Town Engineer **TOWN OF HUDSON** 12 School Street Hudson, NH 03051

RE: PROPOSED BUILDING ADDITIONS 22 FRIARS DRIVE HUDSON, NEW HAMPSHIRE

Dear Messrs. Groth and Dhima:

Pursuant to our recent telephone conversation regarding the above referenced project please note our responses to the additional plan review comments that you both provided during the call.

- 1. Estimated domestic water and sewage flow estimates were provided to Mr. Dhima, P.E. in a letter dated March 14, 2022, a copy of which is attached herewith.
- 2. Please find enclosed additional support material (test pit logs, infiltration testing results, sketch plans, riprap outlet protection calculations) that addresses the stormwater design comments provided by Mr. Dhima. This information will be added to our final plans. Additionally, as can be seen on the infiltration testing results, the soils under the proposed subsurface basins have an infiltration rate that exceed the maximum allowed per NHDES regulations. The final plans will include an amended soil layer under each basin in accordance with NHDES standards.
- Please find attached a sketch plan showing the sidewalk connection from Friars Drive to the on-site sidewalk network that leads to the building entrances. If acceptable we will add this information to our final plan set.
- Please find enclosed a revised waiver request letter that seeks approval to have 9-foot wide parking spaces in lieu of 10-footers.

We look forward to our Planning Board hearing on March 23, 2022 to discuss these and any other outstanding items for this project. As always, please do not hesitate to contact our office if you have any questions regarding this project or if you need any need additional information.

Respectfully.

James N. Petropulos, P.E. President/Principal Engineer

Hayner/Swanson, Inc.

Civil Engineers/Land Surveyors

March 16, 2022 Job# 5734

Mr. Elvis, Dhima, P.E., Town Engineer Town of Hudson 12 School Street Hudson, NH 03051

RE:

PROPOSED BUILDING ADDITIONS

22 FRIARS DRIVE

HUDSON, NEW HAMPSHIRE

Dear Elvis:

Pursuant to the above referenced project we wish to respond to your recent request to provide estimated domestic water usage and average daily sewer flow needs for this facility once the proposed additions have been constructed. It is our understanding, based on discussions with our client, that this manufacturing facility does not discharge any industrial wastewater into the municipal sewerage system and therefore the domestic water usage is for employee consumption and sanitary purposes only. The current and proposed estimated flows, using the New Hampshire Department of Environmental Services (NHDES) unit design flow estimates in gallons per day (GPD) are as follows:

EXISTING FLOW ESTIMATE:

80 employees x 15 GPD/Person

= 1,200 GPD

PROPOSED FLOW ESTIMATE:

135 employees x 15 GPD/Person

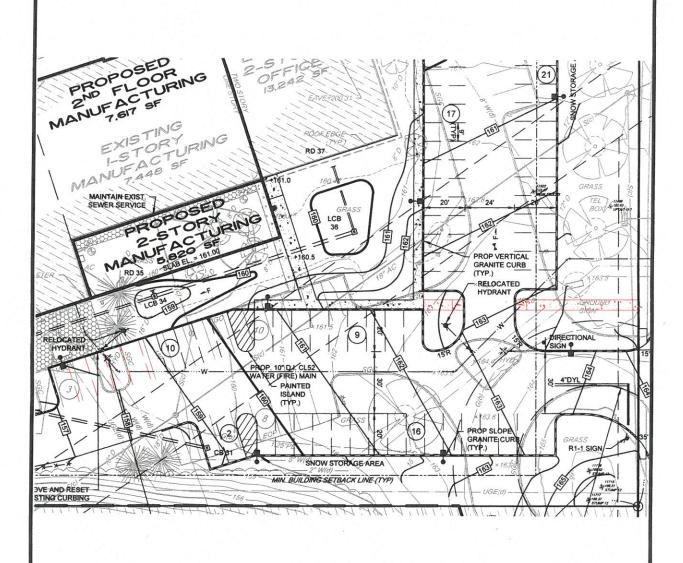
= 2,025 GPD

NET INCREASE:

= 825 GPD

As always, please do not hesitate to contact our office if you have any questions regarding this project or if you need any need additional information.

Respectfully,


James N. Petropulos, P.E. President/Principal Engineer

Hayner/Swanson, Inc.

cc: Brian Groth, AICP - Town Planner

SIDEWALK SKETCH PLAN MAP 209, LOT 4 22 FRIARS DRIVE HUDSON, NH 03/16/22 THSI Hayner/Swanson, Inc.

Civil Engineers/Land Surveyors 3 Congress Street Nashua, NH 03062 131 Middlesex Turnpike Burlington, MA 01803

WAIVER REQUEST MEMORANDUM (Revised 17 March 2022)

WAIVER REQUEST #1:

Site Plan Regulation: Hudson Site Plan Regulation Chapter 275-8 C (2) – Required number of Parking Spaces.

Waiver Request: A waiver is requested from **Chapter 275-8 C (2)** in order to allow 93 parking spaces on a lot where 134 spaces are required per the regulation.

Basis of Waiver:

For Industrial lots, the Hudson Site Plan regulations parking requirement is: *one for each 600 square feet of gross floor space or 0.75 space per employee of the combined employment of the two largest consecutive shifts, whichever is larger.* Currently, Integra Biosciences building measures 32,210 square feet and the site contains 101 parking spaces. The total number of employees at this facility is 80, spread over two shifts that operate 16 hours per day for 5 days per week (Monday thru Friday). The proposed additions, which measure 48,177 square feet and will displace the existing parking lot on the east side of the site. It is being proposed to replace these spaces by expanding the parking areas on the south and west sides of the property along with adding parking behind the proposed warehouse addition. When complete, the post-construction number of employees will be 135, again over two shifts. In calculating the required number of spaces, the larger amount per the Hudson Code is the 1 space per 600 square feet criteria which yields a requirement of 134 spaces. The proposed site plan shows a total of 93 spaces being provided, which meets the needs of Integra.

Integra Biosciences has occupied this site since the 1990's. Based on their past experience with this site and with the "flexible arrival/departure" times they afford their employees, they feel strongly that they have ample parking today and upon completion of the proposed building expansions.

Waiver Request Form Standards

The hardship reason for granting this waiver is that there is no reasonable way to add forty-one (41) more parking spaces on this property in order to comply with the Site Plan Regulation. As stated above, the combination of two shifts using 'flexible arrival and departure' times allows this site to function properly without needing the required number of spaces.

Granting this waiver will not be contrary to the spirit and intent of the Town's Land Use Regulations because the spirit and intent of Chapter 275-8 C (2) is that adequate parking is provided for the intended use. As has been stated above, given the past history of this site and the way this business uses two working shifts, adequate parking is provided.

Chapter 276-7 Waivers

The requirements of Chapter 275-8 C (2) are unnecessary.

The purpose of Chapter 275-8 C (2) is to ensure adequate number of parking spaces are provided for a particular use. Given the above stated reasons, it is Integra's opinion that ample parking is provided for this business operation.

Granting the waiver will not violate the purposes or general standards of the Land Use Regulations.

This waiver will not violate the public safety purposes of Chapter 275-8 C (2), in that the plan represents good planning principles and is balanced with regard to parking, building and open spaces.

Granting the waiver shall result in a general benefit to the Town and surrounding properties.

Granting the waiver will support the Integra Biosciences building addition which will create approximately 55 new jobs, increase annual tax revenue and is the type of development specifically contemplated by the Town's Master Plan. As a result, the waiver will result in a general benefit to the Town.

WAIVER REQUEST #2:

Site Plan Regulation: Hudson Site Plan Regulation Chapter 275-8 C (4) – Required width of parking spaces.

Waiver Request: A waiver is requested from **Chapter 275-8 C (4)** in order to allow $9' \times 20'$ parking spaces where $10' \times 20'$ spaces are required.

Basis of Waiver:

The Hudson Site Plan regulations parking space dimension requirement is: 10 feet by 20 feet, except that the PLANNING BOARD may vote to allow dimensions of 9 feet by 18 feet. It is fairly standard practice to have 9 foot wide parking spaces for a commercial building. Typically a 10-foot stall is required for retail projects. Currently the Integra parking lot has 9 foot by 20 foot parking stalls and they have been working fine.

Waiver Request Form Standards

The hardship reason for granting this waiver is that providing 10-foot wide spaces would reduce the number of spaces that could be constructed on this site. Strict enforcement of the parking dimensions would pose a hardship to the applicant since it would mean that the building additions, as envisioned, could not be constructed.

Integra believes that the above request is reasonable and meets the spirit and intent of the Town of Hudson Site Plan Regulations since proposed parking space dimensions meet industry standards.

Chapter 276-7 Waivers

The requirements of Chapter 275-8 C (4) are unnecessary.

As indicated above, Chapter 275-8 C (4) gives the Planning Board the authority to approve 9-foot wide parking spaces, which is an industry standard for commercial uses.

Granting the waiver will not violate the purposes or general standards of the Land Use Regulations.

The general standards of the Hudson Site Plan regulations are to address public safety concerns related to the building and site expansion of this property. The reduction of the proposed parking space width by 1-foot does not create a public safety concern.

Granting the waiver shall result in a general benefit to the Town and surrounding properties.

Granting the waiver will allow Integra to grow their business at their current location.

WAIVER REQUEST #3:

Site Plan Regulation: Hudson Site Plan Regulation Chapter 275-8 C (6) – Required number of Loading Spaces.

Waiver Request: A waiver is requested from **Chapter 275-8 C (6)** in order to allow 5 loading spaces on a lot where 9 spaces are required per this code.

Basis of Waiver:

The Hudson Site Plan regulations loading requirement is: *one for each 5000 square feet of gross floor space plus 1 space for every additional 10,000 square feet of gross floor area.*Currently there are two loading docks to the existing building. It is being proposed to expand this structure in the back part of the site and building thereby displacing the existing loading docks and maneuver area. The proposed addition will include four (4) recessed loading dock doors to service the entire operation on the east side of the building and one (1) new dock door on the west side of the existing warehouse.

Waiver Request Form Standards

The hardship reason for granting this waiver is that providing 9 loading spaces is entirely unnecessary for this use. As stated above, Integra has operated upon this property since the 1990's. They know and understand their loading needs. Strict enforcement of the loading requirement would pose a hardship to the applicant since it would mean that the building addition could not be constructed as envisioned and the business would need to look elsewhere for a facility.

Integra believes that the above request is reasonable and meets the spirit and intent of the Town of Hudson Site Plan Regulations since the number loading docks and their intended location is sufficient for this business.

Chapter 276-7 Waivers

The requirements of Chapter 275-8 C (6) are unnecessary.

As indicated above, the purpose of Chapter 275-8 C (6) is to ensure that the correct number of loading spaces is provided for the intended use. The subject site will be served by five (5) docks as described above.

Granting the waiver will not violate the purposes or general standards of the Land Use Regulations.

The general standards of the Hudson Site Plan regulations are to address public safety concerns related to the building and site expansion of this property. The reduction of 9 loading dock spaces to 5 spaces does not create a public safety concern.

Granting the waiver shall result in a general benefit to the Town and surrounding properties.

Granting the waiver will allow Integra to grow their business at their current location.

WAIVER REQUEST #4:

Driveway Regulation: Driveway Regulation 193-10.G – One driveway per parcel.

Waiver Request: A waiver is requested from **Driveway Regulation 193-10.G** in order to allow 2 driveways for this subject site.

Basis of Waiver:

The Hudson Driveway Regulation is one driveway per parcel. Currently there are two driveway servicing this property, both off a temporary cul-de-sac along Friars Drive. It is being proposed to eliminate the cul-de-sac and access the re-vamped site with 2 driveways; an in/out on the west side of the property and an exit only (right turn only) driveway on the east side.

Waiver Request Form Standards

The hardship reason for granting this waiver is that limiting this property to 1 driveway would eliminate the trucking pattern for this manufacturing facility. Strict enforcement of the driveway requirement would pose a hardship to the applicant since it would mean that the building additions could not be constructed as envisioned and the business would need to look elsewhere for a facility.

Integra believes that the above request is reasonable and meets the spirit and intent of the Town of Hudson Site Plan Regulations since the number driveways is the same as what they currently have used for the past 25 years.

Chapter 276-7 Waivers

The requirements of Driveway Regulation 193-10.G are unnecessary.

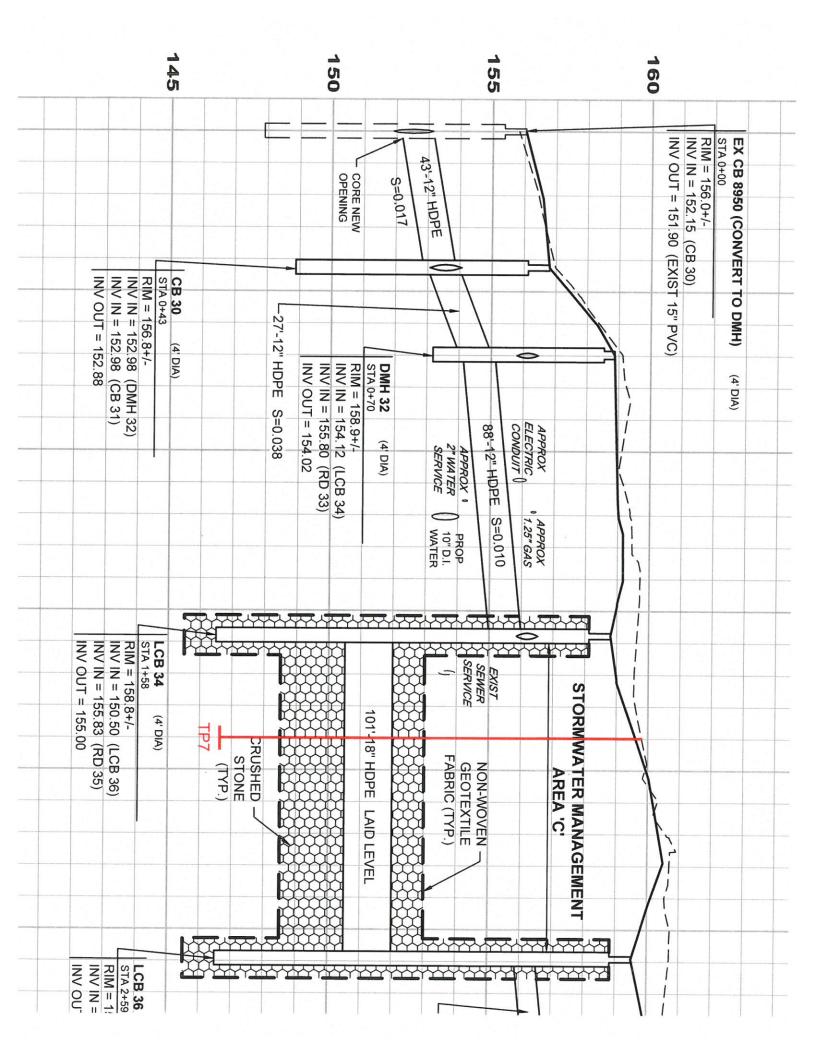
It is unreasonable to request a manufacturing facility to operate their business using only 1 driveway in this well-established industrial park.

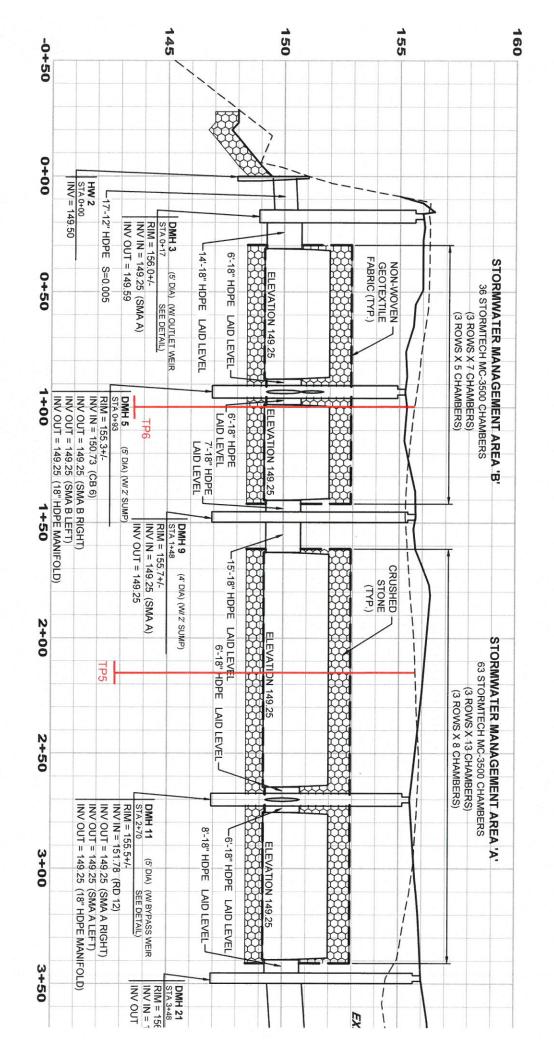
Granting the waiver will not violate the purposes or general standards of the Land Use Regulations.

The general standards of the Hudson Site Plan regulations are to address public safety concerns related to the building and site expansion of this property. Allowing 2 driveways for this use does not create a public safety concern.

Granting the waiver shall result in a general benefit to the Town and surrounding properties.

Granting the waiver will allow Integra to grow their business at their current location.


Conclusion:


When the Site Plan regulations are applied to this particular property, they impose unreasonable requirements with no benefit to the public. The property is a manufacturing site with few visitors. The applicant knows their parking, loading and access demands. Because the site plan calculations require two alternative calculations, there is an unnecessarily large parking requirement by one calculation. The existing site is currently overparked. The same argument can be made for the required number of loading spaces.

Strict application of these rules does not benefit the public. However, requiring strict compliance may prevent the proposed additions. Rules are established to address all possible scenarios. Here, the use is known. Strict application of the rules is not necessary to accomplish reasonable planning goals. Even after the addition, the site will be safe, accessible and aesthetically consistent with other properties in the park. To require strict compliance would not advance any planning principles. Rather it would go against good planning for industrial parks – i.e. enabling reasonable expansion and use of existing infrastructure in a way that is consistent with the existing area.

This proposed site plan balances the needs of the community to enable growth and expansion in a safe and reasonable manner without imposing requirements that have no benefit under the circumstances.

Hayner/Swanson, Inc.

Civil Engineering & Land Surveying

HSI #5734

MAP 209 LOT 4

INTEGRA BIOSCIENCES CORP.

22 FRIARS DRIVE

HUDSON, NH

TEST PITS:

FOR DRAINAGE

WEATHER:

40° OVERCAST

EQUIPMENT: LOGGED BY:

KUBOTA KX161-3 MINI EXCAVATOR

PAUL CARIDEO, NHDES PERMIT #68

TEST PIT # 5 DATE: 3/17/22

0-12" 10YR 3/3, DARK BROWN, SANDY LOAM FILL, FINE GRANULAR, VERY FRIABLE WITH NO ROOTS

8-20" 10YR 5/4, YELLOWISH BROWN, LOAMY SAND, FINE GRANULAR, VERY FRIABLE

20-46" 10YR 5/8, YELLOWISH BROWN, MEDIUM SAND, SINGLE GRAIN, LOOSE

46-80" 10YR 5/4, YELLOWISH BROWN, MEDIUM SAND, SINGLE GRAIN, LOOSE

80-156"10YR 6/3, LIGHT YELLOWISH BROWN, GRAVELLY SAND, 15% ROUNDED COBBLES, 10% GRAVEL, SINGLE GRAIN, LOOSE WITH 7.5YR 5/8, STRONG BROWN, COMMON, DISTINCT REDOXIMORPHIC FEATURES AT 148"+

ESHWT: 148" OWT: NONE

ROOTS: NONE

LEDGE: NONE

TEST PIT#6

DATE: 3/17/22 (SAME LOCATION AS TP #1)

0-14"

10YR 3/3, DARK BROWN, SANDY LOAM FILL, FINE GRANULAR, VERY FRIABLE WITH FEW

ROOTS

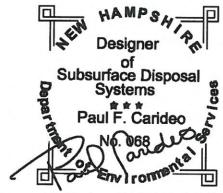
14-96"

10YR 5/4, YELLOWISH BROWN, MEDIUM SAND, SINGLE GRAIN, LOOSE WITH FEW ROOTS

TO 38"

96-150"

10YR 6/3, LIGHT YELLOWISH BROWN, GRAVELLY SAND, 15% ROUNDED COBBLES.


10% GRAVEL, SINGLE GRAIN AND LOOSE

ESHWT: NONE OBSERVED

OWT: NONE

ROOTS: 38"

LEDGE: NONE

3 Congress St. Nashua, NH 03062 · (603) 883-2057 131 Middlesex Turnpike, Burlington, MA 01830 · (781) 203-1501 www.hayner-swanson.com

Hayner/Swanson, Inc.

Civil Engineering & Land Surveying

TEST PIT # 7 DATE: 3/17/22

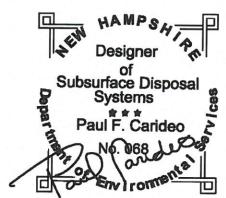
0-7" 10YR 3/3, DARK BROWN, SANDY LOAM FILL, GRANULAR, VERY FRIABLE WITH MANY ROOTS

7-63" 10YR 7/4, VERY PALE BROWN, MEDIUM SAND FILL, SINGLE GRAIN, LOOSE WITH FEW ROOTS TO 24"

63-66" 10YR 3/2, VERY DARK GRAYISH BROWN, FINE SANDY LOAM, MASSIVE AND FIRM

66-72" 10YR 5/4, YELLOWISH BROWN, MEDIUM SAND, SINGLE GRAIN AND LOOSE

42-76" 2.5Y 6/4, LIGHT YELLOWISH BROWN, GRAVELLY SAND, 15% ROUNDED COBBLES, 10% GRAVEL, SINGLE GRAIN AND LOOSE


76-156"2.5Y 6/4, LIGHT YELLOWISH BROWN, GRAVELLY SAND, 25% ROUNDED COBBLES, 10% GRAVEL, SINGLE GRAIN AND LOOSE

ESHWT: NONE OBSERVED

OWT: NONE

ROOTS: 24"

LEDGE: NONE

3 Congress St. Nashua, NH 03062 · (603) 883-2057 131 Middlesex Turnpike, Burlington, MA 01830 · (781) 203-1501 www.hayner-swanson.com

<u>Hayner/Swanson, Inc.</u> Civil Engineering Land Surveying

	Amo	oozeme	ter Data	a Sheet				
User(s):				Paul C	arideo			
Date:		3/17/2022		Permean	meter #:		5	
Location:	H	ludson, NF	1	Air Temperature (F) ir		nitial:	40+/-	
Soil Survey Area/Special Project:		Biosciences			perature (F) f		40+	
Series or Map Unit Component:		Windsor		¹ Soil Moisture Content (%):			Dry	
Horizon Tested:		С	-	¹ If not known, give a relative soil moisture content. i.e.				
Total Depth of Test:	94"			dry, moist		auve son moisi	ure content. i.e.	
Set-up Calculation]						
Hole Depth (cm): 88.0				² Actual	water level	in hole (cm)	15.0	
Distance from Bottom of Bubble	10	[[, *]		this value	to be very	Initial:	15.3	
Tube to soil surface (cm):		1	close to 15					
Desired Water Depth in Hole (cm):	-15			nearest mi		Final:	14.9	
CHT Tube setting (cm):	83		r =	'Auger H	ole Radius (d	m)	2.5	
Outflow Chamber (s) used:				(=20.0 cm²) Set on 1 (Large Tank			rge Tank only)	
[Associated C onversio	n <u>F</u> actor:]			(=105.0 cm ²) Set on 2 (Both Ta			oth Tanks)	
⁴Drop in Water	Outflow Chamber	Clock Time	Elapse (between		Outflow (Q)	Hydraulic Co	nductivity (Ksat)	
(cm)	(C.F.)	(hr:min)	(min) :	(min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)	
Ex 4.9	105	10:15			392	0.4139	0.1629	
Start		12:00	XXX	XXXX	xxxx	xxxxx	XXXXXX	
2.75	105.0		0.25	0.004	69300.0	80.62042	31.74032	
2.60	105.0		0.25	0.004	65520.0	76.22294	30.00903	
2.55	105.0		0.25	0.004	64260.0	74.75712	29.43194	
2.50	105.0	12:01	0.25	0.004	63000.0	73.29129	28.85484	
2.45	105.0		0.25	0.004	61740.0	71.82547	28.27774	
2.45	105.0		0.25	0.004	61740.0	71.82547	28.27774	
2.40	105.0	10.00	0.25	0.004	60480.0	70.35964	27.70065	
2.40	105.0	12:02	0.25	0.004	60480.0	70.35964	27.70065	
					Mean K:	74 00055	27.00040	
Yellow fields are required and need		by the rec	order.	*4		71.09255	27.98919	
Tan fields are calculated. Do not cha	-			-	St. Dev:	0.8463 Conductivity	0.3332	
Red fields are your mean, standard of Conductivity Class	deviation and	d Hydraulid			Tiyurauni C	onductivity	High	
	neter kit aug	er used ch	ange				0.000	
⁴ Only use stabilized or steady state in required).	Only use stabilized or steady state readings (personal judgment equired).							

<u>Hayner/Swanson, Inc.</u> Civil Engineering Land Surveying

11(-)	Amo	oozeme	ter Data	a Sheet				
User(s):	Paul Carideo							
Date:		3/17/2022		Permear	neter#:		6	
Location:	H	ludson, Nh	4	Air Temperature (F) initial:			40+/-	
Soil Survey Area/Special Project:	Integra	Bioscience	s Corp.	Air Temp	erature (F) f	inal:	40+/-	
Series or Map Unit Component:		Windsor		1Soil Mo	istura Cont	ont /0/\.	Dry	
Horizon Tested:		C			¹ Soil Moisture Content (%): ¹ If not known, give a relative soil mois			
Total Depth of Test:	96"			dry, moist		ative soil moist	ure content. i.e	
•				ary, meret	, 0, 1,01.			
Set-up Calculation								
Hole Depth (cm):	92.0	92.0		² Actual	water level i	n hole (cm):	15.0	
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10			this value	to be very	Initial:	15.2	
Desired Water Depth in Hole (cm):	-15		close to 15 cm. (Record to nearest millimeter.)			Final:	15.0	
CHT Tube setting (cm) = d:	87	r = 3Auger Hole Radius (cr Standard kit (6 cm) dia				2.5		
⁴ Drop in Water Outflow Clo			Elapsed Time Hydraulic Col			nductivity (Ks		
		Chamber Time		readings)	Outflow (Q)			
(cm)	(C.F.)	(hr:min)	(min) :	(min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)	
Ex 4.9	105	10:15			392	0.4139		
							0.1629	
Start	405.0	9:30	XXX	XXXX	XXXX	XXXXX	XXXXXX	
1.81	105.0	9.30	0.25	0.004	45612.0	53.06290	xxxxxx 20.89090	
1.81 1.79	105.0	9.30	0.25 0.25	0.004 0.004	45612.0 45108.0	53.06290 52.47657	20.89090 20.66007	
1.81 1.79 1.73	105.0 105.0		0.25 0.25 0.25	0.004 0.004 0.004	45612.0 45108.0 43596.0	53.06290 52.47657 50.71757	xxxxxx 20.89090 20.66007 19.96755	
1.81 1.79 1.73 1.70	105.0 105.0 105.0	9:30	0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0	53.06290 52.47657 50.71757 49.83808	20.89090 20.66007 19.96755 19.62129	
1.81 1.79 1.73 1.70 1.68	105.0 105.0 105.0 105.0		0.25 0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0 42336.0	53.06290 52.47657 50.71757 49.83808 49.25175	20.89090 20.66007 19.96755 19.62129 19.39045	
1.81 1.79 1.73 1.70 1.68 1.65	105.0 105.0 105.0 105.0 105.0		0.25 0.25 0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0 42336.0 41580.0	53.06290 52.47657 50.71757 49.83808 49.25175 48.37225	xxxxx 20.89090 20.66007 19.96755 19.62129 19.39045 19.04419	
1.81 1.79 1.73 1.70 1.68 1.65	105.0 105.0 105.0 105.0 105.0 105.0	9:31	0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0 42336.0 41580.0	53.06290 52.47657 50.71757 49.83808 49.25175 48.37225 48.37225	xxxxx 20.89090 20.66007 19.96755 19.62129 19.39045 19.04419	
1.81 1.79 1.73 1.70 1.68 1.65	105.0 105.0 105.0 105.0 105.0		0.25 0.25 0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0 42336.0 41580.0	53.06290 52.47657 50.71757 49.83808 49.25175 48.37225	xxxxx 20.89090 20.66007 19.96755 19.62129 19.39045 19.04419	
1.81 1.79 1.73 1.70 1.68 1.65	105.0 105.0 105.0 105.0 105.0 105.0	9:31	0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0 42336.0 41580.0 41076.0	53.06290 52.47657 50.71757 49.83808 49.25175 48.37225 48.37225 47.78592	xxxxxx 20.89090 20.66007 19.96755 19.62129 19.39045 19.04419 19.04419 18.81336	
1.81 1.79 1.73 1.70 1.68 1.65 1.65	105.0 105.0 105.0 105.0 105.0 105.0	9:31	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0 42336.0 41580.0 41076.0	53.06290 52.47657 50.71757 49.83808 49.25175 48.37225 47.78592 48.72405	xxxxx 20.89090 20.66007 19.96755 19.62129 19.39045 19.04419 18.81336	
1.81 1.79 1.73 1.70 1.68 1.65	105.0 105.0 105.0 105.0 105.0 105.0 105.0	9:31	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0 42336.0 41580.0 41076.0 Mean K: St. Dev:	53.06290 52.47657 50.71757 49.83808 49.25175 48.37225 47.78592 48.72405 0.8135	xxxxx 20.89090 20.66007 19.96755 19.62129 19.39045 19.04419 18.81336	
1.81 1.79 1.73 1.70 1.68 1.65 1.65 1.63 Vellow fields are required and need Fan fields are calculated. Do not characted fields are your mean, standard	105.0 105.0 105.0 105.0 105.0 105.0 105.0	9:31 9:32 by the red	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0 42336.0 41580.0 41076.0	53.06290 52.47657 50.71757 49.83808 49.25175 48.37225 47.78592 48.72405 0.8135	xxxxx 20.89090 20.66007 19.96755 19.62129 19.39045 19.04419 18.81336	
1.81 1.79 1.73 1.70 1.68 1.65 1.65 1.63 Vellow fields are required and need fan fields are calculated. Do not characteristics.	105.0 105.0 105.0 105.0 105.0 105.0 105.0	9:31 9:32 by the red	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0 42336.0 41580.0 41076.0 Mean K: St. Dev:	53.06290 52.47657 50.71757 49.83808 49.25175 48.37225 47.78592 48.72405 0.8135	xxxxx 20.89090 20.66007 19.96755 19.62129 19.39045 19.04419 18.81336	
1.81 1.79 1.73 1.70 1.68 1.65 1.65 1.63 Vellow fields are required and need Fan fields are calculated. Do not characted fields are your mean, standard	105.0 105.0 105.0 105.0 105.0 105.0 105.0 to be filled in	9:31 9:32 by the red	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0 42336.0 41580.0 41076.0 Mean K: St. Dev:	53.06290 52.47657 50.71757 49.83808 49.25175 48.37225 47.78592 48.72405 0.8135	xxxxx 20.89090 20.66007 19.96755 19.62129 19.39045 19.04419 18.81336	
1.81 1.79 1.73 1.70 1.68 1.65 1.65 1.63 Yellow fields are required and need fan fields are calculated. Do not charged fields are your mean, standard Conductivity Class	105.0 105.0 105.0 105.0 105.0 105.0 to be filled in ange! deviation and	9:31 9:32 by the red d Hydraulid	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.004 0.004 0.004 0.004 0.004 0.004 0.004	45612.0 45108.0 43596.0 42840.0 42336.0 41580.0 41076.0 Mean K: St. Dev:	53.06290 52.47657 50.71757 49.83808 49.25175 48.37225 47.78592 48.72405 0.8135	xxxxx 20.89090 20.66007 19.96755 19.62129 19.39045 19.04419 18.81336	

<u>Hayner/Swanson, Inc.</u> Civil Engineering Land Surveying

	Am	oozeme	ter Data	a Shee	t		
User(s):				Paul (Carideo		
Date:		3/17/2022		Permear	meter #:		7
Location:	H	ludson, NF	1	Air Temperature (F) initial:			40+/-
Soil Survey Area/Special Project:	Integra	Bioscience	s Corp.	Air Tem	perature (F) f	inal:	40+
Series or Map Unit Component:		Windsor		¹ Soil Moisture Content (%):			Dry
Horizon Tested:	С			1 If not kn	own give a re	lative soil mois	ture content. i.e.
Total Depth of Test:	96"			dry, moist		ative son mois	tare coment. i.e.
Set-up Calculation		1					
Hole Depth (cm):	90.0		H=	² Actual	water level	in hole (cm)	15.0
Tube to soil surface (cm):	10		² You want	this value		Initial:	15.1
Desired Water Depth in Hole (cm):	-15		close to 15			Final:	15.1
CHT Tube setting (cm):	85		r =	³ Auger H	lole Radius (d	cm)	2.5
Outflow Chamber (s) used:			105.0		(=20.0 cm²) Set on 1 (Large Tank		rge Tank only)
[Associated <u>C</u> onversion	n <u>F</u> actor:]				(=105.0 cm ²	²) Set on 2 (E	Both Tanks)
	Outflow	Clock	Flores	d Time			
⁴Drop in Water	Chamber	Time			Outflow (Q)	Hydraulic Co	enductivity (Ksat)
(cm)	(C.F.)	(hr:min)	(min) :	(min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)
Ex 4.9	105	10:15			392	0.4139	0.1629
Start		10:15	XXX	XXXX	XXXX	XXXXX	XXXXXX
2.60	105.0		0.25	0.004	65520.0	76.22294	30.00903
2.60	105.0		0.25	0.004	65520.0	76.22294	30.00903
2.55	105.0	40.40	0.25	0.004	64260.0	74.75712	29.43194
2.55	105.0	10:16	0.25	0.004	64260.0	74.75712	29.43194
2.55 2.55	105.0		0.25	0.004	64260.0	74.33944	29.26750
2.50	105.0 105.0		0.25	0.004	64260.0	74.33944	29.26750
2.50	105.0	10:17	0.25 0.25	0.004	63000.0	72.28318	28.45794
2.00	103.0	10.17	0.25	0.004	63000.0	72.28318	28.45794
Valley fields are manifested and and					Mean K:	74.54828	29.34972
Yellow fields are required and need		by the rec	order.	*4	St. Dev:	0.2411	0.0949
Tan fields are calculated. Do not cha Red fields are your mean, standard		d I Is dea dia			Hydraulic C		High
Conductivity Class	deviation and	a Hyaraulid			Tiyaraano C	onductivity	riigiri
³ Hormon - if non standard Amoozer ⁴ Only use stabilized or steady state required).		_ /160					

Outlet Protection		
Reference: NH Stormwater Manual: Volume 2 Revision 1.0		
Job #:	5	734
Project:	CONTROL DE LA CO	ilding Addition
Design by:	CARLO MANAGEMENT OF THE PARTY O	MB
Date:	3.1	6.22
Structure:	EX O	UTLET
Invert:	15	1.32
A. Conditions:		
Pipe D _o =	1.25	ft
Q ₂₅ =	2.72	cfs
Q _F =	10.16	cfs
$Q_{25}/Q_F =$	34	%
d/D =	40	%
Tw =	0.50	ft
	Tw < Do/2	
B. Design Parameters		
Apron Length =	12	ft
Apron Width at Culvert Outlet =	4	ft
Apron Width at End of Apron =	16	ft
Median Stone =	1	in
Maximum Size of Stone =	2	in
Minimum Depth of Stone =	3	in

Existing Riprap Apron: Length = 13' +/- Width = 56' +/-

The existing riprap apron exceeds minimum design parameter shown above.

HSI is not aware of any erosion or sedimentation issues at this outlet. Post construction peak rates of runoff to this outlet are less than the pre-development rates.