S.L. CHASSE STEEL AMENDED SITE PLANS – 201 & 199 Robinson Road

SP# 10-22 (Amendment to SP# 03-21) SP# 11-22 (Amendment to SP# 04-21)

STAFF REPORT

October 26, 2022

SITES: SP #10-22: 201 Robinson Road; Map 105 Lot 17-2; SP #11-22: 199 Robinson Road; Map 105 Lot 17-3

ZONING: General-1 (G-1)

PURPOSE OF PLAN: A resubmittal of a proposed 22,500 SF industrial building (Lot 17-2) and 3 proposed industrial buildings totaling 50,400 SF (Lot 17-3) along with associated parking and site improvements on each. The current applications propose revised site grading.

PLANS UNDER REVIEW:

<u>SP #10-22</u>

Non-residential Site Plan / S.L. Chasse Steel, Map 105 Lot 17-2, Robinson Road, Hudson, New Hampshire; prepared by Keach-Nordstrom Associates, Inc., 10 Commerce Park North, Suite 3, Bedford, New Hampshire 03110; prepared for Steel Properties, LLC, 8 Christine Drive, Hudson, New Hampshire 03051; consisting of 16 sheets plus a separate cover page, with general notes 1-41 on Sheet 1; dated April 6, 2021, last revised September 12, 2022.

SP# 11-22

Non-residential Site Plan / S.L. Chasse Contractor Buildings, Map 105 Lot 17-3, Robinson Road, Hudson, New Hampshire; prepared by Keach-Nordstrom Associates, Inc., 10 Commerce Park North, Suite 3, Bedford, New Hampshire 03110; prepared for SLC Development, LLC, 8 Christine Drive, Hudson, New Hampshire 03051; consisting of 16 sheets plus a separate cover page, with general notes 1-40 on Sheet 1; dated April 6, 2021, last revised September 12, 2022.

Grading Easement Plan, S.L. Chasse Steel, Map 105 Lots 17-3 & 17-4 prepared by Keach-Nordstrom Associates, Inc., 10 Commerce Park North, Suite 3, Bedford, New Hampshire 03110; prepared for Steel Properties, LLC, 8 Christine Drive, Hudson, New Hampshire 03051; consisting of 1 sheet, dated September 29, 2022.

ATTACHMENTS:

- A. Peer Review, prepared by Fuss & O'Neill, received August 31, 2022.
- B. Applicant Response to Peer Review, prepared by Keach-Nordstrom Associates, received September 19, 2022. [note this letter is incorrectly dated August 17, 2021]
- C. 2nd round of Peer Review, prepared by Fuss & O'Neill, received October 3, 2022.

- D. Town Department Comments
- E. Copies of previous approvals of SP# 03-21 and SP# 04-21
- F. Draft grading easement

APPLICATION TRACKING:

- September 8, 2021 Original site plan applications approved.
- August 9, 2022 Application received.
- September-October 2022 revisions and additional information received.
- October 26, 2022 Public hearing scheduled.

COMMENTS & RECOMMENDATIONS:

BACKGROUND

The Lot 17-2 site is a 7.107-acre parcel that has been cleared of a single family home and woodlands. A driveway onto Robinson Road remains. The Lot 17-3 site is a 7.009-acre parcel that has been cleared of woodlands. There are no wetlands or access to municipal sewer or water. However on September 8, 2021, a conditional use permit CUP# 07-21 for a water main extension was approved, simultaneously with the approval of two site plans for these lots (**Attachment E**).

Upon commencing site work, the Applicant has found that a different grading scheme is preferable. This change requires a revision to the site plan approval as it changes the grading plan and utility & stormwater layout.

DEPARTMENT COMMENTS

See Attachment D for comments from town departments.

- 1. Engineering: Applicant shall require a water main extension, subject to Board of Selectmen approval, prior to recording the plan, and applicant shall provide all necessary water offsite improvements related to achieving fire suppression at the site.
- 2. Zoning: Verify that the proposed building heights will conform with 334-14 Building Height. This will be a requirement of the building permit application.

OTHER COMMENTS

Grading

Site grading and swale construction is proposed on adjacent lot 17-4 which is under different ownership. The applicant has since acquired agreement from the owner of Map 105 Lot 17-4 to establish a grading easement for approximately 1,384 square feet at northwest corner of Lot 17-4. An easement plan and a draft easement has been provided (**Attachment F**). The easement area appears to be impacted by drainage, so a drainage easement should be included as well.

Stormwater

In **Attachment C** the peer reviewer has noted that the calculations provided by the applicant show a volumetric increase or stormwater runoff at Analysis Point A for 2-year and 50-year storm events, and that the data provided does not currently meet the Town's regulations (§290-5.A.5). The applicant notes that while they meet Alteration of Terrain requirements it is impossible to match pre-development runoff volumes due to the soil types on the site but infiltration practices have been designed to the maximum extent practicable (**Attachment B**).

The peer reviewer also notes without elevation information they are unable to verify that the sewer system piping does not conflict with any drainage piping. The applicant's response is that it will be reviewed at time of state septic submission.

Staff does not recommend waiving the requirement of §290-5.A.5 or the profile of the piping. However, the Town Engineer is amenable to resolution of these items being a stipulation of approval.

Plan Information/Ownership

The cover sheet of the site plan for Lot 17-3 lists SLC Development LLC as the owner, while the other sheets in the set, and the easement plan, identifies the owner as Steel Properties, LLC. This should be clarified and corrected.

Previous Approvals

These applications should remain subject to the conditions of approval imposed on applications SP #03-21 and SP# 04-21 of September 8, 2022

DRAFT MOTIONS

SP#10-22 MAP 105 LOT 17-2; 201 ROBINSON ROAD

ACCEPT site plan application SP# 10-22:

I move to accept the site plan application, SP# 10-22, for S.L. Chasse Steel at 201 Robinson Road; Map 105 Lot 17-2.

Motion by: _____Second: _____Carried/Failed: _____

CONTINUE the public hearing for SP# 10-22:

I move to continue the site plan application, SP# 10-22, for S.L. Chasse Steel at 201 Robinson Road; Map 105 Lot 17-2, to date certain, _____, 2022.

Motion by: ______Second: _____Carried/Failed: _____

DEFER the public hearing to a date certain:

I move to defer the site plan application, SP# 10-22, for S.L. Chasse Steel at 201 Robinson Road; Map 105 Lot 17-2, to date certain, ______, 2022.

SP# 10-22 & SP# 11-22 Staff Report Page 3 of 5

Motion by: Second:

Carried/Failed:

APPROVE the site plan application:

I move to approve the site plan entitled: Non-residential Site Plan / S.L. Chasse Steel, Map 105 Lot 17-2, Robinson Road, Hudson, New Hampshire; prepared by Keach-Nordstrom Associates, Inc., 10 Commerce Park North, Suite 3, Bedford, New Hampshire 03110; prepared for Steel Properties, LLC, 8 Christine Drive, Hudson, New Hampshire 03051; consisting of 16 sheets plus a separate cover page, with general notes 1-41 on Sheet 1; dated April 6, 2021, last revised September 12, 2022; subject to, and revised per, the following stipulations:

- 1. All stipulations of approval shall be incorporated into the Notice of Decision, which shall be recorded at the HCRD, together with the Plan.
- 2. This approval revises the grading plan, utility layout and stormwater management plan but otherwise remains subject to the stipulations of approval of SP# 03-21 approved on September 8, 2021.
- 3. The site requires a water main extension, subject Board of Selectmen approval, which shall be required prior to final Planning Board endorsement, or recording, of the plan.
- 4. Prior to Planning Board endorsement of the Plan, it shall be subject to final administrative review by the Town Planner and Town Engineer.

Motion by: Second: Carried/Failed:

SP#11-22 MAP 105 LOT 17-3; 199 ROBINSON ROAD

ACCEPT site plan application SP# 11-22:

I move to accept the site plan application, SP# 11-22, for S.L. Chasse Contractor Buildings at 199 Robinson Road; Map 105 Lot 17-3.

Motion by: ______Second: _____Carried/Failed: _____

CONTINUE the public hearing for SP# 11-22:

I move to continue the site plan application, SP# 11-22, for S.L. Chasse Contractor Buildings at 199 Robinson Road; Map 105 Lot 17-3, to date certain, _____, 2022.

Motion by: _____Second: _____Carried/Failed: _____

DEFER the public hearing to a date certain:

I move to defer the site plan application, SP# 11-22, for S.L. Chasse Contractor Buildings at 199 Robinson Road; Map 105 Lot 17-3, to date certain, ______, 2022.

SP# 10-22 & SP# 11-22 Staff Report Page 4 of 5 Motion by: Second: Carried/Failed:

APPROVE the site plan application:

I move to approve the site plan entitled: Non-residential Site Plan / S.L. Chasse Contractor Buildings, Map 105 Lot 17-3, Robinson Road, Hudson, New Hampshire; prepared by Keach-Nordstrom Associates, Inc., 10 Commerce Park North, Suite 3, Bedford, New Hampshire 03110; prepared for SLC Development, LLC, 8 Christine Drive, Hudson, New Hampshire 03051; consisting of 16 sheets plus a cover page, with general notes 1-40 on Sheet 1; dated April 6, 2021, last revised September 12, 2022; subject to, and revised per, the following stipulations:

- 1. All stipulations of approval shall be incorporated into the Notice of Decision, which shall be recorded at the HCRD, together with the Plan.
- 2. This approval revises the grading plan, utility layout and stormwater management plan but otherwise remains subject to the stipulations of approval of SP# 03-21 approved on September 8, 2021.
- 3. The site requires a water main extension, subject Board of Selectmen approval, which shall be required prior to final Planning Board endorsement of the plan.
- 4. The Grading Easement shall be amended to include Drainage, and be reviewed favorably by the Town Attorney and recorded with the Plan.
- 5. The final plan shall be revised to demonstrate conformance with §290-5.A.5 and to show no conflict between sewer and drainage pipes, to the satisfaction of the Town Engineer, prior to Planning Board endorsement of the plan.
- 6. Prior to Planning Board endorsement of the Plan, it shall be subject to final administrative review by the Town Planner and Town Engineer.

Motion by: ______Second: _____Carried/Failed: _____

August 31, 2022

Mr. Brian Groth Town Planner Town of Hudson 12 School Street Hudson, NH 03051

Re: Town of Hudson Planning Board Review SL Chasse Steel Amended Site Plan, Robinson Road Tax Map 105 Lot 17-2 & 17-3; Acct. #1350-532 Reference No. 20030249.2020

Dear Mr. Groth:

Fuss & O'Neill (F&O) has reviewed the submission of the materials received on August 9, 2022, related to the above-referenced project. Authorization was received on August 17, 2022. Fuss & O'Neill had reviewed previous versions of these plans, with our most recent review letters dated August 30, 2021. This review is focused on grading changes at both lots as depicted on the current plans, and the impacts of those grading changes to other design elements.

The following items are noted:

1. Drainage Design/Stormwater Management (HR 275-9.A./Chapter 290)

- a. HR 290-5.A.(5). The revised drainage calculations illustrate a volumetric increase from Pre to Post Development at Analysis Point A for both the 2-year and 50-year storm event. The applicant should provide a table listing the volumetric runoff at Analysis Point A for all storms analyzed, including the 25-year storm event. The data provided does not currently meet Town of Hudson Regulations. The applicant shall review this volumetric increase with the Town Engineer to confirm that this increase is allowed.
- b. We note the revised drainage calculations provided only contain the NHDES required 2-year, 10-year, and 50-year storm calculations. The applicant shall provide a copy of, at a minimum, the HydroCAD node listing of the 25-Year revised drainage calculations for Town records.
- c. (Lot 17-3) The proposed invert in (240.50) to CB #24 is lower than the proposed invert out (240.60). The applicant should review and revise this grading.
- d. (Lot 17-3) DMH #30 has two proposed inverts in and no invert out.
- e. (Lot 17-3) Grading for the proposed sewer system piping is not shown on the plans so we are unable to verify that sewer piping does not conflict with any drainage piping.

2. Erosion Control/Wetland Impacts

a. The applicant should specify the type/species of grass to be installed within the stormwater basins, which can be inundated by water for up to 72 hours.

50 Commercial Street Manchester, NH 03101 t 603.668.8223 800.286.2469

www.fando.com

California Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont

Mr. Brian Groth August 31, 2022 Page 2 of 2

3. Other

- a. (Lot 17-3) The applicant has proposed a nearly 20-foot change in grade near proposed Pocket Pond 1, just south of Building #3. The plans do not show any guardrail in this area and have designated this for proposed snow storage. The applicant should provide calculations to confirm that guardrail is not warranted in this location, and coordinate/review with the Town Engineer accordingly.
- b. (Lot 17-3) Site Plan Sheet 3 has "proposed outlet structure" and "proposed drain manhole" leader notes south of Building #3 that do not point to the structures.
- c. (Lot 17-3) The applicant is proposing some minor site grading and swale construction on adjacent lot 17-4 near Robinson Road. The applicant should coordinate with the adjacent property owner to secure rights to perform this work.
- d. (Lot 17-2) The applicant has revised the proposed dumpster enclosure location near the driveway between lots 2 and 3. This enclosure may contribute to sight obstructions between vehicles traveling on the south side of the lot 2 building and vehicles using the driveway between lots.
- e. (Both lots) The Integral Curb and Walk Detail shows a 6" reveal at the curb. Spot grades at some of the buildings show a 4" reveal.

Please feel free to call if you have any questions.

Very truly yours,

Athlyh

Steven W. Reichert, P.E.

SWR:

Enclosure

cc: Town of Hudson Engineering Division – File Keach- Nordstrom Associates, Inc. - svando@keachnordstrom.com

August 17, 2021

Mr. Brian Groth Town Planner Town of Hudson 12 School Street Hudson, NH 03051

Subject: Town of Hudson Planning Board Review SL Chasse Steel Site Plan, Robinson Road Tax Map 105 Lot 17-3; Acct.# 1350-532 Reference No. 20030249.2020 KNA Project # 20-0921-2

Dear Mr. Groth:

Our office is in receipt of Fuss & O'Neill, Inc. review comments for the Town of Hudson dated August 31, 2022 for the project listed above. Based on the comments, we have made the required modifications to the plan set and attached a copy for final review. A response to each comment has been provided below.

1. Drainage Design/Stormwater Management (HR 275-9.A./Chapter 290)

a. HR 290-5.A.(5). The revised drainage calculations illustrate a volumetric increase from Pre to Post Development at Analysis Point A for both the 2-year and 50-year storm event. The applicant should provide a table listing the volumetric runoff at Analysis Point A for all storms analyzed, including the 25-year storm event. The data provided does not currently meet Town of Hudson Regulations. The applicant shall review this volumetric increase with the Town Engineer to confirm that this increase is allowed.

The stormwater volume calculation meets the Alteration of Terrain requirements with the state. Given the soil types on this site it is impossible to infiltrate runoff volume to match the pre-development, but infiltration practices have been designed and implemented to the maximum extent practicable.

b. We note the revised drainage calculations provided only contain the NHDES required 2year, 10-year, and 50-year storm calculations. The applicant shall provide a copy of, at a minimum, the HydroCAD node listing of the 25-Year revised drainage calculations for Town records.

The 25-Year Storm is provided with the letter.

c. (Lot 17-3) The proposed invert in (240.50) to CB #24 is lower than the proposed invert out (240.60). The applicant should review and revise this grading.

Civil Engineering	Land Surveying	Landscape Architecture	
10 Commerce Park North, Suite 3B	Bedford, NH 03110	Phone (603) 627-2881	Fax (603) 627-2915

Inverts for CB #24 have been revised on both plan and storm calculations.

d. (Lot 17-3) DMH #30 has two proposed inverts in and no invert out.

Plan has been revised to show DMH #30 invert out.

e. (Lot 17-3) Grading for the proposed sewer system piping is not shown on the plans so we are unable to verify that sewer piping does not conflict with any drainage piping.

At time of state submission for the Septic, we will verify the crossings have no conflicts with the drainage.

- 2. Erosion Control/Wetland Impacts
- a. The applicant should specify the type/species of grass to be installed within the stormwater basins, which can be inundated by water for up to 72 hours. Mr. Brian Groth August 31, 2022

Materials Note #7 on 17-2 Sheet #15 and 17-3 Sheet #14 show the mix that will be provided in the stormwater basins. Although 72 hours is noted the BMP worksheets state the infiltration will take place in 36.6 Hours for Pond #1 and 30.9 Hours for Pond #2.

- 3. Other
- a. (Lot 17-3) The applicant has proposed a nearly 20-foot change in grade near proposed Pocket Pond 1, just south of Building #3. The plans do not show any guardrail in this area and have designated this for proposed snow storage. The applicant should provide calculations to confirm that guardrail is not warranted in this location, and coordinate/review with the Town Engineer accordingly.

Guardrail has been added in this area.

b. (Lot 17-3) Site Plan Sheet 3 has "proposed outlet structure" and "proposed drain manhole" leader notes south of Building #3 that do not point to the structures.

Leaders have been revised.

c. (Lot 17-3) The applicant is proposing some minor site grading and swale construction on adjacent lot 17-4 near Robinson Road. The applicant should coordinate with the adjacent property owner to secure rights to perform this work.

A temporary drainage easement will be provided. Property owner has agreed to this easement as shown in attached letter. A permanent easement is not required as

Civil Engineering	Land Surveying	Landso	cape Architecture
10 Commerce Park North, Suite 3B	Bedford, NH 03110	Phone (603) 627-2881	Fax (603) 627-2915

the existing drainage discharges to this point of analysis and the proposed shows a decrease in runoff.

d. (Lot 17-2) The applicant has revised the proposed dumpster enclosure location near the driveway between lots 2 and 3. This enclosure may contribute to sight obstructions between vehicles traveling on the south side of the lot 2 building and vehicles using the driveway between lots.

Shifted dumpster to the West to allow more visibility.

e. (Both lots) The Integral Curb and Walk Detail shows a 6" reveal at the curb. Spot grades at some of the buildings show a 4" reveal.

Detail has been revised to note see plan for reveal dimensions.

I trust the content of this response letter and its attachments has addressed each of the comments, as noted. Should you have further questions or require additional information, please do not hesitate to contact our office.

Respectfully,

Shaun Vando Project Engineer Keach-Nordstrom Associates, Inc.

Civil Engineering	Land Surveying	Landscape Architecture

October 3, 2022

Mr. Brian Groth Town Planner Town of Hudson 12 School Street Hudson, NH 03051

Re: Town of Hudson Planning Board Review SL Chasse Steel Amended Site Plan, Robinson Road Tax Map 105 Lot 17-2 & 17-3; Acct. #1350-532 Reference No. 20030249.2020

Dear Mr. Groth:

Fuss & O'Neill (F&O) has reviewed the submission of the materials received on September 12, 2022, related to the above-referenced project. Authorization was received on September 19, 2022. Fuss & This review is focused on grading changes at both lots as depicted on the current plans, and the impacts of those grading changes to other design elements.

The following items require Town evaluation or input:

1. Drainage Design/Stormwater Management (HR 275-9.A./Chapter 290)

a. Former Fuss & O'Neill Comment: HR 290-5.A.(5). The revised drainage calculations illustrate a volumetric increase from Pre to Post Development at Analysis Point A for both the 2-year and 50-year storm event. The applicant should provide a table listing the volumetric runoff at Analysis Point A for all storms analyzed, including the 25-year storm event. The data provided does not currently meet Town of Hudson Regulations. The applicant shall review this volumetric increase with the Town Engineer to confirm that this increase is allowed.

Current Fuss & O'Neill Comment: The applicant has provided reasoning for the nonsubmittal of drainage requirements. This should be reviewed with the Town Engineer if this is acceptable as proposed or if a waiver is required.

e. Former Fuss & O'Neill Comment: (Lot 17-3) Grading for the proposed sever system piping is not shown on the plans so we are unable to verify that sewer piping does not conflict with any drainage piping.

Current Fuss & O'Neill Comment: The applicant has noted that the grading will be reviewed at the time of the state septic submission. The applicant should coordinate with the Town for final approval at all sewer and drain crossings to ensure appropriate separation is achieved.

50 Commercial Street Manchester, NH 03101 t 603.668.8223 800.286.2469

www.fando.com

California Connecticut Maine

Massachusetts

New Hampshire Rhode Island

Vermont

Mr. Brian Groth October 3, 2022 Page 2 of 3

The following items are resolved or have no further Fuss & O'Neill input:

1. Drainage Design/Stormwater Management (HR 275-9.A./Chapter 290)

b. Former Fuss & O'Neill Comment: We note the revised drainage calculations provided only contain the NHDES required 2-year, 10-year, and 50-year storm calculations. The applicant shall provide a copy of, at a minimum, the HydroCAD node listing of the 25-Year revised drainage calculations for Town records.

Current Fuss & O'Neill Comment: The applicant provided the 25-Year calculations. No further Fuss & O'Neill comment.

c. Former Fuss & O'Neill Comment: (Lot 17-3) The proposed invert in (240.50) to CB #24 is lower than the proposed invert out (240.60). The applicant should review and revise this grading.
 Current Fuss & O'Neill Comment: The applicant revised the inverts on Plan Sheet 7 (bottom right of parking lot). No further Fuss & O'Neill comment.

 d. Former Fuss & O'Neill Comment: (Lot 17-3) DMH #30 has two proposed inverts in and no invert out. Current Fuss & O'Neill Comment: The applicant has revised the inverts on Plan Sheet 7 (above the site specific soil map unit key). No further Fuss & O'Neill comment.

2. Erosion Control/Wetland Impacts

a. Former Fuss & O'Neill Comment: The applicant should specify the type/species of grass to be installed within the stormwater basins, which can be inundated by water for up to 72 hours.

Current Fuss & O'Neill Comment: The applicant has noted the grass seed mix on the plan set. No further Fuss & O'Neill comment.

3. Other

a. Former Fuss & O'Neill Comment: (Lot 17-3) The applicant has proposed a nearly 20-foot change in grade near proposed Pocket Pond 1, just south of Building #3. The plans do not show any guardrail in this area and have designated this for proposed snow storage. The applicant should provide calculations to confirm that guardrail is not warranted in this location, and coordinate/review with the Town Engineer accordingly.

Current Fuss & O'Neill Comment: The applicant has added a wood beam guardrail to the plan set and provided a detail. No further Fuss & O'Neill comment.

b. Former Fuss & O'Neill Comment: (Lot 17-3) Site Plan Sheet 3 has "proposed outlet structure" and "proposed drain manhole" leader notes south of Building #3 that do not point to the structures.

Current Fuss & O'Neill Comment: The applicant has revised the leader lines. No further Fuss & O'Neill comment.

c. Former Fuss & O'Neill Comment: (Lot 17-3) The applicant is proposing some minor site grading and swale construction on adjacent lot 17-4 near Robinson Road. The applicant should coordinate with the adjacent property owner to secure rights to perform this work.

Current Fuss & O'Neill Comment: The applicant has stated that the adjacent property owner has agreed to a temporary drainage easement. No further Fuss & O'Neill comment.

d. Former Fuss & O'Neill Comment: (Lot 17-2) The applicant has revised the proposed dumpster enclosure location near the driveway between lots 2 and 3. This enclosure may contribute to sight obstructions between vehicles traveling on the south side of the lot 2 building and vehicles using the driveway between lots.

SP #10-22 & #11-22 - Chasse Steel- Attachment C

Mr. Brian Groth October 3, 2022 Page 3 of 3

Current Fuss & O'Neill Comment: The applicant has shifted the proposed dumpster location. No further Fuss & O'Neill comment.

e. Former Fuss & O'Neill Comment: (Both lots) The Integral Curb and Walk Detail shows a 6" reveal at the curb. Spot grades at some of the buildings show a 4" reveal.

Current Fuss & O'Neill Comment: The applicant has revised the detail to refer back to the plan. No further Fuss & O'Neill comment.

Please feel free to call if you have any questions.

Very truly yours,

Athleh

Steven W. Reichert, P.E.

SWR:

Enclosure

cc: Town of Hudson Engineering Division – File Keach- Nordstrom Associates, Inc. - svando@keachnordstrom.com

Groth, Brian

From:	Dhima, Elvis
Sent:	Thursday, August 18, 2022 3:19 PM
То:	Dubowik, Brooke; Groth, Brian
Subject:	RE: Dept Sign Offs - SL Chasse Steel Amended SP#10-22 & SP#11-22

Please see below

- 1. Applicant shall require a water main extension , subject to BOS approval, prior to recording the plan
- 2. Applicant shall provide all necessary water offsite improvements related to achieving fire suppression at the site.

Elvis Dhima, P.E. Town Engineer

12 School Street Hudson, NH 03051 Phone: (603) 886-6008 Mobile: (603) 318-8286

SP #10-22 & #11-22 - Chasse Steel- Attachment D

Land Use Division

12 School Street • Hudson, New Hampshire 03051 • Tel: 603-886-6008 • Fax: 603-594-1142

Site Plan Review Zoning Review/Comments

August 24, 2022

Re: Map 105 Lot 17-2 Address: Robinson Rd Zoning district: (G-1) General One

Submitted plan: Sheet 1 of 16 rev 5 dated 05/25/22

Verify that the proposed building height will conform with 334-14 Building Height.

Sincerely,

Bruce Buttrick, Zoning Administrator/Code Enforcement Officer

cc: B. Groth - Town Planner file

SP #10-22 & #11-22 - Chasse Steel- Attachment D

TOWN OF HUDSON

Land Use Division

12 School Street • Hudson, New Hampshire 03051 • Tel: 603-886-6008 • Fax: 603-594-1142

Site Plan Review #11-22 Zoning Review/Comments

August 24, 2022

Re: Map 105 Lot 17-3 Address: Robinson Rd Zoning district: (G-1) General One

Submitted plan reviewed, Sheets 1 & 3 of 16, Rev 05/25/22.

Verify that the proposed buildings heights will conform with 334-14 Building Height.

Sincerely

Bruce Buttrick, Zoning Administrator/Code Enforcement Officer

cc: B. Groth - Town Planner file

TOWN OF HUDSON

Planning Board

Timothy Malley, Chairman Marilyn McGrath, Selectmen Liaison

12 School Street • Hudson, New Hampshire 03051 • Tel: 603-886-6008 • Fax: 603-594-1142

NOTICE OF APPROVAL

September 23, 2021

Owner or Applicant:

S.L. CHASSE STEEL 8 CHRISTINE DRIVE HUDSON, NH 03051

On Wednesday, September 8, 2021, the Hudson Planning Board heard subject case SP# 03-21 "S.L. Chasse Steel Site Plan".

- SUBJECT: PURPOSE OF PLAN: TO SHOW A PROPOSED INDUSTRIAL BUILDING TOTALING 22,500 SF AND ASSOCIATED PARKING. APPLICATION ACCEPTANCE & HEARING.
- LOCATION: 201 ROBINSON ROAD, HUDSON NH MAP 105/LOT 017-002

The Planning Board moved to accept the site plan application for S.L. Chasse Steel at 201 Robinson Road; Map 105/Lot 017-002.

WAIVERS GRANTED:

§276-11.1.B(12) – General Plan Requirements.

The Planning Board moved to grant a waiver from §276-11.1.B(12), to reduce the residential buffer to 100-feet, based on the Board's discussion, the testimony of the Applicant's representative, and in accordance with the language included in the submitted Waiver Request Form for said waiver.

§276-11.1.B(25) – General Plan Requirements.

The Planning Board moved to grant a waiver from §276-11.1.B(25), to allow access across the side lot line between lot 17-2 and Lot 17-3, based on the Board's discussion, the testimony of the Applicant's representative, and in accordance with the language included in the submitted Waiver Request Form for said waiver.

MOTION TO APPROVE:

The Planning Board moved to approve the site plan for Non-residential Site Plan, S.L. Chasse Steel, Map 105 Lot 17-2, Robinson Road, Hudson, New Hampshire; prepared by Keach-Nordstrom Associates, Inc.,

10 Commerce Park North, Suite 3, Bedford, New Hampshire 03110; prepared for Steel Properties, LLC, 8 Christine Drive, Hudson, New Hampshire 03051; consisting of 13 sheets plus a cover page, with general notes 1-38 on Sheet 1; dated April 6, 2021, last revised September 2, 2021.; subject to, and revised per, the following stipulations:

- 1. All stipulations of approval shall be incorporated into the Notice of Decision and the Development Agreement, which shall be recorded at the HCRD, together with the Plan.
- 2. All improvements shown on the Plan shall be completed in their entirety and at the expense of the applicant or the applicant's assigns.
- 3. A cost allocation procedure (CAP) amount of \$31,050 shall be paid prior to the issuance of a Certificate of Occupancy.
- 4. An offsite improvement, a Surge Valve for the Route 102 Booster Station, is necessitated by this application in tandem with SP #04-21. This shall be coordinated with the Engineering Department.
- 5. Prior to the issuance of a Certificate of Occupancy, an L.L.S. Certified "as-built" site plan shall be provided to the Planning Department, confirming that the site conforms to the Plan approved by the Planning Board.
- 6. The final design and size of the fire suppression water supply tanks shall be subject to the Fire Department's determination. The final Plan will reflect the needs identified during the building permit review process, which may begin prior to recording of the Plan. A building permit will not be issued until the Plan is recorded.
- 7. Prior to the Planning Board endorsement of the Plan, it shall be subject to final administrative review by Town Planner and Town Engineer.
- 8. The applicant shall schedule a pre-construction meeting with the Town Engineer prior to applying for a building permit.
- 9. Construction activities involving the subject lot shall be limited to the hours between 7:00 A.M. and 7:00 P.M. No exterior construction activities shall be allowed on Sundays.
- 10. Blasting or ramming activities shall be limited to the hours between 9:00 A.M and 5:00 P.M, Monday through Friday. Blasting activities are prohibited on Saturday and Sunday.
- 11. For the purposes of this site plan approval, the term "active and substantial development" shall mean the completion of grading and stormwater management system.
- 12. In the event that Lot 17-2 and Lot 17-3 are not under common ownership, an access easement between the two lots shall be recorded.

Signed: _

_____ Date: _____

Brian Groth Town Planner

cc: Keach-Nordstrom Associates, Inc.

TOWN OF HUDSON

Planning Board

Timothy Malley, Chairman Marilyn McGrath, Selectmen Liaison

12 School Street • Hudson, New Hampshire 03051 • Tel: 603-886-6008 • Fax: 603-594-1142

NOTICE OF APPROVAL

September 23, 2021

Owner or Applicant:

S.L. CHASSE STEEL 8 CHRISTINE DRIVE HUDSON, NH 03051

On Wednesday, September 8, 2021, the Hudson Planning Board heard subject case SP# 04-21 "S.L. Chasse Steel Site Plan".

- SUBJECT: PURPOSE OF PLAN: TO SHOW THREE (3) PROPOSED INDUSTRIAL BUILDINGS TOTALING 50,400 SF AND ASSOCIATED PARKING. APPLICATION ACCEPTANCE & HEARING.
- LOCATION: 199 ROBINSON ROAD, HUDSON NH MAP 105/LOT 017-003

The Planning Board moved to accept the site plan application for S.L. Chasse Steel at 199 Robinson Road; Map 105/Lot 017-003.

WAIVERS GRANTED:

§276-11.1.B(25) – General Plan Requirements.

The Planning Board moved to grant a waiver from §276-11.1.B(25), to allow access across the side lot line between lot 17-2 and Lot 17-3, based on the Board's discussion, the testimony of the Applicant's representative, and in accordance with the language included in the submitted Waiver Request Form for said waiver.

MOTION TO APPROVE:

The Planning Board moved to approve the site plan for Non-residential Site Plan, S.L. Chasse Steel Contractor Buildings, Map 105 Lot 17-3, Robinson Road, Hudson, New Hampshire; prepared by Keach-Nordstrom Associates, Inc., 10 Commerce Park North, Suite 3, Bedford, New Hampshire 03110; prepared for SLC Development, LLC, 8 Christine Drive, Hudson, New Hampshire 03051; consisting of 12 sheets plus a cover page, with general notes 1-41 on Sheet 1; dated April 6, 2021, last revised September 2, 2021; subject to, and revised per, the following stipulations:

- 1. All stipulations of approval shall be incorporated into the Notice of Decision and the Development Agreement, which shall be recorded at the HCRD, together with the Plan.
- 2. All improvements shown on the Plan shall be completed in their entirety and at the expense of the applicant or the applicant's assigns.
- 3. A cost allocation procedure (CAP) amount of \$69,552.00 shall be paid prior to the issuance of a Certificate of Occupancy.
- 4. An offsite improvement, a Surge Valve for the Route 102 Booster Station, is necessitated by this application in tandem with SP #03-21. This shall be coordinated with the Engineering Department.
- 5. Prior to the issuance of a Certificate of Occupancy, an L.L.S. Certified "as-built" site plan shall be provided to the Planning Department, confirming that the site conforms to the Plan approved by the Planning Board.
- 6. The final design and size of the fire suppression water supply tanks shall be subject to the Fire Department's determination. The final Plan will reflect the needs identified during the building permit review process, which may begin prior to recording of the Plan. A building permit will not be issued until the Plan is recorded.
- 7. Prior to the Planning Board endorsement of the Plan, it shall be subject to final administrative review by Town Planner and Town Engineer.
- 8. The applicant shall schedule a pre-construction meeting with the Town Engineer prior to applying for a building permit.
- 9. Construction activities involving the subject lot shall be limited to the hours between 7:00 A.M. and 7:00 P.M. No exterior construction activities shall be allowed on Sundays.
- 10. Blasting or ramming activities shall be limited to the hours between 9:00 A.M and 5:00 P.M, Monday through Friday. Blasting activities are prohibited on Saturday and Sunday.
- 11. In the event that Lot 17-2 and Lot 17-3 are not under common ownership, an access easement between the two lots shall be recorded.
- 12. For the purposes of this site plan approval, the term "active and substantial development" shall mean the completion of grading and stormwater management system.

Signed: __

_____ Date: _____

Brian Groth Town Planner

cc: Keach-Nordstrom Associates, Inc.

GRADING EASEMENT

Grey Fox Realty, LLC, a New Hampshire limited liability corporation with an address of 40 Temple Street, Nashua, New Hampshire 03060, for consideration paid, grants to **Steel Properties, LLC**, a New Hampshire limited liability corporation with an address of 8 Christine Drive, Hudson, New Hampshire 03051, a grading easement described as follows:

A grading easement located on the east side of Robinson Road, Town of Hudson, County of Hillsborough, State of New Hampshire, as shown as the "1,348 Square Foot Grading Easement to Benefit Lot 17-3," on the plan entitled: "<u>Grading Easement Plan</u>, S. L. Chasse Steel, Map 105 Lots 17-3 and 17-4, Robinson Road, Hudson, New Hampshire, Hillsborough County;" Owner of Record Lot 17-3: Steel Properties, LLC, Owner of Record Lot 17-4: Grey Fox Realty, LLC; prepared by Keach-Nordstrom Associates, Inc., dated September 29, 2022 and recorded at the Hillsborough County Registry of Deeds as Plan No. . Said grading easement further described as follows:

Beginning at a granite bound on the east side of Robinson Road, being the southwesterly corner of Lot 17-4 and the northwesterly corner of Lot 17-3, then

- (1) North 77° 47' 48" East a distance of 90.00 feet along said Lot 17-4 to a point; then
- (2) South 59° 05' 08" West a distance 93.39 feet across said Lot 17-4 to a point on the eastern side of Robinson Road; then
- (3) North 15° 09' 06" West a distance of 30.00 feet along Robinson Road, to a granite bound, being the point of beginning (the "Easement Area").

The grading easement herein granted shall include the right to enter upon the real estate described at any time that the Grantee may see fit, and to construct, maintain, repair and/or replace the slope as required under the above mentioned plan, together with the right to excavate and refill ditches and/or trenches for the location of said slopes.

The Grantee agrees, by its acceptance of this conveyance, that construction, maintenance and repair or replacement of the slopes shall be conducted in such a manner so as not to unreasonably disrupt the area of the easement or interfere with the Grantor's and Grantor's successors and assigns use of the premises. The Grantee further agrees that it shall repair and replant or reseed any disruption caused by it which exercising its rights described in this Grading Easement.

The Grantor reserves the right to use the above described Easement Area except for any such uses which would materially and adversely affect the Grantee's rights hereunder.

The Grantor reserves the right to convey easements over, under and through the Easement Area to provide utility services customary for residential or commercial uses.

The Grantor and the Grantee may enforce their and its rights under this easement by any proceedings available at law or equity including by seeking the remedies of specific performance and mandatory injunction.

This easement shall be binding upon and inure to the benefit of the parties and their successors, successors-in-title and assigns.

Meaning and intending to convey an easement upon a portion of the property conveyed to Grantor by Warranty Deed dated July 1, 2020 and recorded in said Hillsborough County Registry of Deeds at Book 9315, Page 2447.

Signature page follows.

Dated this ______ day of ______, 2022

GREY FOX REALTY, LLC

Benjamin Bosowski, Manager

STATE OF NEW HAMPSHIRE COUNTY OF HILLSBOROUGH

On this the _____ day of _____, 2022, before me, the undersigned officer, personally appeared the above-named Benjamin Bosowski, Manager of the Grey Fox Realty, LLC known to me (or satisfactorily proven) to be the person whose name is subscribed to the within instrument, and acknowledged that he executed the same for the purpose therein contained.

Before me:

Justice of the Peace/Notary Public My Commission Expires:

August 8, 2022

Subject: S.L. Chasse Steel – Site Plan Application Map 105; Lot 17-2 Robinson Road, Hudson NH KNA Project No. 21-0921-2

PROJECT NARRATIVE

The property is located along Robinson Road and is referenced on Hudson's Tax Map 105 as Lot 17-2. The 7.107-acre (309,586 SF) parcel is in Hudson's General – One (G-1) Zoning District. The property is currently owned by Steel Properties, LLC. The site currently has one single family home occupying the front portion of the property with the remaining acreage being undeveloped consisting mainly of grass and woodlands throughout the site. There are no wetlands present on the site.

This application proposes one (1) industrial building on the subject parcel. The proposed industrial building totals 22,500 SF will be serviced by on-site septic and public water. The proposed project includes associated parking as well as loading areas in the rear of the building. The site will be accessed by a driveway off Robinson Road.

In addition to the parking areas and drives, a series of drainage pipes and stormwater ponds must be added to the site. There is a bioretention pond to the north of the site that collects run-off from the parking areas. A detention pond is connected to the bioretention pond in the front to the property. Finally, there is an infiltration pond at the front of the site that collects the remaining pavement and roof run-off. These all help to mitigate any increased run-off this project may produce.

It is our professional opinion that, given the scale of the proposed project, the added industrial building will not adversely impact the Town's roads or other infrastructure now or over a longer period of time.

Civil Engineering	Land Surveying	Landso	cape Architecture
10 Commerce Park North, Suite 3B	Bedford, NH 03110	Phone (603) 627-2881	Fax (603) 627-2915

SITE PLAN APPLICATION

Date of Application: AULUST 3	2022 Tax Map #: 105 Lot #: 17-2
Site Address: Robinson Ron	
Name of Project: S.L. CHASSE	
Zoning District:	General SP#:
	(For Town Use Only)
Z.B.A. Action:	
PROPERTY OWNER:	DEVELOPER:
Name: STEEL PROPERTIES,	
Address: <u>B CHRISTINE DEIVE</u>	
Address: HUDSON, NH 0305	HUDSON, NH 03051
Telephone # (603) 886 - 3436	(603) 886 - 3436
Email: S.CHASSE @ SL CHASSE :	TTEL FAB. COM S. CHASSE @ SL CHASSE STEELFAB, COM
PROJECT ENGINEER:	SURVEYOR:
Name: KENCH NORDSTROM	ASSOC. KEACH NORDSTROM ASSOC.
Address: 10 CommEpce PARE	NORTH 10 COMMERCE PARE NORTH
Address: Surte 3, BEDFORD, NH	
Telephone # (603) 627 - 2881	(603) 627-2881
Email: SVANDO C KEACH NORDS	
PURPOSE OF PLAN:	
PLAN SET IS A RESUBUL	TTAL OF A PROPOSED 22,500 SF
INDUSTEIRE BUILDING	WITH ASSOCIATED PARHUNG AND SITE
INPLOVENTENTS. SITE GRAD	ING HAS BEEN REVISED FOR THIS SUBJITHE.
	(For Town Use Only)
Routing Date: Deadlin	e Date: Meeting Date:
	I have comments (attach to form)
Title:	Date:
(Initials)	
Department:	
Zoning: Engineering: Assessor	Police:Fire: DPW: Consultant:

Page 2 of 8 Site Plan Application - Hudson NH 080122

SITE DATA SHEET

PLAN NAME: <u>S.L. CHASSE</u>	STEEL
PLAN TYPE: <u>SITE PLAN</u>	
LEGAL DESCRIPTION: MAP	105 LOT 17-2
DATE:	
Location by Street:	ROBINSON LOAD
Zoning:	G-1
Proposed Land Use:	INDUSTRIAL
Existing Use:	VACANT
Surrounding Land Use(s):	Commercial Inousterac
Number of Lots Occupied:	
Existing Area Covered by Building:	OSF
Existing Buildings to be removed:	0
Proposed Area Covered by Building:	22,500 SF
Open Space Proposed:	61,8%
Open Space Required:	40 %
Total Area:	S.F.: 309, 586 Acres: 7.11 ACRES
Area in Wetland:	Area Steep Slopes:
Required Lot Size:	87, 120 SF
Existing Frontage:	345.05 ROBINSON ROAD
Required Frontage:	200'
Building Setbacks:	Required* Proposed
Front: Side: Rear:	50' 15' 15' 679.2'

Page 3 of 8 Site Plan Application - Hudson NH 080122

SITE DATA SHEET (Continued)

Flood Zone Reference:	FEMA MAP 33011C0508D
Width of Driveways:	30'
Number of Curb Cuts:	_/
Proposed Parking Spaces:	38 SPACES
Required Parking Spaces:	38 SPACES
Basis of Required Parking (Use):	INDUSTRIAL AND OFFICE
Dates/Case #/Description/Stipulations of ZBA, Conservation Commission, NH Wetlands Board Actions: (Attach stipulations on separate sheet)	
Waiver Requests	
Town Code Reference: Reg	ulation Description:

(For Town	Use Only)
Data Sheets Checked By:	Date:

SITE PLAN APPLICATION AUTHORIZATION

I hereby apply for *Site Plan* Review and acknowledge I will comply with all of the Ordinances of the Town of Hudson, New Hampshire State Laws, as well as any stipulations of the Planning Board, in development and construction of this project. I understand that if any of the items listed under the *Site Plan* specifications or application form are incomplete, the application will be considered rejected.

Pursuant to RSA 674:1-IV, the owner(s) by the filing of this application as indicated above, hereby given permission for any member of the Hudson Planning Board, the Town Planner, the Town Engineer, and such agents or employees of the Town or other persons as the Planning Board may authorize, to enter upon the property which is the subject of this application at all reasonable times for the purpose of such examinations, surveys, tests and inspections as may be appropriate. The owner(s) release(s) any claim to or right he/she (they) may now or hereafter possess against any of the above individuals as a result of any examinations, surveys, tests and/or inspections conducted on his/her (their) property in connection with this applications.

Signature of Owner: atytim C. Churn Mar, Date: Q-3-2022 Print Name of Owner: STEEL PROPRATIES UC.

If other than an individual, indicate name of organization and its principal owner, partners, or corporate officers.

Signature of Developer: Utitum L. Chusm Date: 8-3-7022 Print Name of Developer: SLC DEVILOPMENT LLC.

The developer/individual in charge must have control over all project work and be available to the Code Enforcement Officer/Building Inspector during the construction phase of the project. The individual in charge of the project must notify the Code Enforcement Officer/Building Inspector within two (2) working days of any change.

August 8, 2022

Subject: S.L. Chasse Contractor Buildings – Site Plan Application Map 105; Lot 17-3 Robinson Road, Hudson NH KNA Project No. 21-0921-2

PROJECT NARRATIVE

The property is located along Robinson Road and is referenced on Hudson's Tax Map 105 as Lot 17-3. The 7.009-acre (305,312 SF) parcel is in Hudson's General – One (G-1) Zoning District. The property is currently owned by Steel Properties, LLC. The site is entirely undeveloped consisting mainly of grass and woodlands throughout the site. There are no wetlands present on the site.

This application proposes three (3) industrial buildings on the subject parcel. The three proposed industrial buildings total 50,400 SF (18,400 SF + 18,400 SF + 13,600SF) will be serviced by onsite septic and public water. The proposed project includes associated parking for each building as well as loading areas in the rear of each building. The site will be accessed by a driveway off Robinson Road.

In addition to the parking areas and drives, a series of drainage pipes and stormwater ponds must be added to the site. There is a detention pond in the rear which collects overland flow. There is a pocket pond to the south of building #3 that collects roof drain run-off as well as run-off from the parking areas. Finally, there is an infiltration pond at the front of the site that collects the remaining pavement and roof run-off. These all help to mitigate any increased run-off this project may produce.

It is our professional opinion that, given the scale of the proposed project, the added industrial buildings will not adversely impact the Town's roads or other infrastructure now or over a longer period of time.

Civil Engineering Land Surveying		Landso	cape Architecture
10 Commerce Park North, Suite 3B	Bedford, NH 03110	Phone (603) 627-2881	Fax (603) 627-2915

SITE PLAN APPLICATION

Date of Application: <u>AUGUST 3, 2022</u>	Tax Map #: 105 Lot #: 17-3
Site Address: ROBINSON ROAD, HUDS	SONNH
Name of Project: S. L. CHASSE STEEL	
Zoning District:	General SP#:
	(For Town Use Only)
Z.B.A. Action:	
PROPERTY OWNER:	DEVELOPER:
Name: STEEL PROPERTIES, LLC	S.L. CHASSE STEEL, STEVE CHASSE
Address: <u>8 CHRISTINE DRIVE</u>	8 CHRISTINE DRIVE
Address: <u>HUDSON, NH 03051</u>	HUDSON, NH 03051
Telephone # (603) 886 - 3436	(603) 886 - 3436
Email: S.CHASSE @ SLCHASSE STEEL FAB. CO	M S. CHASSE @ SL CHASSE STEELFAB, COM
PROJECT ENGINEER:	SURVEYOR:
Name: KEACH NORDSTROM ASSOC.	KEACH NURDSTROM ASSOC.
Address: 10 CommERCE PARK NORTH	10 Commerce PARK NORTH
Address: SUHE 3, BEDFORD, NH 03110	SUHE 3, BEDFORD, NH 03110
Telephone # (603) 627 - 2881	(603) 627-2881
Email: SVANDO @ KEACH NORDSTRAM COM	
<u> </u>	
PURPOSE OF PLAN:	
	3 PROPOSED INDUSTRIAL BUILDINGS
TOTALING 50,400 SF . WITH ASS	CIALED PARMINE AND SITE
	BEEN REVISED FOR THIS SUBMI-HAC.
(For Town U	
Routing Date: Deadline Date:	Meeting Date:
I have no comments I have of	comments (attach to form)
Title: (Initials)	Date:
(Initials)	
Department:	
Zoning: Engineering: Assessor: Police:	Fire: DPW: Consultant:

	SITE DATA SHEET
PLAN NAME: <u>S.L. CHASSE</u>	STEEL
PLAN TYPE: <u>SITE PLAN</u>	
LEGAL DESCRIPTION: MAP	105 LOT 17-3
DATE:	
Location by Street:	ROBINSON LOHO
Zoning:	G-1
Proposed Land Use:	INDUSTRIAL
Existing Use:	VACANT
Surrounding Land Use(s):	Commercial INDUSTRIAL
Number of Lots Occupied:	1
Existing Area Covered by Building:	0 SF
Existing Buildings to be removed:	0
Proposed Area Covered by Building:	50,400 SF
Open Space Proposed:	48 %
Open Space Required:	40 %
Total Area:	S.F.: <u>305, 312</u> . Acres: <u>7.0 ACRES</u>
Area in Wetland:	O Area Steep Slopes:
Required Lot Size:	87, 120 SF
Existing Frontage:	322.8 ROBINSON ROAD
Required Frontage:	200'
Building Setbacks:	Required* Proposed
Front: Side: Rear:	50' 15' 15' 275.2'

Page 3 of 8 Site Plan Application - Hudson NH 080122

SITE DATA SHEET (Continued)

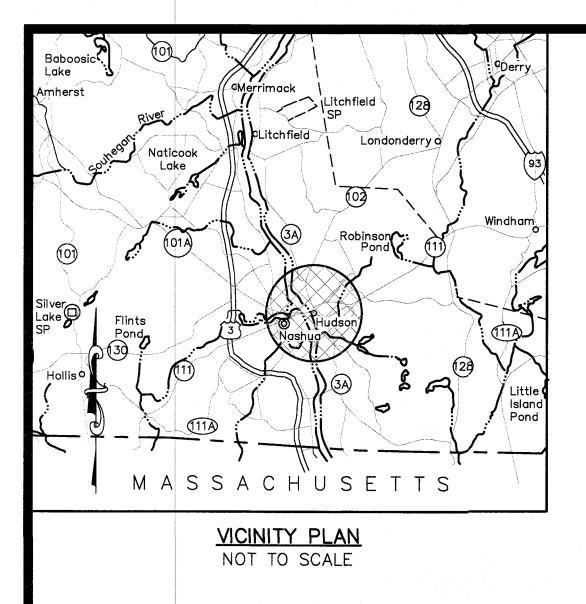
Flood Zone Reference:	FEMA MAP 33011C0508D
Width of Driveways:	30'
Number of Curb Cuts:	_/
Proposed Parking Spaces:	99 SPACES
Required Parking Spaces:	90 SPACES
Basis of Required Parking (Use):	INDUSTRIAL AND OFFICE
Dates/Case #/Description/Stipulations of ZBA, Conservation Commission, NH Wetlands Board Actions: (Attach stipulations on separate sheet)	
Waiver Requests	
Town Code Reference: Reg	ulation Description:

(For Town Use Only)
Data Sheets Checked By: _____ Date: _____

Page 4 of 8 Site Plan Application - Hudson NH 080122

SITE PLAN APPLICATION AUTHORIZATION

I hereby apply for *Site Plan* Review and acknowledge I will comply with all of the Ordinances of the Town of Hudson, New Hampshire State Laws, as well as any stipulations of the Planning Board, in development and construction of this project. I understand that if any of the items listed under the *Site Plan* specifications or application form are incomplete, the application will be considered rejected.


Pursuant to RSA 674:1-IV, the owner(s) by the filing of this application as indicated above, hereby given permission for any member of the Hudson Planning Board, the Town Planner, the Town Engineer, and such agents or employees of the Town or other persons as the Planning Board may authorize, to enter upon the property which is the subject of this application at all reasonable times for the purpose of such examinations, surveys, tests and inspections as may be appropriate. The owner(s) release(s) any claim to or right he/she (they) may now or hereafter possess against any of the above individuals as a result of any examinations, surveys, tests and/or inspections conducted on his/her (their) property in connection with this applications.

Signature of Owner: atytim C. Charmen Mor, Date: Q-3-2022 Print Name of Owner: STEEL PROPERTIES U.C.

If other than an individual, indicate name of organization and its principal owner, partners, or corporate officers.

Signature of Developer: http:// L. Chism Date: 8-3-7022 Print Name of Developer: <u>SLC</u> DEVILLOPMENT LLC.

The developer/individual in charge must have control over all project work and be available to the Code Enforcement Officer/Building Inspector during the construction phase of the project. The individual in charge of the project must notify the Code Enforcement Officer/Building Inspector within two (2) working days of any change.

NON-RESIDENTIAL SITE PLAN S.L. CHASSE STEEL MAP 105 LOT 17-2 ROBINSON ROAD HUDSON, NEW HAMPSHIRE

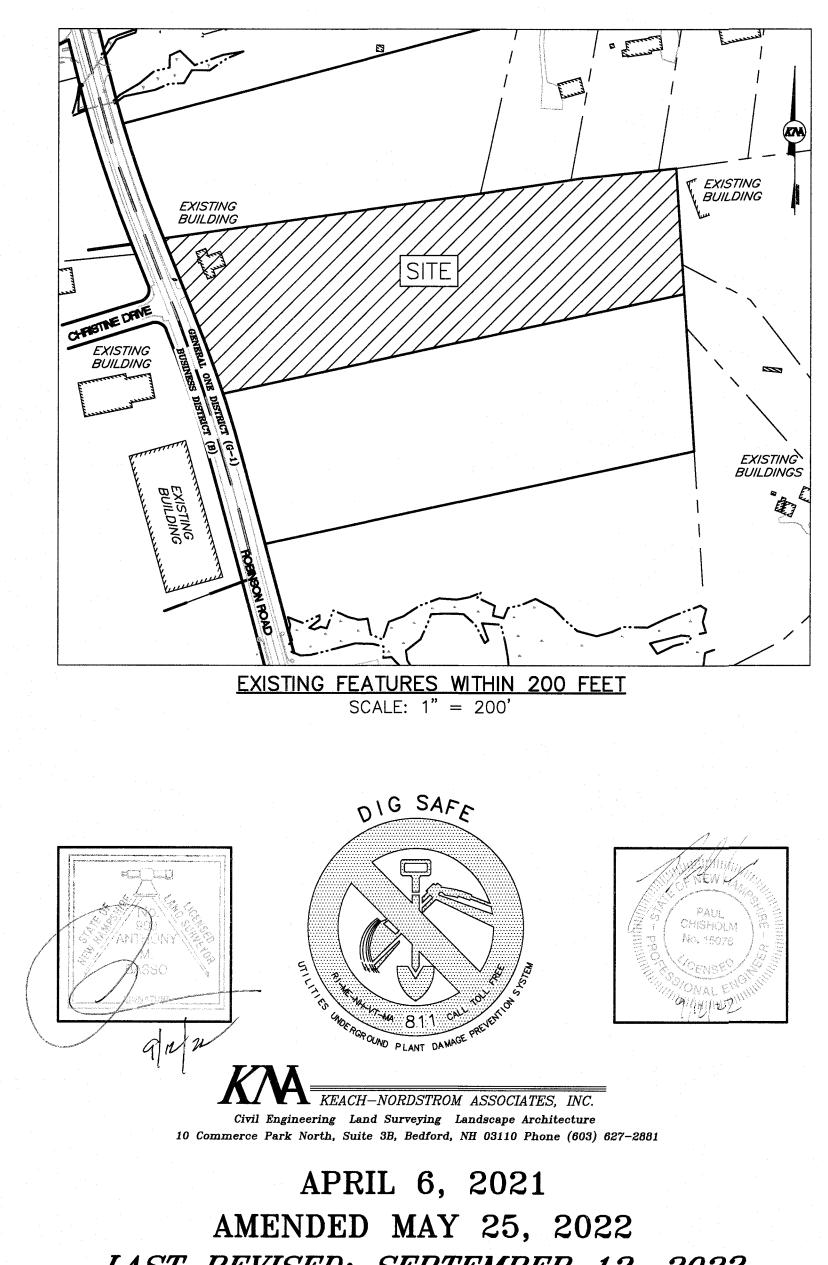
NEW HAMPSHIRE FISH AND GAME (NHFG) AOT PERMIT CONDITIONS RELATED THREATENED & ENDANGERED SPECIES:

- 1. BLANDING'S TURTLES (STATE ENDANGERED), SPOTTED TURTLES (STATE THREATENED) AND WOOD TURTLES (SPECIES OF SPECIAL CONCERN) OCCUR WITHIN THE VICINITY OF THE PROJECT AREA. ALL OPERATORS AND PERSONNEL WORKING ON OR ENTERING THE SITE SHALL BE MADE AWARE OF THE POTENTIAL PRESENCE OF THESE SPECIES AND SHALL BE PROVIDED FLYERS THAT HELP TO IDENTIFY THESE SPECIES, ALONG WITH NHFG CONTACT INFORMATION. RARE SPECIES INFORMATION (E.G. IDENTIFICATION, OBSERVATION AND REPORTING OF OBSERVATIONS, WHEN TO CONTACT NHEG IMMEDIATELY AND NHEG CONTACT INFORMATION) SHALL BE COMMUNICATED DURING MORNING TAILGATE MEETINGS PRIOR TO WORK COMMENCEMENT DURING THE CONSTRUCTION
- PHASE OF THE PROJECT. SEE PLAN SHEET 16.
- 2. TURTLES ARE ATTRACTED TO DISTURBED GROUND DURING NESTING SEASON (MAY 15TH JUNE 30TH). <u>ALL TURTLE SPECIES</u> <u>NESTS ARE PROTECTED BY NH LAWS.</u> IF PROJECT WORK IS CONDUCTED DURING NESTING SEASON, MORNING WILDLIFE SURVEYS (E.G. SWEEPS) IN AND AROUND DISTURBED SOILS SHALL BE CONDUCTED FOR TURTLES AND NEST SITES. IF A NEST IS OBSERVED OR SUSPECTED, OPERATORS SHALL CONTACT MELISSA WINTERS (603-479-1129) AND JOSH MEGYESY (978-578-0802) AT NHFG IMMEDIATELY (PHONE OR TEXT) FOR FURTHER CONSULTATION AND PRIOR TO CONDUCTING WORK IN THAT AREA FOR THE DAY. SUSPECTED NEST AREAS SHALL BE AVOIDED AND MARKED OFF SO THAT NO DISTURBANCE OCCURS TO THE AREA. A PROTECTIVE BUFFER OF THIS AREA SHALL BE ESTABLISHED OF NO LESS THAN 10 FEET AROUND THE SUSPECTED AREA UNTIL NHEG ADVISES ON HOW TO PROCEED.
- 3. ALL MANUFACTURED EROSION AND SEDIMENT CONTROL PRODUCTS, WITH THE EXCEPTION OF TURF REINFORCEMENT MATS, UTILIZED FOR, BUT NOT LIMITED TO, SLOPE PROTECTION, RUNOFF DIVERSION, SLOPE INTERRUPTION, PERIMETER CONTROL, INLET PROTECTION, CHECK DAMS, AND SEDIMENT TRAPS SHALL NOT CONTAIN PLASTIC, OR MULTIFILAMENT OR MONOFILAMENT YLENE NETTING OR MESH WITH AN OPENING SIZE OF GREATER THAN 1/8 INCHES
- 4. ALL OBSERVATIONS OF THREATENED OR ENDANGERED SPECIES ON THE PROJECT SITE SHALL BE REPORTED IMMEDIATELY TO THE NHFG NONGAME AND ENDANGERED WILDLIFE ENVIRONMENTAL REVIEW PROGRAM BY PHONE AT 603-271-2461 AND BY EMAIL AT NHFGREVIEW@WILDLIFE.NH.GOV, WITH THE EMAIL SUBJECT LINE CONTAINING THE NHB DATACHECK TOOL RESULTS LETTER ASSIGNED NUMBER, THE PROJECT NAME, AND THE TERM WILDLIFE SPECIES OBSERVATION;

5. PHOTOGRAPHS OF THE OBSERVED SPECIES AND NEARBY ELEMENTS OF HABITAT OR AREAS OF LAND DISTURBANCE SHALL BE PROVIDED TO NHFG IN DIGITAL FORMAT AT THE ABOVE EMAIL ADDRESS FOR VERIFICATION, AS FEASIBLE; 6.IN THE EVENT A THREATENED OR ENDANGERED SPECIES IS OBSERVED ON THE PROJECT SITE DURING THE TERM OF THE PERMIT,

THE SPECIES SHALL NOT BE DISTURBED, HANDLED, OR HARMED IN ANY WAY PRIOR TO CONSULTATION WITH NHFG AND IMPLEMENTATION OF CORRECTIVE ACTIONS RECOMMENDED BY NHFG.

SITE OPERATORS SHALL BE ALLOWED TO RELOCATE WILDLIFE ENCOUNTERED IF DISCOVERED WITHIN THE ACTIVE WORK ZONE AND IF IN DIRECT HARM FROM PROJECT ACTIVITIES. WILDLIFE SHALL BE RELOCATED IN CLOSE PROXIMITY TO THE CAPTURE LOCATION BUT OUTSIDE OF THE WORK ZONE AND IN THE DIRECTION THE INDIVIDUAL WAS HEADING. NHFG SHALL BE CONTACTED IMMEDIATELY IF THIS ACTION OCCURS.

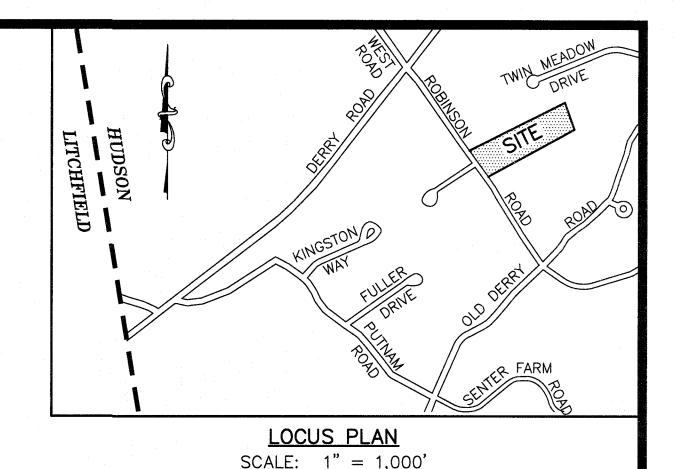

7. THE NHFG, INCLUDING ITS EMPLOYEES AND AUTHORIZED AGENTS, SHALL HAVE ACCESS TO THE PROPERTY DURING THE TERM OF THE PERMIT.

OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC **8** CHRISTINE DRIVE HUDSON, NEW HAMPSHIRE 03051

PREPARED BY:

KEACH-NORDSTROM ASSOCIATES, INC. 10 COMMERCE PARK NORTH, SUITE 3 BEDFORD, NEW HAMPSHIRE 03110 (603) 627-2881

SITE REVIEW	APPROVED BY THE HUDSON, NH PLANNING BOARD DATE OF MEETING:
REGULATIONS OF THE HUDSON PLANNING BOARD, THE SITE PLAN	SIGNATURE DATE:
APPROVAL GRANTED HEREIN	SIGNATURE DATE:
EXPIRES TWO YEARS FROM DATE OF APPROVAL	SITE PLANS ARE VALID FOR TWO YEARS FROM THE DATE OF PLANNING BOARD MEETING FINAL APPROVAL. FINAL APPROVAL COMMENCES AT THE PLANNING BOARD MEETING DATE AT WHICH THE PLAN RECEIVES FINAL APPROVAL.



LEG	END
	WETLAND
	EDGE OF PAVEMENT
<u></u>	ZONE BOUNDARY
	PROPERTY LINE
	PROPERTY LINE

SHEET TIT MASTER SITE EXISTING CON **REMOVALS PL** NON-RESIDEN GRADING, DRA EROSION CON' LANDSCAPE P LIGHTING PLA SIGHT DISTAN **CONSTRUCTIO**

OFFSITE WATER MAIN EXTENSION PLAN & PROFILE

LAST REVISED: SEPTEMBER 12, 2022 PROJECT NO. 20-0921-2

<u>rle</u>	SHEET No.
PLAN	1
NDITIONS PLAN	2
LAN	3
NTIAL SITE LAYOUT PLAN	4
AINAGE & UTILITY PLAN	5
NTROL PLAN	6
PLAN	7
AN	8
NCE PLAN & PROFILE	9
N DETAILS	10-16

NPDES NOTE

THIS PROJECT DISTURBS IN EXCESS OF 1-ACRE OF LAND. THEREFORE IT WILL BE REQUIRED TO OBTAIN NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT COVERAGE AS ISSUED BY THE ENVIRONMENTAL PROTECTION AGENCY (EPA). THE OWNER/DEVELOPER AND "OPERATOR" (GENERAL CONTRACTOR) SHALL EACH BE REQUIRED TO PREPARE AND SUBMIT A NOTICE OF INTENT (NOI) TO THE EPA PRIOR TO THE START OF CONSTRUCTION AND SHALL BE RESPONSIBLE FOR THE PREPARATION AND IMPLEMENTATION OF A STORM WATER POLLUTION PREVENTION PLAN (SWPPP) MEETING THE REQUIREMENTS OF THE CURRENT CONSTRUCTION GENERAL PERMIT.

<u>LEGEND</u>

	ABUTTER LINE
	PROPERTY LINE
	WETLAND
	EDGE OF PAVEMENT
	10' CONTOUR
	2' CONTOUR
<u> </u>	BUILDING SETBACK
	GREEN SPACE BUFFER
	EASEMENT
	ZONE LINE
	IRON PIN
	STONE BOUND
	UTILITY POLE
	GAS VALVE
	WATER VALVE
	HYDRANT
	WATER SHUT OFF
	SEWER MANHOLE TREELINE

DATE OF MEETING:

		GB-TBS
		IPIN-TBS
		OH-TBS
		ى ت
NT		- -
		⊳ 4
		GV M
κ		≷≸ X3
FFER		\bowtie
		XX.
	<u></u> 8	
	X	
	~	
		- OHU
		- UGU
	G	G
	W	W
	S	s
		. <u></u>
	$\cdot \uparrow \uparrow$	$\gamma\gamma\gamma\gamma\gamma$.
	<u> </u>	<u></u>
	<u> </u>	<u></u>

IRON PIN DRILL HOLI	E TO BE SET UTILITY POLE SIGN
PROPOSED	GAS VALVE
PROPOSED	WATER VALVE
PROPOSED	HYDRANT
PROPOSED	CHAIN LINK FENCE
PROPOSED	BARBED WIRE FENCE
PROPOSED	OVERHEAD UTILITIES
PROPOSED	UNDERGROUND UTILITIES
PROPOSED	GAS LINE
PROPOSED	WATER LINE
PROPOSED	SEWER LINE
PROPOSED	DRAINAGE LINE
PROPOSED	TREELINE
PROPOSED	EDGE OF PAVEMENT
PROPOSED	VERTICAL GRANITE CURB
PRÓPOSED	2' CONTOUR
PROPOSED	RETAINING WALL
PROPOSED	BITUMINOUS CURB

MAP 105 LOT 27

MARK R. KLEINER &

CHELSEA M. GALLANT

18 TWIN MEADOW DRIVE

H.C.R.D. BK. 9291 PG. 2095

*

APPROVED BY THE HUDSON, NH PLANNING BOARD PURSUANT TO THE SITE REVIEW REGULATIONS OF THE HUDSON PLANNING BOARD, THE SITE PLAN APPROVAL GRANTED HEREIN EXPIRES TWO OF APPROVAL

____ _

_____ ·___ ·___ -----

© IPIN 🖸 SB G

 \bowtie wv M

Q

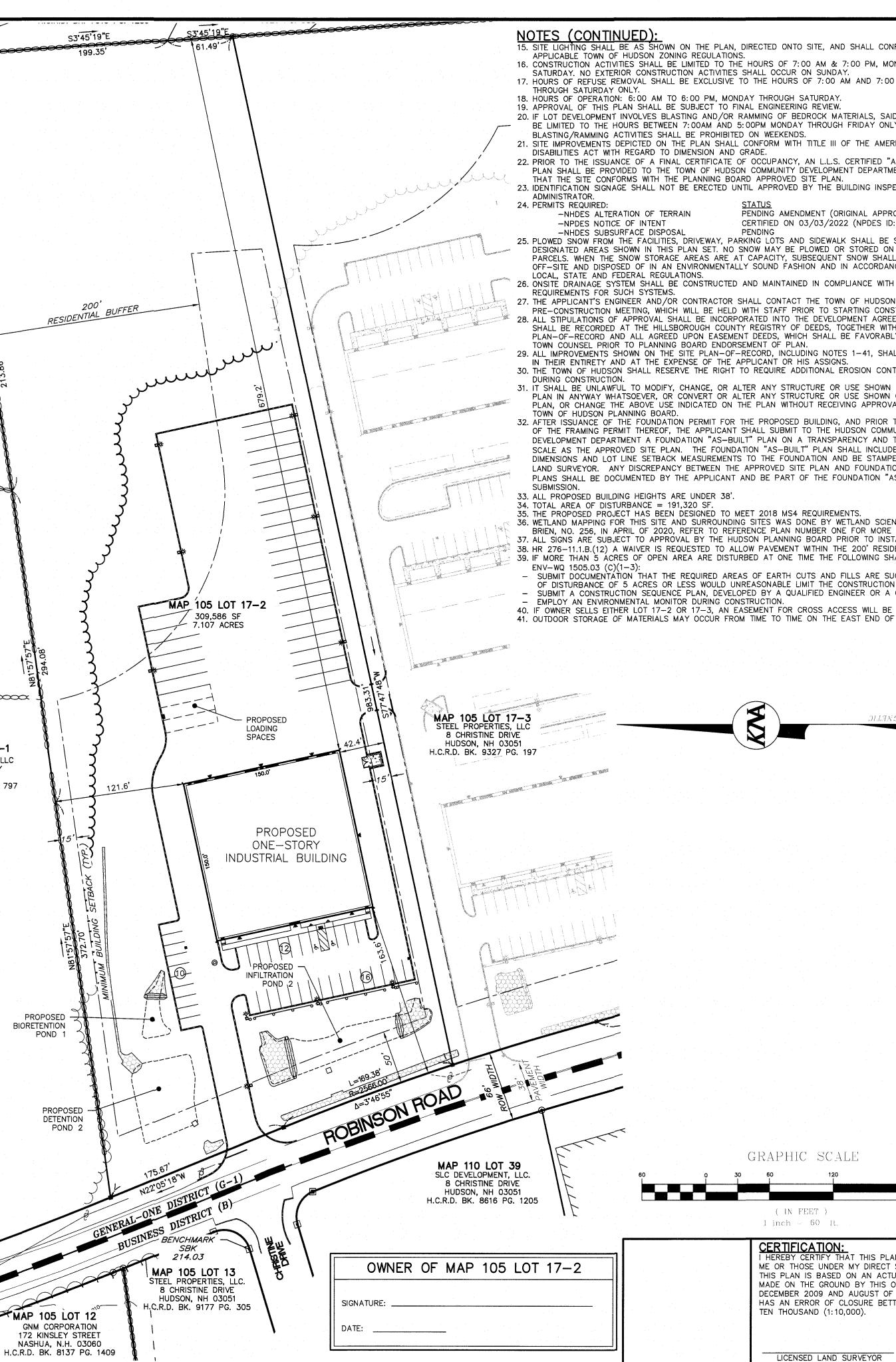
uuu

SIGNATURE DATE: ____

SIGNATURE DATE:

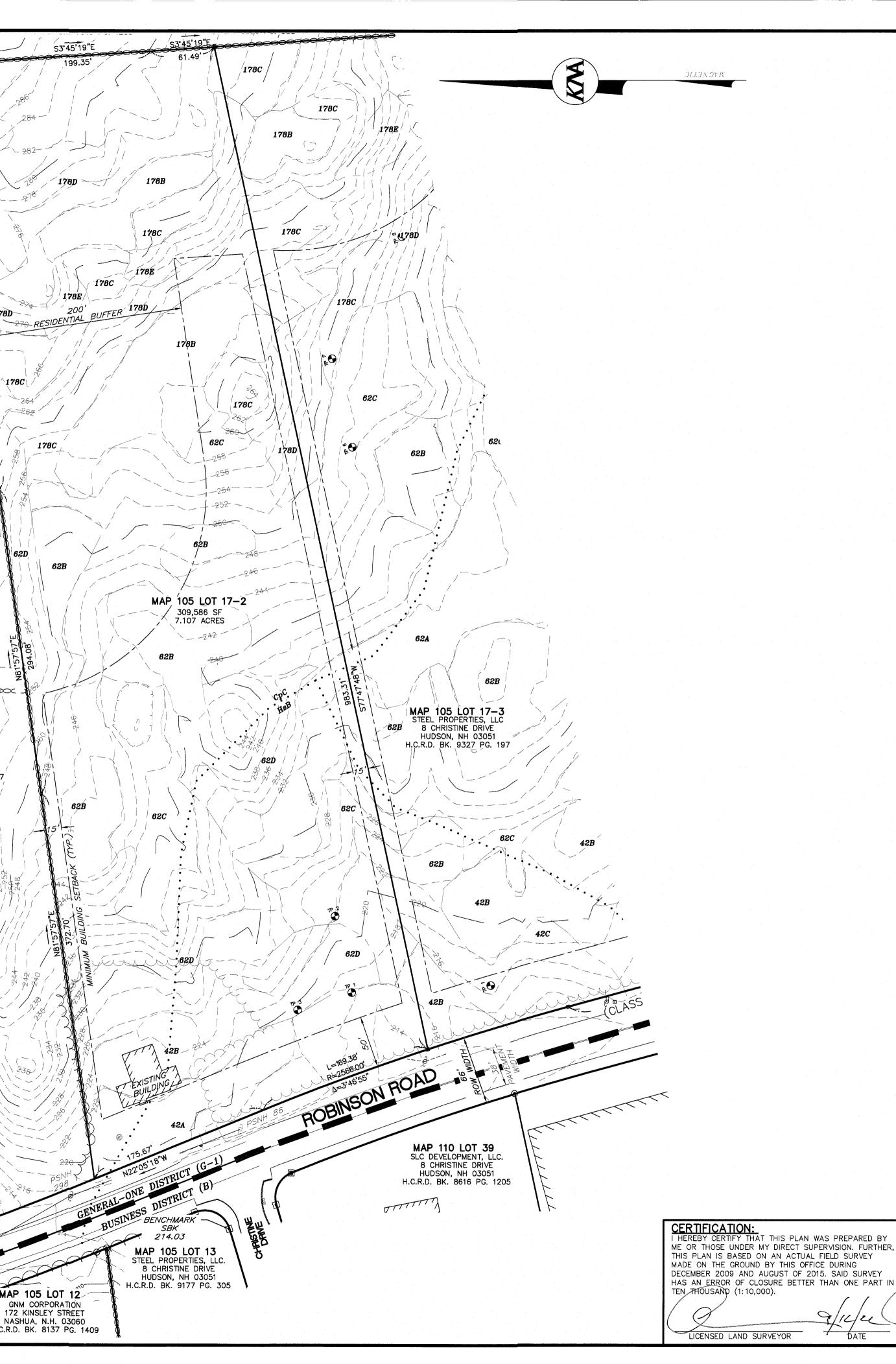
SITE PLANS ARE VALID FOR TWO YEARS FROM THE DATE OF PLANNING BOARD YEARS FROM DATE MEETING FINAL APPROVAL. FINAL APPROVAL COMMENCES AT THE PLANNING BOARD MEETING DATE AT WHICH THE PLAN RECEIVES FINAL APPROVAL.

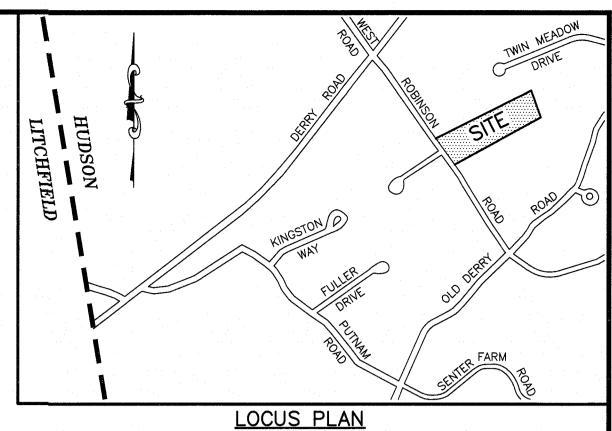
MAP 105 LOT 17-1 NOURY INVESTMENTS, LLC 17 ELNATHANS WAY HOLLIS, NH 03049 H.C.R.D. BK. 7251, PG. 797


 $\cdot \infty \infty \infty \infty \propto$

5

PROPOSED BIORETENTION POND


PROPOSED

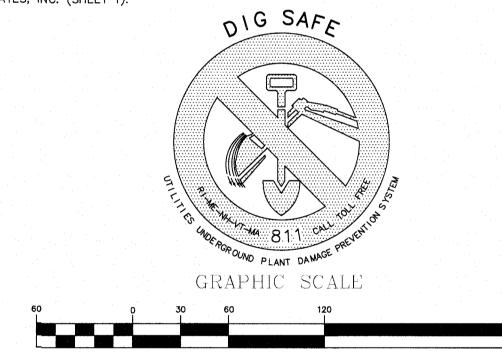

DETENTION POND 2

: 		·	
			B B TWIN MEADOW
NFORM WITH ALL			B I TWIN DRIVE
ONDAY THROUGH			
D PM, MONDAY			
		HUDSON LITCHFIELD	STE
ID ACTIVITIES SHALL	·	PCH	
LY. SAID		E Q	
RICANS WITH	1	Ë 1	Re Row O
AS-BUILT" SITE		91	KINGSTON @
ENT CONFIRMING			KING WAY
ECTOR AND ZONING			ER SER
ROVAL: AOT-2021)			NAY FULLER DRIVE OLD DERRY
): NHR1001DJ)		\sim	
STORED IN THE	· .		TO THE TARM
N THE ABUTTING L BE HAULED			
NCE WITH ALL			SEMILE 80
1 NHDES			LOCUS PLAN
N TO SCHEDULE A STRUCTION.	F		SCALE: $1'' = 1,000'$
EMENT, WHICH H THE SITE		REFERENCE PLANS: . "SUBDIVISION PLAN, NOURY IN	NVESTMENT, LLC, MAP 105 LOTS 16 & 17, ROBINSON ROAD & OLD DERRY
LY REVIEWED BY		ROAD, HUDSON, NEW HAMPSH	HIRE, DATED NOVEMBER 20, 2019, WITH REVISIONS THROUGH 05/13/20, STROM ASSOCIATES, INC. (14 SHEETS).
ALL BE COMPLETED		H.C.R.D. PLAN NUMBER: 4060	
TROL MEASURES	_	OTES:	
ON THIS SITE	1.		S TO SHOW A PROPOSED 22,500 SF INDUSTRIAL BUILDING AND NSON ROAD ON MAP 105 LOT 17-2 IN THE TOWN OF HUDSON, NEW
ON THIS SITE AL FROM THE	2	HAMPSHIRE, AND NO OTHER PL	
TO THE ISSUANCE		OWNER OF RECORD: STEEL PR	
IUNITY TO THE SAME		HUDSON,	NH 03051 BK. 9327 PG. 197
E ALL STRUCTURAL		AREA OF SUBJECT PARCEL = 3	309,586 SF, OR 7.107 ACRES
ION "AS-BUILT"		OFFICE DURING DECEMBER 2009	
AS-BUILT"		PROCESSED THROUGH NOAA-O	
	7.	THE SUBJECT PARCEL IS LOCAT	TED WITHIN THE GENERAL-ONE (G-1) ZONING DISTRICT. DIMENSIONAL WS FOR LOTS SERVICED WITHOUT MUNICIPAL SEWER AND WATER:
NTIST JOSHUA		MINIMUM LOT AREA	REQUIRED PROPOSED 87,120 SF
INFORMATION.		MINIMUM LOT FRONTAGE MINIMUM BUILDING SETBA	200 FT 345.05 (ROBINSON),
DENTIAL BUFFER. HALL BE MET PER		FRONT SIDE	50 FT 163.6 FT 15 FT 42.4 FT
	8.	REAR	15 FT 679.2 FT INDIVIDUAL SEPTIC AND MUNICIPAL WATER.
JCH THAT AN AREA N SCHEDULE.		THE LOCATION OF ANY UNDERG	GROUND UTILITY INFORMATION SHOWN ON THIS PLAN IS APPROXIMATE. ES, INC. MAKES NO CLAIM TO THE ACCURACY OR COMPLETENESS OF
CPESC SPECIALIST.			NY EXCAVATION ON SITE THE CONTRACTOR SHALL CONTACT DIG SAFE AT
NECESSARY. F THE BUILDING.	10.	THE SUBJECT PREMISES IS NOT	T LOCATED WITHIN A DESIGNATED FLOOD ZONE AS SHOWN ON FEDERAL NCY (FEMA) FLOOD INSURANCE RATE MAP (FIRM) MAP NUMBER
		33011C0508D, PANEL 508 OF 7	701, AND MAP NUMBER 33011C0509D, PANEL 509 OF 701, EFFECTIVE
	11.	EASEMENTS, RIGHTS AND REST	HE SUBJECT PARCEL IS LOCATED IN ZONES 'A' & 'X'. RICTIONS SHOWN OR IDENTIFIED HEREON ARE THOSE FOUND DURING
	•	RESTRICTIONS MAY EXIST WHICH	JGH COUNTY REGISTRY OF DEEDS. OTHER EASEMENTS, RIGHTS, AND H A TITLE EXAMINATION OF THE SUBJECT PREMISES MAY DETERMINE.
	12. 13.	OPEN SPACE: REQUIRED = 40 PARKING CALCULATIONS:	0%, PROPOSED = 62%
			TAL BUILDING = 1 SPACE/600 SF = 37 SPACES
I DV W			SPACE/300 SF = 1 SPACE 38 PARKING SPACES
		PROPOSED: TOTAL PROPOSED =	= 38 PARKING SPACES (INCLUDING 2 ACCESSIBLE PARKING SPACES)
	14.	LOADING: REQUIRED:	
		1 SPACE/FIRST 5,00 PROVIDED = 3 SPACES	00 SF + 1 SPACE/10,000 SF x 17,500 SF = 1 + 2 = 3 SPACES
		· · · · · · · · · · · · · · · · · · ·	
			NAACTED CUTE DI ANI
			MASTER SITE PLAN
		C	L. CHASSE STEEL
		
			MAP 105 LOT 17-2
			ROBINSON ROAD
		H A A A A A A A A A A A A A A A A A A A	IUDSON, NEW HAMPSHIRE
			HILLSBOROUGH COUNTY
		na a na chun ann ann dhùna ch' ch ta cha chan a' an i a chan ann a' an i	OWNER OF RECORD/APPLICANT:
			STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE
			HUDSON, N.H. 03051
			H.C.R.D. BK. 9327 PG. 197
240			
			KEACH-NORDSTROM ASSOCIATES, INC.
		-	ineering Land Surveying Landscape Architecture
		10 Commerce Parl	k North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881
		Anon Mining.	REVISIONS
AN WAS PREPARED B SUPERVISION. FURTH		SE NEW HAMPS ////	No. DATE DESCRIPTION BY
UAL FIELD SURVEY OFFICE DURING		PAUL	105/12/21TOWN COMMENTSSCV208/17/21TOWN AND AOT COMMENTSSCV
2015. SAID SURVEY TER THAN ONE PART		No. 15076	3 09/01/21 NOT COMMENTS SCV
		HOENGE AN	405/01/22AMENDED SITE PLANSCV505/25/22GRADING & LAYOUT CHANGESPCM
		PAUL CHISHOLM No. 15075 CENSED	6 08/15/22 GRADING & LATOUT CHANGES FOM 6 08/15/22 AoT COMMENTS SCV
=		14/12/23	DATE: APRIL 6, 2021 SCALE: $1'' = 60'$
DATE			PROJECT NO: 20-0921-2 SHEET 1 OF 16

	LEGEND	
	■ GB-F GRANITE BOUND FOUND [®] IPIN-F IRON PIN FOUND	178B
	● DH−F DRILL HOLE FOUND	
	ABUTTER LINE PROPERTY LINE	щ
		0.00/ 178D
	OVERHEAD UTILITIES	- Martin
	= = = = = = DRAINAGE LINE $TREELINE$	
	EDGE OF PAVEMENT	
	BUILDING SETBACK	
		1780
		268
	SCS SOILS LEGEND CpB Chatfield-Hollis-canton,	MAP 105 LOT 27
	3 TO 8% SLOPES CPC CHATFIELD-HOLLIS-CANTON, 8 TO 15% SLOPES	MARK R. KLEINER & CHELSEA M. GALLANT 18 TWIN MEADOW DRIVE
	HSB HINCKLEY LOAMY SAND, 3 TO 8% SLOPES	H.C.R.D. BK. 9291 PG. 2095
	SOURCE: USDA-SCS WEB SOIL SURVEY HILLSBOROUGH COUNTY	
	UTILITY NOTE	
	THE UNDERGROUND UTILITIES DEPICTED HEREON HAVE BEEN DRAWN FROM FIELD SURVEY INFORMATION AND OR PLOTTED FROM EXISTING DRAWINGS.	
	KEACH-NORDSTROM ASSOCIATES, INC. MAKES NO GUARANTEES THAT THE UNDERGROUND UTILITIES DEPICTED COMPRISE ALL SUCH UTILITIES IN THE AREA, EITHER IN SERVICE OR ABANDONED. FURTHER, KEACH-NORDSTROM	
	ASSOCIATES, INC. DOES NOT WARRANT THAT THE UNDERGROUND UTILITIES SHOWN ARE IN THE EXACT LOCATION INDICATED ALTHOUGH THEY ARE LOCATED AS ACCURATELY AS POSSIBLE FROM THE INFORMATION AVAILABLE.	
	KEACH-NORDSTROM ASSOCIATES, INC. HAS NOT PHYSICALLY LOCATED THE UNDERGROUND PORTIONS OF THE UTILITIES.	appado
	SITE SPECIFIC SOIL MAP UNIT KEY	
SYMBO		MAP 105 LOT 17-1 NOURY INVESTMENTS, LLC
42A 42B	CANTON SANDY LOAM0-3%WELLBCANTON SANDY LOAM3-8%WELLB	17 ELNATHANS WAY HOLLIS, NH 03049 H.C.R.D. BK. 7251, PG. 797
42C 42D	CANTON SANDY LOAM8-15%WELLBCANTON SANDY LOAM15-25%WELLB	
62A 62B	CHARLTON FINE SANDY LOAM0-3%WELLBCHARLTON FINE SANDY LOAM3-8%WELLB	
62C 62D		
1781 1780	CHARLTON-CHATFIELD COMPLEX 60-40 8-15% WELL B	× × × × × × × × × × × × × × × × × × ×
1781 1781 4444	CHARLTON-CHATFIELD COMPLEX 60-40 25-50% WELL B	
4441	R NEWFIELDS FINE SANDY LOAM 3-8% MODERATELY WELL B	
4441 THIS M	NEWFIELDS FINE SANDY LOAM 15–25% MODERATELY WELL B AP PRODUCT IS WITHIN THE TECHNICAL STANDARDS OF THE NATIONAL COOPERATIVE SOILS SURVEY. SPECIAL PURPOSE PRODUCT, PRODUCED BY A CERTIFIED SOIL SCIENTIST, AND IS NOT A PRODUCT	
OF THE	USDA NATURAL RESOURCE CONSERVATION SERVICE. THERE IS A NARRATIVE REPORT THAT PANIES THIS MAP AND MAP KEY.	
	THIS SITE-SPECIFIC SOIL MAP WAS COMPLETED BY CYNTHIA M. BALCIUS, NEW	
_	HAMPSHIRE CERTIFIED SOIL SCIENTIST #82 OF STONEY RIDGE ENVIRONMENTAL LLC. FIELD WORK WAS COMPLETED ON THE FOLLOWING DATE(S): 1. Field Indicators of Hydric Soils in the United States, Version 8.1. 2017. L.M.	
	Vasilas, G.W. Hurt, and J.F. Berkkowitz (eds.). United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with the National Technical Committee for Hydric Soils.	
	 Field Indicators for Identifying Hydric Soils In New England. Version 4. June 2018. New England Hydric Soils Technical Committee. The Site-Specific Soil Mapping Standards For New Hampshire And Vermont. SCONUSE Seciel Device No. 7. Version 5. December 2017. 	
	 SSSNNE Special Publication No.3, Version 5. December 2017. 4. Soil Survey Manual. United States Department of Agriculture Handbook No.18. Issued March 2017. US Government Printing Office. Soil Survey Staff. Washington D.C. 20402 	
	 New Hampshire State-Wide Numerical Soils Legend. USDA Natural Resources Conservation Service, Durham, New Hampshire. Issue #10, January 2011. Field Book for Describing and Sampling Soils. Version 3.0 National Soil Survey 	
	Center. Natural Resources Conservation Service. U. S. Department of Agriculture, Lincoln, Nebraska. September 2012. 7. Keys to Soil Taxonomy. Twelfth Edition. 2014. United States Department of	
	Agriculture. Natural Resources Conservation Service.	A A A
PURSUANT SITE RE	VIEW DATE OF MEETING:	
REGULATIO THE HU PLANNING	DNS OF DSON	
THE SITE APPRO GRANTED	PLAN VAL SIGNATURE DATE:	2:12
EXPIRES YEARS FRO OF APPE	TWO SITE PLANS ARE VALID FOR TWO YEARS FROM THE DATE OF PLANNING BOARD M DATE MEETING FINAL APPROVAL. FINAL APPROVAL COMMENCES AT THE PLANNING	MA 17
		H.C.R.

SCALE: 1" = 1,000'

REFERENCE PLANS:


1. "SUBDIVISION PLAN, NOURY DEVELOPMENT, LLC, MAP 105 LOTS 16 & 17, ROBINSON ROAD & OLD DERRY ROAD, HUDSON, NEW HAMPSHIRE, DATED NOVEMBER 20, 2019, WITH REVISIONS THROUGH 05/13/20, PREPARED BY KEACH-NORDSTROM ASSOCIATES, INC. (14 SHEETS).

NOTES:

- THE PURPOSE OF THIS PLAN IS TO SHOW EXISTING CONDITIONS PRESENT ON MAP 105 LOT 17-2, ON ROBINSON ROAD IN THE TOWN OF HUDSON, NEW HAMPSHIRE AND NO OTHER PURPOSE.
 TOTAL SITE AREA = 309,586 SF, OR 7.107 ACRES
- 3. MAP 105 LOT 17-2 INDICATES TOWN OF HUDSON TAX ASSESSOR'S MAP AND LOT NUMBER.
- 4. OWNER OF RECORD: STEEL PROPERTIES, LLC
 - 8 CHRISTINE DRIVE
 - HUDSON, N.H. 03051
- H.C.R.D. BK. 9327 PG. 197 5. BOUNDARY INFORMATION SHOWN HEREON IS BASED UPON AN ACTUAL FIELD SURVEY PERFORMED BY THIS OFFICE DURING DECEMBER 2009 AND AUGUST 2015. 6. HORIZONTAL DATUM IS NAD83. VERTICAL DATUM IS NGVD29 FROM GPS SURVEY METHODS POST
- PROCESSED THROUGH NOAA-OPUS.
- 7. THE SUBJECT PARCEL IS LOCATED WITHIN THE GENERAL-ONE (G-1) ZONING DISTRICT. DIMENSIONAL REQUIREMENTS ARE AS FOLLOWS FOR LOTS SERVICED WITHOUT MUNICIPAL SEWER AND WATER: REQUIRED

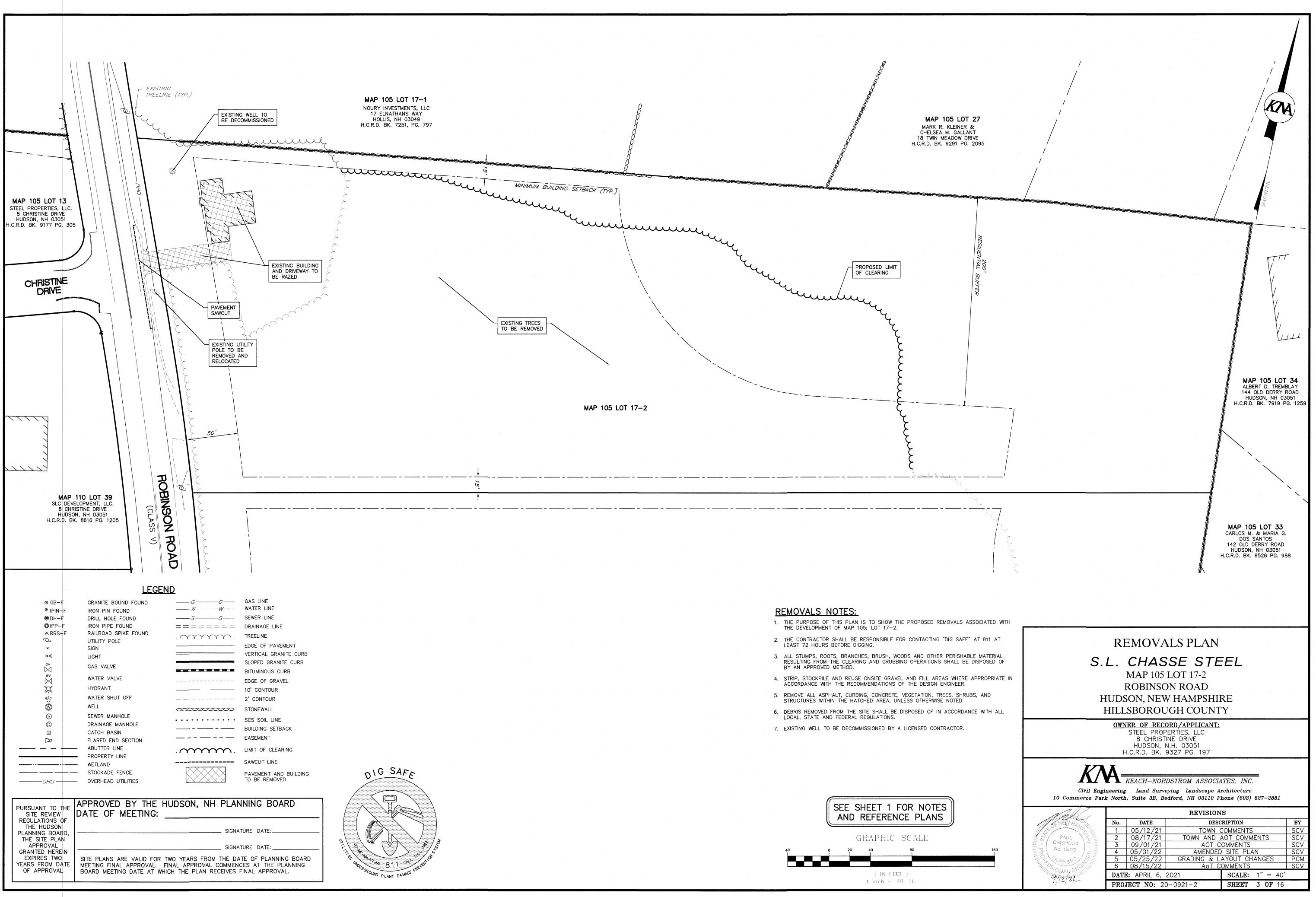
	NEQUINE	- L
MINIMUM LOT AREA:	87,120	S
MINIMUM LOT FRONTAGE:	200 FT	
MINIMUM BUILDING SETBACKS:		
FRONT	50 FT	
SIDE	15 FT	
REAR	15 FT	
OPEN SPACE:	40%	
DOEL WILL DE CEDVICED DV NUDIVIDUAL	OFDTIO	

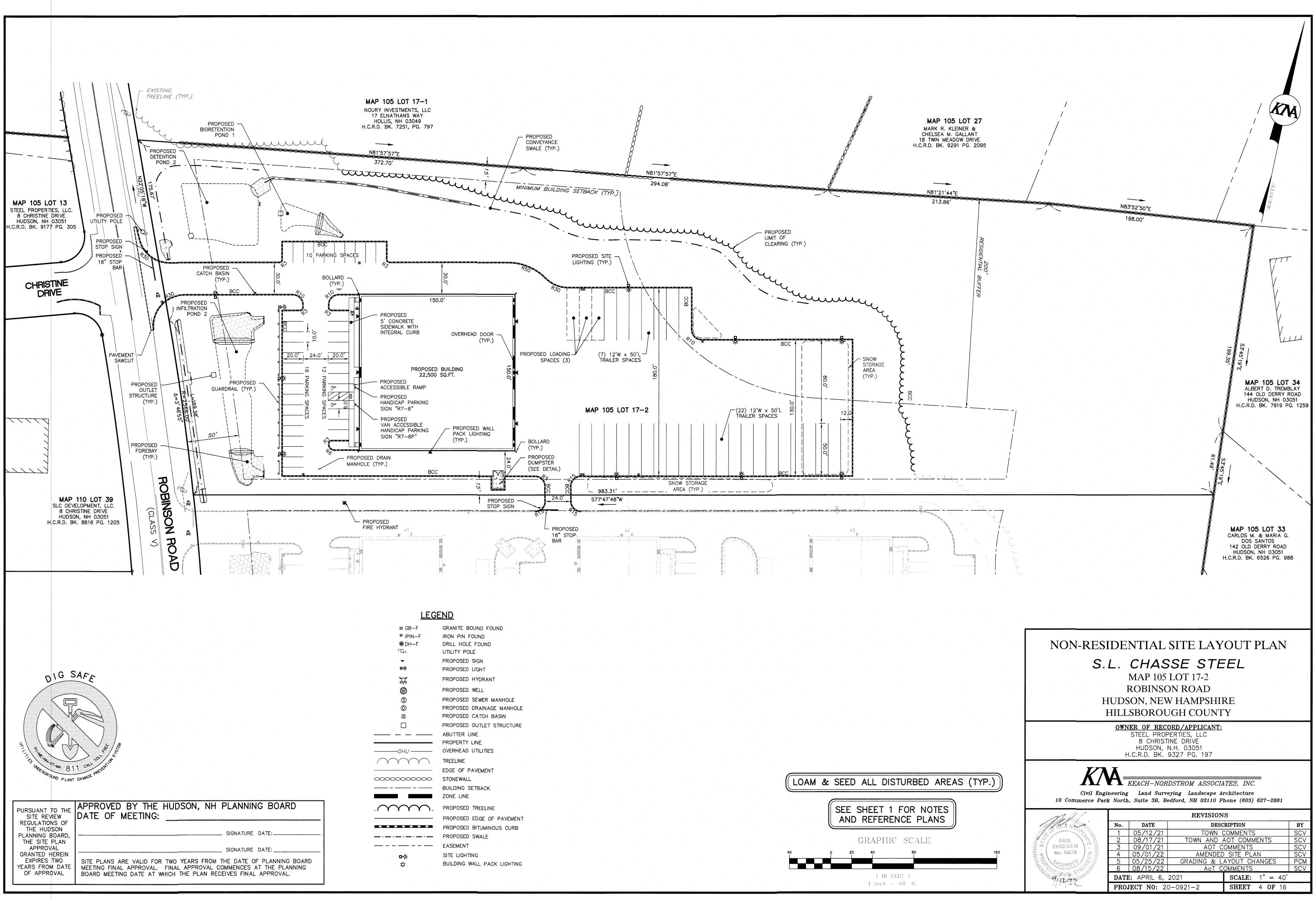
- PARCEL WILL BE SERVICED BY INDIVIDUAL SEPTIC AND WELL.
 THE LOCATION OF ANY UNDERGROUND UTILITY INFORMATION SHOWN ON THIS PLAN IS APPROXIMATE. KEACH-NORDSTROM ASSOCIATES, INC. MAKES NO CLAIM TO THE ACCURACY OR COMPLETENESS OF UTILITIES SHOWN. PRIOR TO ANY EXCAVATION ON SITE, THE CONTRACTOR SHALL CONTACT DIG SAFE
- AT 811. 10. THE SUBJECT PREMISES IS NOT LOCATED WITHIN A DESIGNATED FLOOD ZONE AS SHOWN ON FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA) FLOOD INSURANCE RATE MAP (FIRM) MAP NUMBER
- 33011C0508D, PANEL 508 OF 701. THE SUBJECT PARCEL IS LOCATED IN ZONE 'X'. 11. EASEMENTS, RIGHTS AND RESTRICTIONS SHOWN OR IDENTIFIED HEREON ARE THOSE FOUND DURING RESEARCH AT THE HILLSBOROUGH COUNTY REGISTRY OF DEEDS. OTHER EASEMENTS, RIGHTS, AND RESTRICTIONS MAY EXIST WHICH A TITLE EXAMINATION OF THE SUBJECT PREMISES MAY DETERMINE.
- 12. THE CONTRACTOR SHALL ONLY USE BENCHMARKS AS PROVIDED BY THE SURVEYOR. 13. THERE ARE NO WETLANDS ON LOT 17-2. REFERENCE "SUBDIVISION PLAN, NOURY DEVELOPMENT, LLC, MAP 105 LOTS 16 & 17, ROBINSON ROAD & OLD DERRY ROAD, HUDSON, NEW HAMPSHIRE, DATED NOVEMBER 20, 2019, WITH REVISIONS THROUGH 05/13/20, PREPARED BY KEACH-NORDSTROM ASSOCIATES, INC. (SHEET 1).

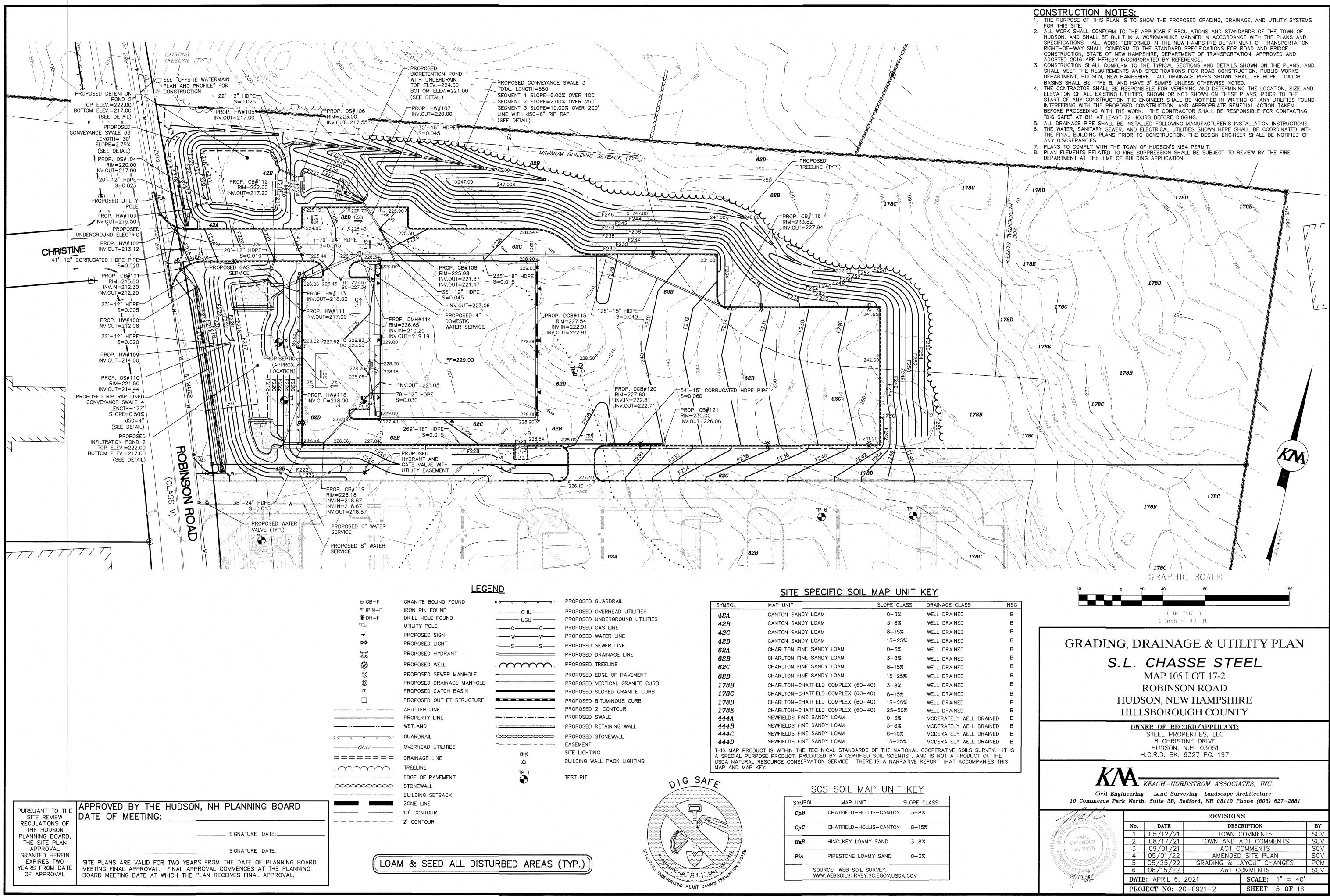
(IN FEET) 1 inch = 60

EXISTING CONDITIONS PLAN S.L. CHASSE STEEL MAP 105 LOT 17-2 **ROBINSON ROAD**

HUDSON, NEW HAMPSHIRE HILLSBOROUGH COUNTY

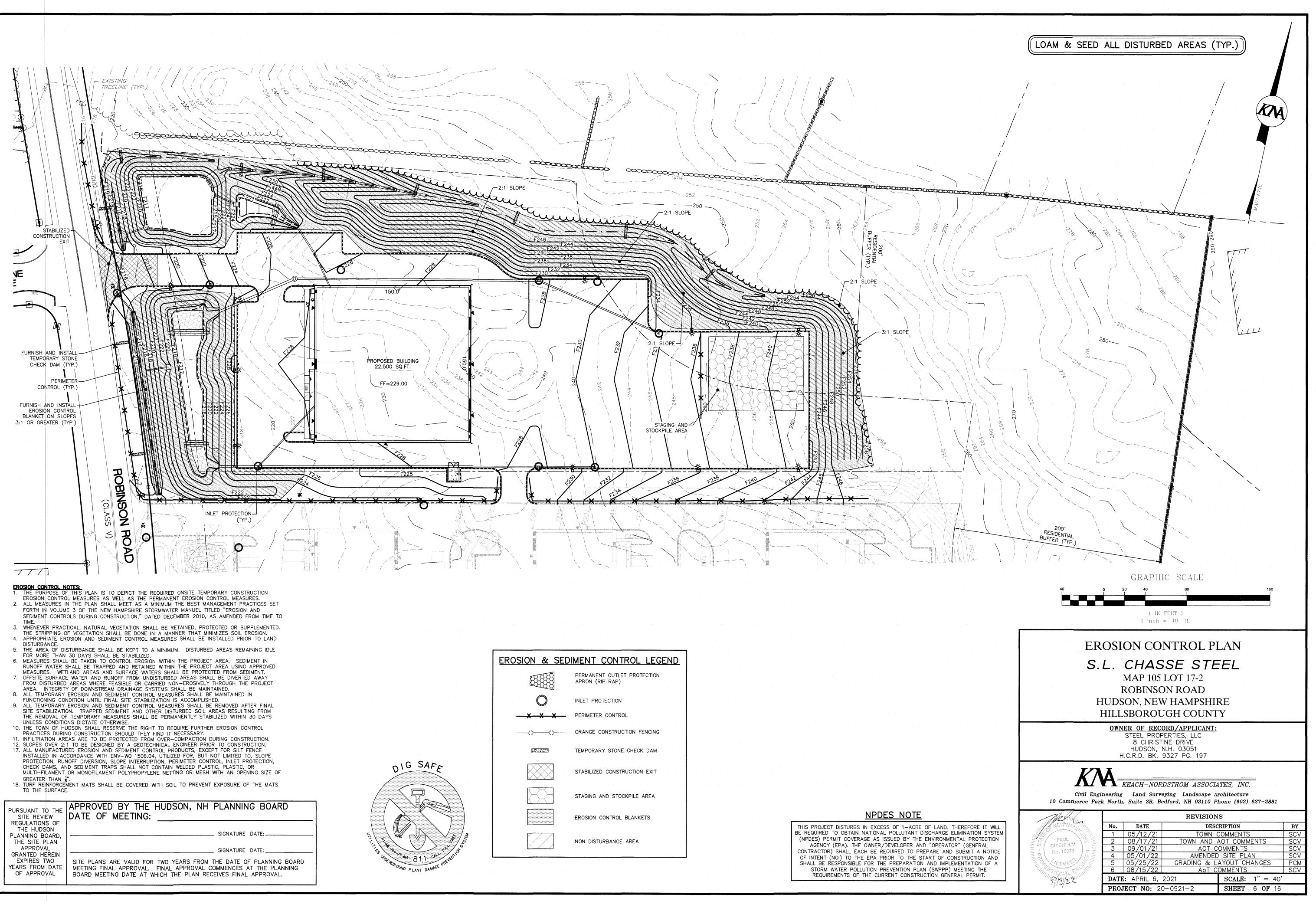

> OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, N.H. 03051 H.C.R.D. BK. 9327 PG. 197

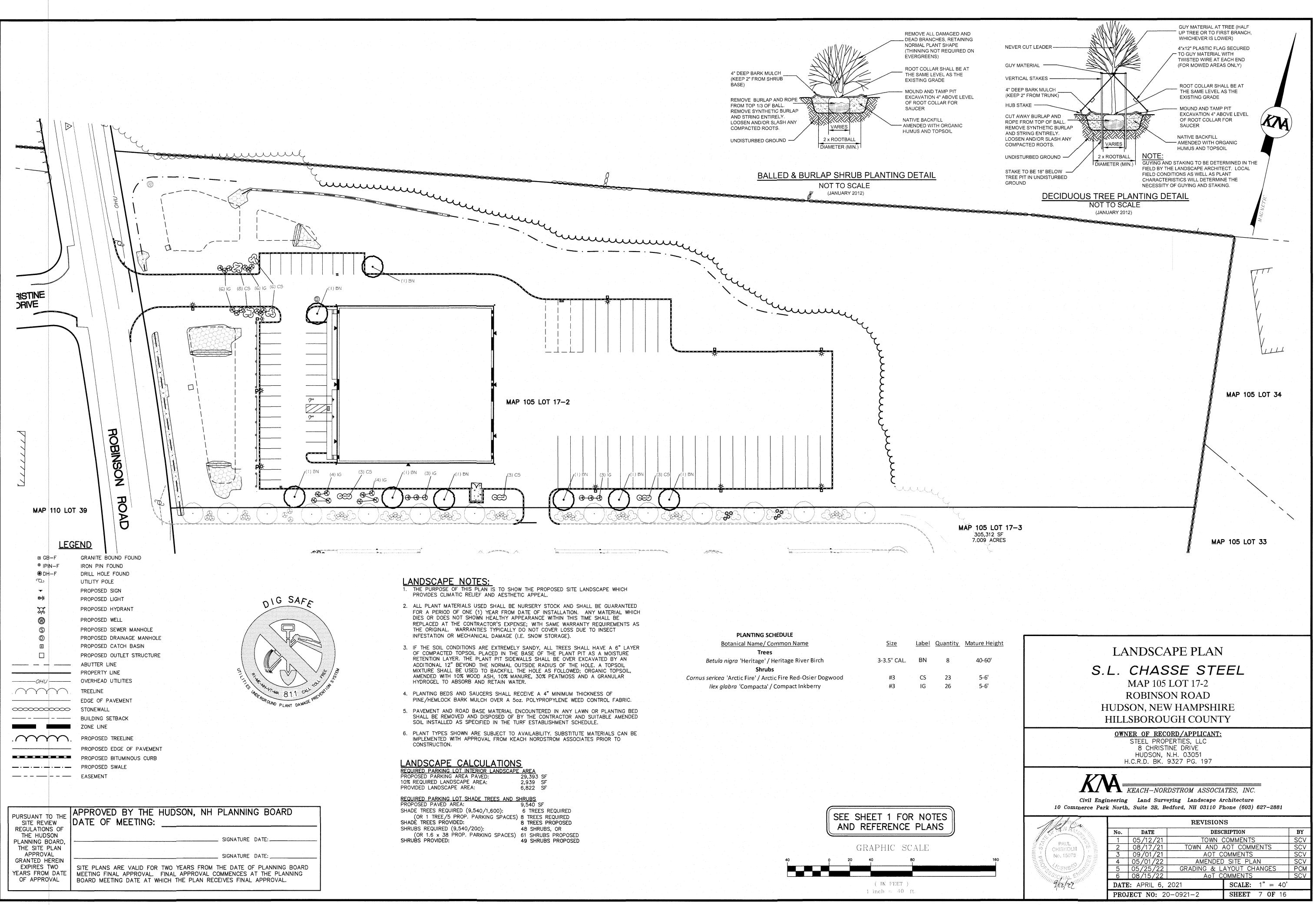

KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881


12/2

Ĩ	en en anter en anter En anter en a
1	A CONTRACTOR OF
Ì	
- 1	Tank of marchine being being
5	
ALC: NOT ALL	
1	San Summer of the
-	4 STA . N
5	E STANANG -
- 6	S CANNO CL
- 1	SSV or North
- śr	
1	LANS WARTUNAN NO STATE
÷	한 같은 것을 하는 것을 다 있는 것을 많이 없다.
-1:	
1	Ser IN N.S.
-14	
1	- <u>A</u> COA S'
Q [Y PADDO N
\sim	
10.00	and the second s
ž ż	Contraction of the second s
	the second

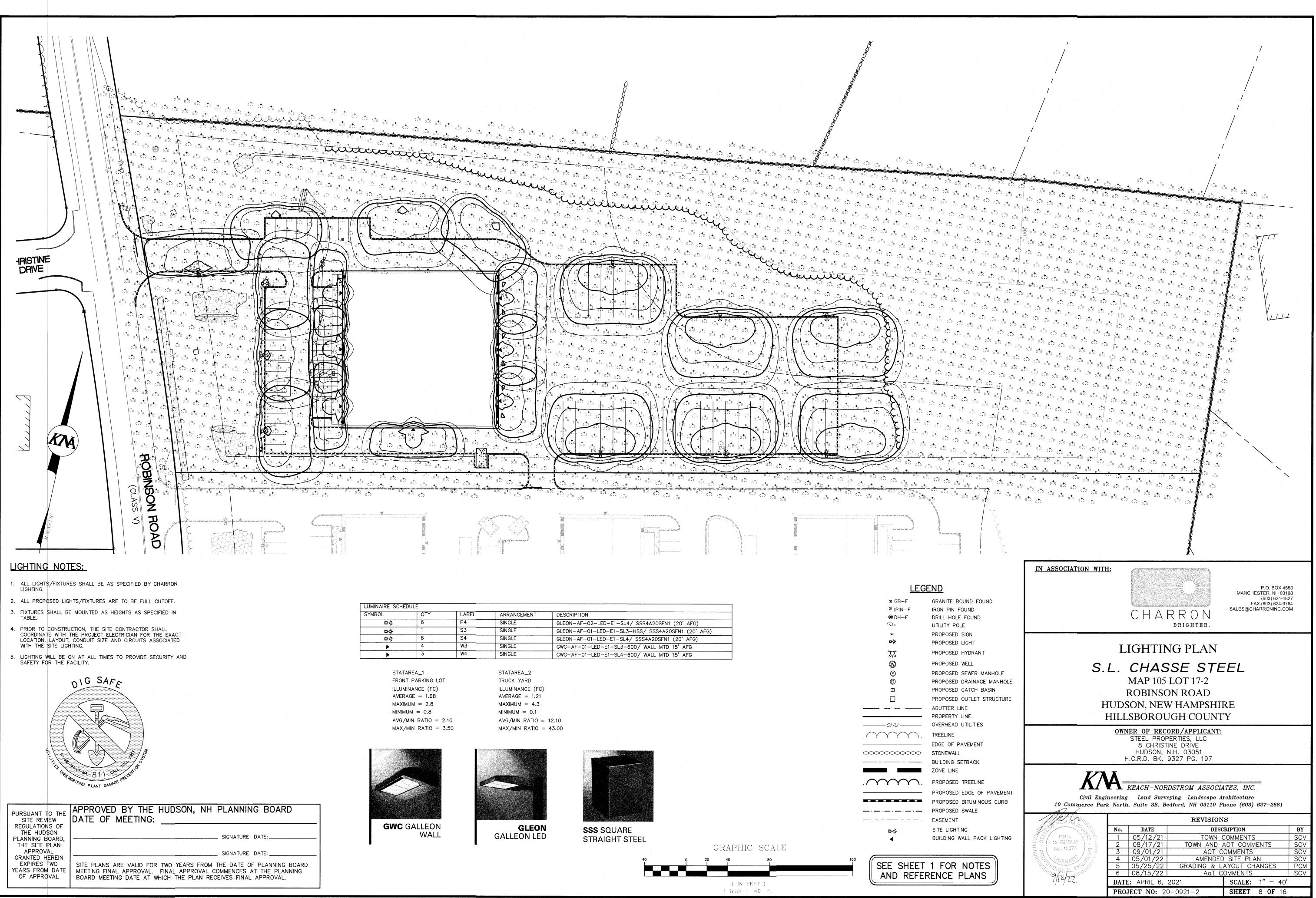
REVISIONS				
No.	DATE	DESCRIPTION		BY
1	05/12/21	TOWN COMMENTS		SCV
2	08/17/21	TOWN AND AOT COMMENTS		SCV
3	09/01/21	AOT COMMENTS		SCV
4	05/01/22	AMENDED SITE PLAN		SCV
5	05/25/22	GRADING & LAYOUT CHANGES		PCM
6	08/15/22	AOT COMMENTS		SCV
DATE: APRIL 6, 2021 SCALE: 1" = 60'				
PROJECT NO: 20-0921-2			SHEET 2 OF 16	



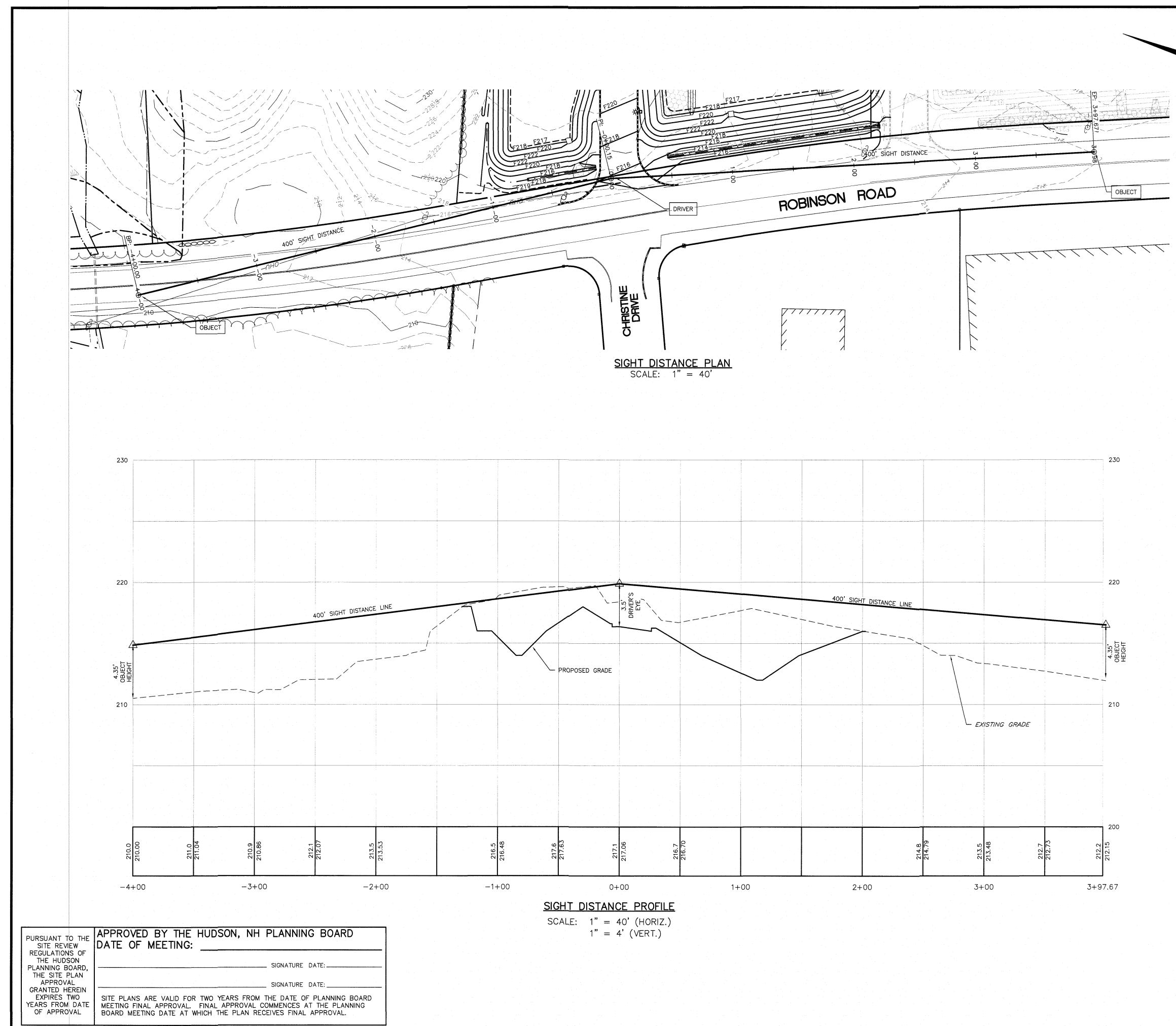


LEG	<u>END</u>			SITE SPECIFIC S	OIL MAP UNIT	KEY
ID	۰ ۵ ۵ ۵ ۵ ۵	PROPOSED GUARDRAIL	SYMBOL	MAP UNIT	SLOPE CLASS	DRAINAGE CLASS
	OHU	PROPOSED OVERHEAD UTILITIES	42A	CANTON SANDY LOAM	0-3%	WELL DRAINED
	UGU	PROPOSED UNDERGROUND UTILITIES	42B	CANTON SANDY LOAM	3-8%	WELL DRAINED
	GG	PROPOSED GAS LINE	42C	CANTON SANDY LOAM	8-15%	WELL DRAINED
	WW	PROPOSED WATER LINE	42D	CANTON SANDY LOAM	15-25%	WELL DRAINED
	–SS	PROPOSED SEWER LINE	62A	CHARLTON FINE SANDY LOAM	0-3%	WELL DRAINED
	<u> </u>	PROPOSED DRAINAGE LINE	62B	CHARLTON FINE SANDY LOAM	3-8%	WELL DRAINED
		PROPOSED TREELINE	62C	CHARLTON FINE SANDY LOAM	8–15%	WELL DRAINED
NHOLE	. * -	PROPOSED EDGE OF PAVEMENT	62D	CHARLTON FINE SANDY LOAM	15-25%	WELL DRAINED
MANHOLE		PROPOSED VERTICAL GRANITE CURB	178B	CHARLTON-CHATFIELD COMPLEX		WELL DRAINED
SIN		PROPOSED SLOPED GRANITE CURB	178C	CHARLTON-CHATFIELD COMPLEX		WELL DRAINED
RUCTURE		PROPOSED BITUMINOUS CURB	178D	CHARLTON-CHATFIELD COMPLEX		WELL DRAINED
	·	PROPOSED 2' CONTOUR	178E	CHARLTON-CHATFIELD COMPLEX		WELL DRAINED
	<u> </u>	PROPOSED SWALE	444A	NEWFIELDS FINE SANDY LOAM	0-3%	MODERATELY WELL DRAI
	Ξ <u></u>	PROPOSED RETAINING WALL	444B	NEWFIELDS FINE SANDY LOAM	3-8%	MODERATELY WELL DRAI
		PROPOSED STONEWALL	444C	NEWFIELDS FINE SANDY LOAM	8-15%	MODERATELY WELL DRAI
		EASEMENT	444D	NEWFIELDS FINE SANDY LOAM	15-25%	MODERATELY WELL DRAI
	₽¢	SITE LIGHTING		CT IS WITHIN THE TECHNICAL STAN		
	→ r	BUILDING WALL PACK LIGHTING	USDA NATURAL R	DSE PRODUCT, PRODUCED BY A CEI ESOURCE CONSERVATION SERVICE.	THERE IS A NARRATIVE	REPORT THAT ACCOMPANIE
	TP 1		MAP AND MAP KE	ΞΥ.		
		TEST PIT	r.			
	V	DIOCA	Γ <u></u> Ε	505 501	MAP UNIT KE	Y
				<u> </u>		
				SYMBOL MAP	UNIT SLOPE	CLASS
				CpB CHATFIELD	HOLLIS-CANTON 3-8	8%

<u>SC</u>	<u>cs soil map uni</u>	<u>t key</u>
SYMBOL	MAP UNIT	SLOPE CLASS
СрВ	CHATFIELD-HOLLIS-CANTO	N 3-8%
CpC	CHATFIELD-HOLLIS-CANTO	N 8-15%
HsB	HINCLKEY LOAMY SAND	3-8%
PiA	PIPESTONE LOAMY SAND	0-3%
	URCE: WEB SOIL SURVEY, W.WEBSOILSURVEY.SC.EGOV.US	SDA.GOV



KING AREA PAVED:	29,393	SF	
LANDSCAPE AREA:	2,939	SF	
DSCAPE AREA:	6,822	SF	
KING LOT SHADE TREES AND S	HRUBS		
/ED AREA:	9,540	SF	
REQUIRED (9,540/1,600):	6 TRE	ES RE	QU
E /5 PROP. PARKING SPACES)	8 TRFF	S RE	OUII


PROVIDED:	8 TREES PROPOSED
RED (9,540/200):	48 SHRUBS, OR
38 PROP. PARKING SPACES)	61 SHRUBS PROPOSED
DED:	49 SHRUBS PROPOSED

PLANTING SCHEDULE			
Botanical Name/ Common Name	Size	Label	Quantity
Trees			
Betula nigra 'Heritage' / Heritage River Birch	3-3.5" CAL.	BN	8
Shrubs			
Cornus sericea 'Arctic Fire' / Arctic Fire Red-Osier Dogwood	#3	CS CS	23
Ilex glabra 'Compacta' / Compact Inkberry	#3	ĪG	26

····			
	LABEL	ARRANGEMENT	DESCRIPTION
	P4	SINGLE	GLEON-AF-02-LED-E1-SL4/ SSS4A20SFN1 (20' AFG)
	S3	SINGLE	GLEON-AF-01-LED-E1-SL3-HSS/ SSS4A20SFN1 (20' AFG)
	S4	SINGLE	GLEON-AF-01-LED-E1-SL4/ SSS4A20SFN1 (20' AFG)
	W3	SINGLE	GWC-AF-01-LED-E1-SL3-600/ WALL MTD 15' AFG
	W4	SINGLE	GWC-AF-01-LED-E1-SL4-600/ WALL MTD 15' AFG

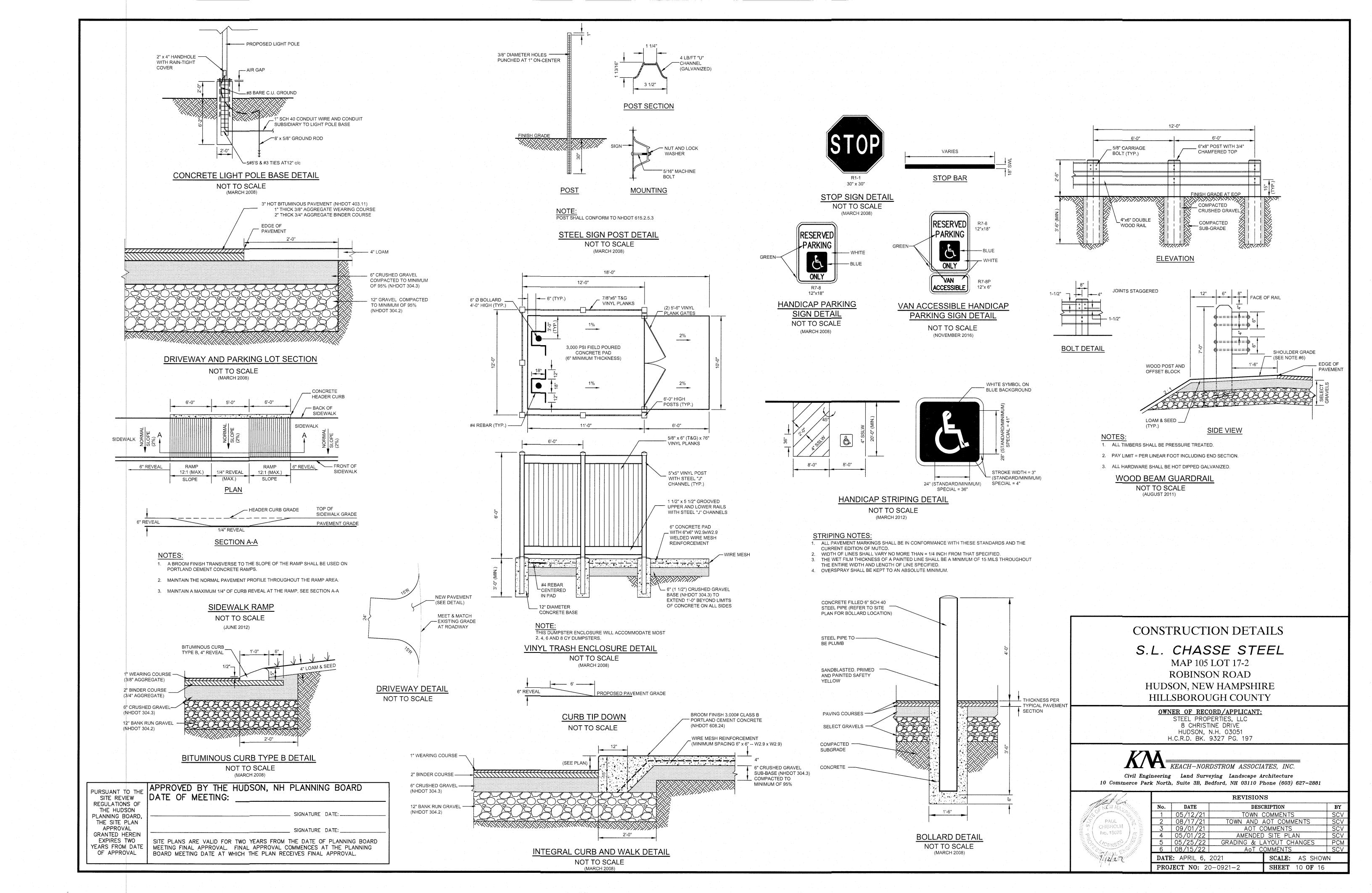
	W4	SINGLE	GWC-AF-01-LED-E1-SL4-600/ WALL MTD 15' AFG		PROPOSED I
					PROPOSED V
		STATAREA_2			S PROPOSED S
		TRUCK YARD			D PROPOSED (
		ILLUMINANCE (FC)			PROPOSED (
		AVERAGE = 1.21			
		MAXIMUM = 4.3			ABUTTER LI
		MINIMUM = 0.1			PROPERTY L
0		AVG/MIN RATIO = 12			OVERHEAD U
50		MAX/MIN RATIO = 43	3.00		
					EDGE OF PA
					STONEWALL
					BUILDING SE
					ZONE LINE
	d				. PROPOSED
					PROPOSED
					PROPOSED
					PROPOSED
					EASEMENT
		GLEON	SSS SQUARE		□-¢ SITE LIGHTIN
		GALLEON LED	STRAIGHT STEEL		BUILDING W
	•			GRAPHIC SCALE	
			40		160
					SEE SHEET 1 FOR
					AND REFERENCE P
				(IN FEET)	AND ILL LILINCE F

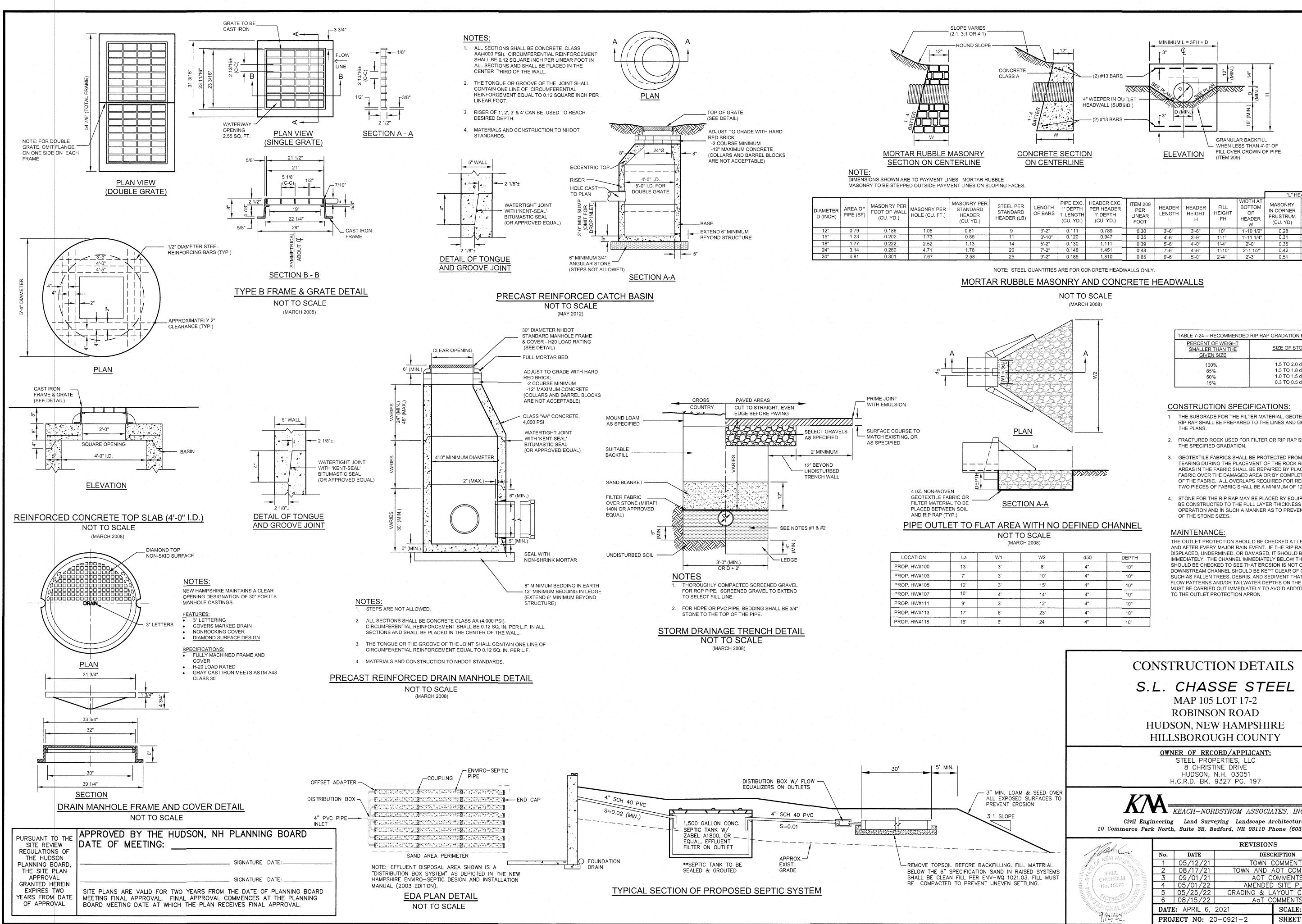
<u>GH </u>	<u> </u>	<u> AN</u>	CŁ	PROFILE
CALE:	1"	=	40'	(HORIZ.)
	1"		4' (VERT)

		VERTICAL GRANITE CURB			
		BITUMINOUS CURB			
		10' CONTOUR			
	· · · · · · · · · · · · · · · · · · ·	2' CONTOUR			
	<u></u>	BUILDING SETBACK			
	■ 1. 1	PROPOSED SIGN			
	₽₩	PROPOSED LIGHT			
	D III	PROPOSED DRAINAGE MANHOLE			
		PROPOSED CATCH BASIN PROPOSED TREELINE			
	. / Y Y Y Y Y Y).	PROPOSED EDGE OF PAVEMENT			
		PROPOSED EDGE OF PAVEMENT PROPOSED BITUMINOUS CURB			
		PROPOSED 2' CONTOUR			
		PROPOSED SWALE			
	₽ ¢	SITE LIGHTING BUILDING WALL PACK LIGHTING			
	••••••••••••••••••••••••••••••••••••••				
			:		
			м. 1		
	DIGS	AFE	· .		
	VI	- 5	н 		
		~ ///			
	E C	N X & / E			
	iz, M	Sol 3	-		
	40ED 81	CALL SOFTEMIL	· · ·		
	SILLING ROR OUND PLANT	CALL PRETENTION STATE			
	GRAPHIC	SCALE			
4 0	GRAPHIC 0 20 40	SCALE 80 160			
	GRAPHIC	SCALE			
40	GRAPHIC • 20 40 (IN FEJ	80 160 ET)			
40	GRAPHIC o 20 40	80 160 ET)			
40	GRAPHIC • 20 40 (IN FEJ	80 160 ET)			
	GRAPHIC 20 40 (IN FEI 1 inch =	SCALE 80 160 			
	GRAPHIC 20 40 (IN FEI 1 inch =	SCALE 80 160 ET)			
SIGHT I	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch =	SCALE ⁸⁰ ¹⁶⁰ TT) ⁴⁰ ft. LAN & PROFILE			
SIGHT I	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P L. CHASS	SCALE ⁸⁰ ¹⁶⁰ ET) ⁴⁰ ft. LAN & PROFILE SE STEEL			
SIGHT I	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC	SCALE 80 160 ET) 40 ft. LAN & PROFILE SE STEEL DT 17-2			
SIGHT I S.	GRAPHIC ²⁰ ⁴⁰ (IN FEJ 1 inch = DISTANCE P L. CHASS MAP 105 LO ROBINSON	80 160 80 160 ST) 1 40 ft. SE STEEL 0 DT 17-2 ROAD			
SIGHT I S. H	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LO ROBINSON IUDSON, NEW I	SCALE ⁸⁰ ¹⁶⁰ T) ⁴⁰ ft. LAN & PROFILE SE STEEL DT 17-2 ROAD HAMPSHIRE			
SIGHT I S. H	GRAPHIC ²⁰ ⁴⁰ (IN FEJ 1 inch = DISTANCE P L. CHASS MAP 105 LO ROBINSON	SCALE ⁸⁰ ¹⁶⁰ T) ⁴⁰ ft. LAN & PROFILE SE STEEL DT 17-2 ROAD HAMPSHIRE			
SIGHT I S. H	GRAPHIC P 20 40 (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG OWNER OF RECORI	scale ⁸⁰ ¹⁶⁰ ST) ⁴⁰ ft. LAN & PROFILE SE STEEL DT 17-2 ROAD HAMPSHIRE H COUNTY D/APPLICANT:			
SIGHT I S. H	GRAPHIC P 20 40 (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG OWNER OF RECORI STEEL PROPER	scale ⁸⁰ ¹⁶⁰ ¹⁷⁰ ¹⁷¹ ¹⁷² ¹⁷⁷			
SIGHT I S. H	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P <i>L. CHASS</i> MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG <u>OWNER OF RECORI</u> STEEL PROPER 8 CHRISTINE HUDSON, N.H	scale ⁸⁰ ¹⁶⁰ ¹⁷⁰ ¹⁷¹ ¹⁷² ¹⁷⁻² ¹⁷⁻² ¹⁷⁻² ¹⁷⁻² ¹⁷⁻² ¹⁷⁴ ¹⁷⁻² ¹⁷⁵			
SIGHT I S. H	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P <i>L. CHASS</i> MAP 105 LO ROBINSON IUDSON, NEW I HILLSBOROUG <u>OWNER OF RECORI</u> STEEL PROPER 8 CHRISTINE	scale ⁸⁰ ¹⁶⁰ ¹⁷⁰ ¹⁷¹ ¹⁷² ¹⁷⁻² ¹⁷⁻² ¹⁷⁻² ¹⁷⁻² ¹⁷⁻² ¹⁷⁴ ¹⁷⁻² ¹⁷⁵			
SIGHT I S. H	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P <i>L. CHASS</i> MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG <u>OWNER OF RECORI</u> STEEL PROPER 8 CHRISTINE HUDSON, N.H	scale ⁸⁰ ¹⁶⁰ ¹⁷⁰ ¹⁷¹ ¹⁷² ¹⁷⁻² ¹⁷⁻² ¹⁷⁻² ¹⁷⁻² ¹⁷⁻² ¹⁷⁴ ¹⁷⁻² ¹⁷⁵			
SIGHT I S. H	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG <u>OWNER OF RECORI</u> STEEL PROPER 8 CHRISTINE HUDSON, N.H H.C.R.D. BK. 932	scale ⁸⁰ ¹⁶⁰ ¹⁷⁰ ¹⁷⁰ ¹⁷⁰ ¹⁷⁰ ¹⁷¹ ¹⁷² ¹⁷² ¹⁷² ¹⁷² ¹⁷² ¹⁷⁴ ¹⁷⁵			
SIGHT I S. H H	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG <u>OWNER OF RECORI</u> STEEL PROPER 8 CHRISTINE HUDSON, N.H H.C.R.D. BK. 932 KEACH-NORDS'	SCALE ⁸⁰ ¹⁶⁰ TT) ⁴⁰ ft. LAN & PROFILE CE STEEL OT 17-2 ROAD IAMPSHIRE H COUNTY DAIL IES , LLC DRIVE 03051 27 PG. 197 TROM ASSOCIATES, INC.			
SIGHT I S. H H I	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG OWNER OF RECORI STEEL PROPER 8 CHRISTINE HUDSON, N.H H.C.R.D. BK. 932 MAP REACH-NORDS	scale ⁸⁰ ¹⁶⁰ ¹⁷⁰ ¹⁷⁰ ¹⁷⁰ ¹⁷⁰ ¹⁷¹ ¹⁷² ¹⁷² ¹⁷² ¹⁷² ¹⁷² ¹⁷⁴ ¹⁷⁵			
SIGHT I S. H H I	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG OWNER OF RECORI STEEL PROPER 8 CHRISTINE HUDSON, N.H H.C.R.D. BK. 932 MAP REACH-NORDS	scale so 160 160 TT) 40 ft. LAN & PROFILE LAN & PROFILE CE STEEL DT 17-2 ROAD IAMPSHIRE H COUNTY DAIL MARKED DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL DAIL			
SIGHT I S. H H I	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG <u>OWNER OF RECORI</u> STEEL PROPER 8 CHRISTINE HUDSON, N.H H.C.R.D. BK. 932 KEACH-NORDS' neering Land Surveyin k North, Suite 3B, Bedfo	scale ⁸⁰ ¹⁶⁰ ¹⁶⁰ ¹⁷¹ ¹⁴⁰ rt. ¹⁴⁰ rt. ¹⁴⁰ ¹⁴⁰ rt. ¹⁴⁰	RY		
SIGHT I S. H H I I S.	GRAPHIC ²⁰ ⁴⁰ (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG OWNER OF RECORI STEEL PROPER 8 CHRISTINE HUDSON, N.H H.C.R.D. BK. 932 MAP REACH-NORDS	scale ⁸⁰ ¹⁶⁰ ¹⁶⁰ ¹⁷¹ ¹⁷⁰ ¹⁶⁰	BY		
SIGHT I S. H H I I S. H H I I S.	GRAPHIC 20 40 (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG OWNER OF RECORI STEEL PROPER 8 CHRISTINE HUDSON, N.H H.C.R.D. BK. 932 KEACH-NORDS' neering Land Surveyin k North, Suite 3B, Bedfo	80 160 MT) 40 HO ft. LAN & PROFILE LAN & PROFILE Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2" <td <<="" colspan="2" td=""><td>SCV SCV</td></td>	<td>SCV SCV</td>		SCV SCV
SIGHT I S. H H I I I I I I I I I I I I I I I I I	GRAPHIC 20 40 (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG OWNER OF RECORI STEEL PROPER 8 CHRISTINE HUDSON, N.H H.C.R.D. BK. 932 KEACH-NORDS' neering Land Surveyin k North, Suite 3B, Bedfo	80 160 PROFILE Image: Constraint of the second state of the second stat	SCV		
SIGHT I S. H H I I I I I I I I I I I I I I I I I	GRAPHIC 20 40 (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG OWNER OF RECORI STEEL PROPER 8 CHRISTINE HUDSON, N.H H.C.R.D. BK. 932 KEACH-NORDS' neering Land Surveyin K North, Suite 3B, Bedfor No. DATE 1 05/12/21 2 08/17/21 3 09/01/21 4 05/01/22 5 05/25/22	SCALE 80 160 TT) 40 ft. ELAN & PROFILE E STEEL DT 17-2 ROAD HAMPSHIRE H COUNTY D/APPLICANT: TIES, LLC DRIVE 03051 27 PG. 197 TROM ASSOCIATES, INC. g Landscape Architecture rd, NH 03110 Phone (603) 627–2881 REVISIONS DESCRIPTION TOWN COMMENTS S AOT COMMENTS S AOT COMMENTS S AMENDED SITE PLAN S GRADING & LAYOUT CHANGES F	SCV SCV SCV SCV SCV		
SIGHT I S. H H I I S.	GRAPHIC 20 40 (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG OWNER OF RECORI STEEL PROPER 8 CHRISTINE HUDSON, N.H H.C.R.D. BK. 932 KEACH-NORDS' neering Land Surveyin k North, Suite 3B, Bedfor No. DATE 1 05/12/21 2 08/17/21 3 09/01/21 4 05/01/22 5 05/25/22 6 08/15/22	SCALE 80 160 TT) 40 rt. EXAM & PROFILE ESTEEL DT 17-2 ROAD HAMPSHIRE H COUNTY D/APPLICANT: TIES, LLC DRIVE 0.03051 27 PG. 197 TROM ASSOCIATES, INC. g Landscape Architecture rd, NH 03110 Phone (603) 627–2881 REVISIONS DESCRIPTION TOWN COMMENTS S AOT COMMENTS S C C C C C C C C C C C C C			
SIGHT I S. H H I I I I I I I I I I I I I I I I I	GRAPHIC 20 40 (IN FEI 1 inch = DISTANCE P L. CHASS MAP 105 LC ROBINSON IUDSON, NEW I HILLSBOROUG OWNER OF RECORI STEEL PROPER 8 CHRISTINE HUDSON, N.H H.C.R.D. BK. 932 KEACH-NORDS' neering Land Surveyin K North, Suite 3B, Bedfor No. DATE 1 05/12/21 2 08/17/21 3 09/01/21 4 05/01/22 5 05/25/22	SCALE 80 160 TT) 40 ft. ELAN & PROFILE E STEEL DT 17-2 ROAD IAMPSHIRE H COUNTY D/APPLICANT: TIES, LLC DRIVE 03051 27 PG. 197 FROM ASSOCIATES, INC. g Landscape Architecture rd, NH 03110 Phone (603) 627–2881 REVISIONS DESCRIPTION TOWN COMMENTS AND AND AND COMMENTS AND COMMENTS AND COMMENTS SCALE: 1" = 40'	SCV SCV SCV SCV SCV		

S

TREELINE


UTILITY POLE


PROPERTY LINE

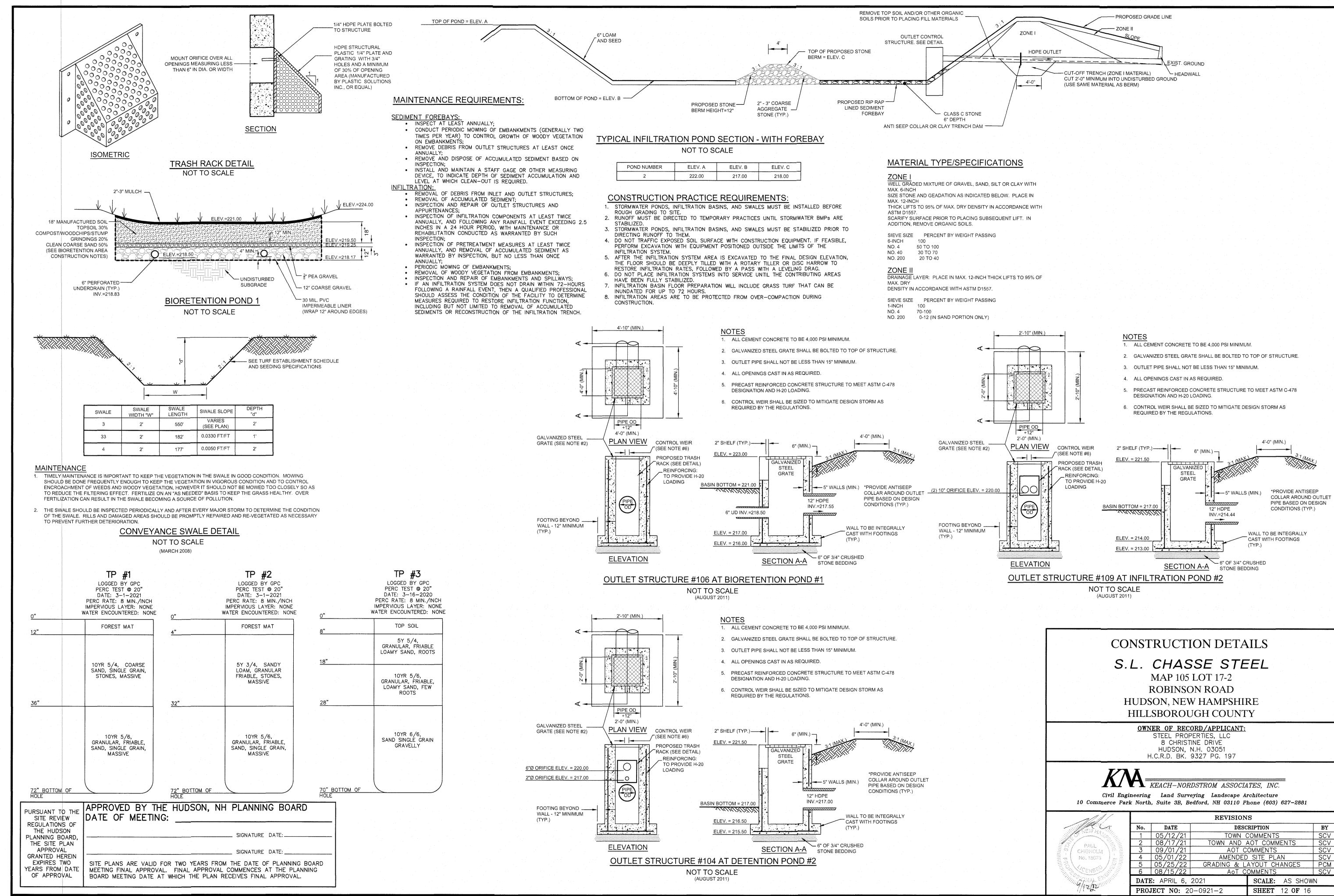
EDGE OF PAVEMENT

------ ABUTTER LINE

-OHU ------ OVERHEAD UTILITIES

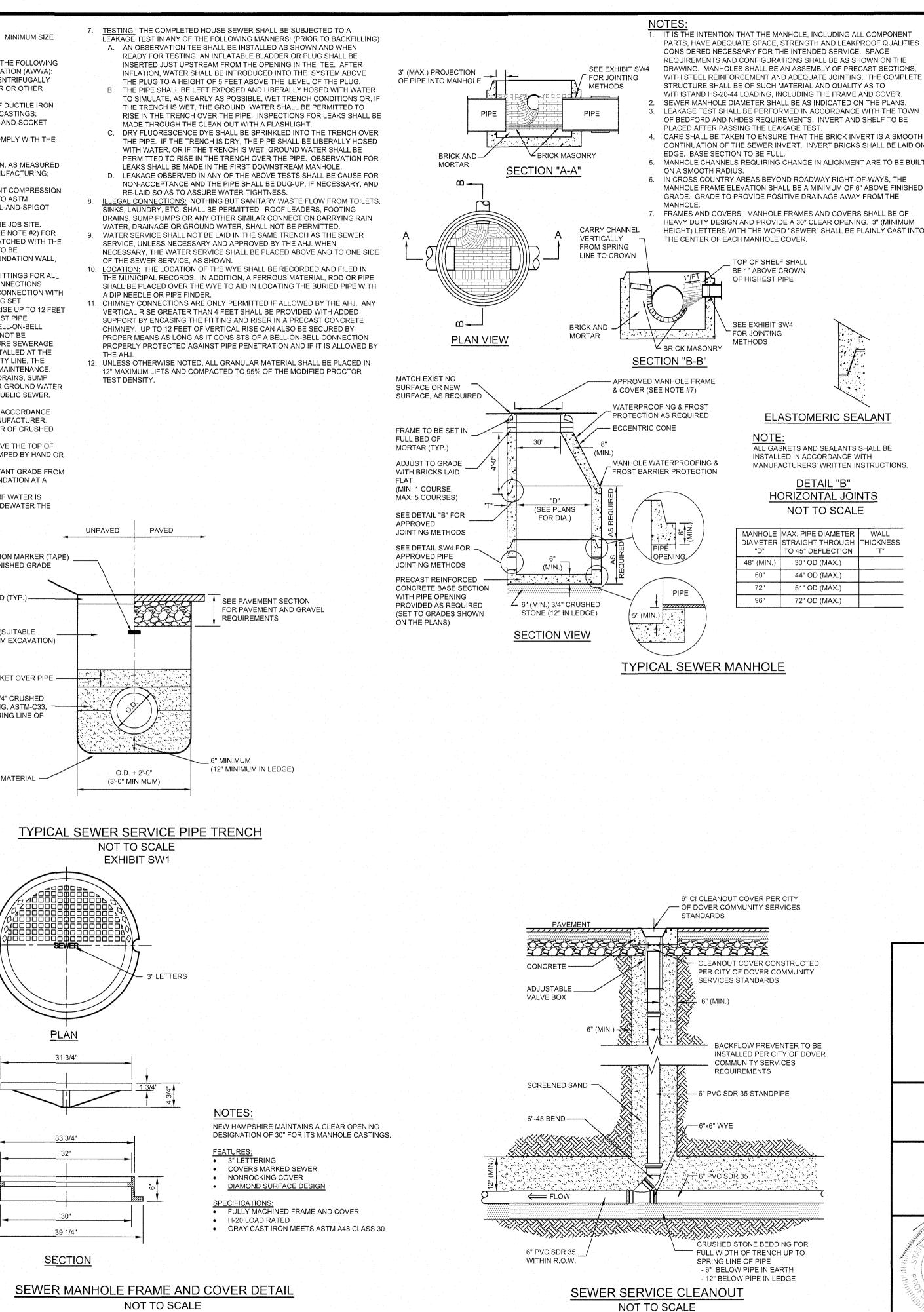
MASONRY HEADER EX IN CORNER PER HEADEF FRUSTRUM 1' DEPTH (CU. YD) (CU. YD.) 1.232 1.406 1.776 0.42 2.164

W2		
-		
		C
		-
		1.
÷.,		


TABLE 7-24 RECOMMENDED	RIP RAP GRADATION RANGES
PERCENT OF WEIGHT SMALLER THAN THE GIVEN SIZE	SIZE OF STONE
100% 85% 50% 15%	1.5 TO 2.0 d50 1.3 TO 1.8 d50 1.0 TO 1.5 d50 0.3 TO 0.5 d50

ONSTRUCTION SPECIFICATIONS:

- THE SUBGRADE FOR THE FILTER MATERIAL, GEOTEXTILE FABRIC AND RIP RAP SHALL BE PREPARED TO THE LINES AND GRADES SHOWN ON
- 2. FRACTURED ROCK USED FOR FILTER OR RIP RAP SHALL CONFORM TO
- 3. GEOTEXTILE FABRICS SHALL BE PROTECTED FROM PUNCTURE OR TEARING DURING THE PLACEMENT OF THE ROCK RIP RAP. DAMAGED AREAS IN THE FABRIC SHALL BE REPAIRED BY PLACING A PIECE OF FABRIC OVER THE DAMAGED AREA OR BY COMPLETE REPLACEMENT OF THE FABRIC. ALL OVERLAPS REQUIRED FOR REPAIRS OR JOINING TWO PIECES OF FABRIC SHALL BE A MINIMUM OF 12 INCHES.
- 4. STONE FOR THE RIP RAP MAY BE PLACED BY EQUIPMENT AND SHALL BE CONSTRUCTED TO THE FULL LAYER THICKNESS IN ONE OPERATION AND IN SUCH A MANNER AS TO PREVENT SEGREGATION


THE OUTLET PROTECTION SHOULD BE CHECKED AT LEAST ANNUALLY AND AFTER EVERY MAJOR RAIN EVENT. IF THE RIP RAP HAS BEEN DISPLACED, UNDERMINED, OR DAMAGED, IT SHOULD BE REPAIRED IMMEDIATELY. THE CHANNEL IMMEDIATELY BELOW THE OUTLET SHOULD BE CHECKED TO SEE THAT EROSION IS NOT OCCURRING. THE DOWNSTREAM CHANNEL SHOULD BE KEPT CLEAR OF OBSTRUCTIONS SUCH AS FALLEN TREES, DEBRIS, AND SEDIMENT THAT COULD CHANGE FLOW PATTERNS AND/OR TAILWATER DEPTHS ON THE PIPES. REPAIRS MUST BE CARRIED OUT IMMEDIATELY TO AVOID ADDITIONAL DAMAGE

		· · · ·					
	CONSTRUCTION DETAILS						
	H	I UDS	MAP 105 ROBINSC	SE STE LOT 17-2 ON ROAD V HAMPSHII JGH COUNT	RE		
	OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, N.H. 03051 H.C.R.D. BK. 9327 PG. 197						
IIN. LOAM & SEED OVER EXPOSED SURFACES TO VENT EROSION SLOPE	R						
	Nal			REVISION	S		
	North Service Service	No.	DATE	DESC	RIPTION	BY	
LING. FILL MATERIAL	La Commence and States	1	05/12/21			SCV	
ND IN RAISED SYSTEMS WQ 1021.03. FILL MUST	PAUL PAUL CHISHOLM No. 15076	2 3	08/17/21		AOT COMMENTS OMMENTS	SCV SCV	
EVEN SETTLING.		4	05/01/22		SITE PLAN	SCV	
		5	05/25/22	GRADING & L	AYOUT CHANGES	PCM	
	I AN CONTRACTOR	6	08/15/22	AoT C	OMMENTS	SCV	
	A Constanting		E: APRIL 6,		SCALE: AS SHOW	/N	
	117422	PROJ	ECT NO: 2 (0-0921-2	SHEET 11 OF 16		

Mal	REVISIONS							
C.	No. DATE DESCRIPTION							
S Stand Rolling	1	05/12/21	TOWN	COMMENTS	SCV			
PAUL NEE	2	08/17/21	TOWN AND	AOT COMMENTS	SCV			
CHISHOLM \ ME	3	09/01/21	AOT C	OMMENTS	SCV			
No. 15073	4	05/01/22	AMENDED	SCV				
V. ABST	5	05/25/22	GRADING & L	AYOUT CHANGES	PCM			
NG KENNEN	6	08/15/22	15/22 AOT COMMENTS					
G. A. R. R.	DATI	E: APRIL 6,	2021	SCALE: AS SHOW	N			
1/12/20	PRO.	JECT NO: 20	0-0921-2	SHEET 12 OF 16				

		NOTES: 1. MINIMUM SIZE PIPE FOR HOUSE SERVICE SHALL BE 4 INCH
alto do versione e linke te investigado		FOR STREET SEWER LINES SHALL BE & INCHES. 2. <u>PIPE AND JOINT MATERIALS:</u> A. DUCTILE IRON PIPE AND FITTINGS SHALL CONFORM
		STANDARDS OF THE AMERICAN WATER WORKS ASS 1. AWWA C151/A21.51-02 - FOR DUCTILE IRON PIPE
		CAST IN METAL OR SAND-LINED MOLDS, FOR W/ LIQUIDS; 2. AWWA C150/A21.50-02 - FOR THICKNESS DESIG
		PIPE AND WITH ASTM A536-84 (2004) DUCTILE IR 3. JOINTS SHALL BE MECHANICAL, PUSH-ON OR B TYPE.
		B. PLASTIC GRAVITY SEWER PIPE AND FITTINGS SHALL FOLLOWING STANDARDS:
		 ASTM D3034-04A - PVC, SOLID WALL; AT LEAST 46 PSI AT 5% PIPE DIAMETER DEFLEC IN ACCORDANCE WITH ASTM D2414-02 DURING I
		AND 3. JOINT SEALS FOR PVC PIPE SHALL BE OIL RESIS
		RINGS OF ELASTOMERIC MATERIAL CONFORMIN D3212-96A(2003)E1 AND SHALL BE PUSH-ON OR TYPE.
		 DAMAGED PIPE SHALL BE REJECTED AND REMOVED FROM JOINTS SHALL BE DEPENDENT UPON PROPER MATERIALS
		WATER TIGHTNESS, AND ALL JOINTS SHALL BE PROPERLY PIPE MATERIALS USED. WHERE DIFFERING MATERIALS AN CONNECTED, AS AT THE STREET SEWER WYE OR AT THE
		APPROPRIATE MANUFACTURED ADAPTERS SHALL BE USE 5. SERVICE CONNECTIONS SHALL USE SANITARY TEE OR WY NEW CONSTRUCTION. THE CENTERLINE OF ALL BUILDING
		SHALL ENTER THE TOP HALF OF THE SEWER. ANY SERVIC A VERTICAL RISE UP TO 4 FEET MAY HAVE THE SEWER FI
		VERTICALLY. ANY SERVICE CONNECTION WITH A VERTIC SHALL EMPLOY NON-ENCASED RISERS THAT PROTECT AC PENETRATION OR FAILURE AT THE FITTING BY THE USE O
		CONNECTIONS. FOR EXISTING SEWER WHERE FITTINGS (INSTALLED, SADDLE CONNECTIONS SHALL BE USED. PRE
		SHALL HAVE AN ISOLATION VALVE OR CURB STOP VALVE PROPERTY LINE. IF A CHECK VALVE IS USED AT THE PRO VALVE SHALL BE INSTALLED WITHIN A VAULT TO FACILITA
		ROOF DOWNSPOUTS, EXTERIOR OR INTERIOR FOUNDATION PUMPS OR OTHER SOURCE OF SURFACE WATER RUN-OF
- device the second sec		SHALL NOT BE DIRECTLY OR INDIRECTLY CONNECTED TO 6. <u>PIPE INSTALLATION:</u> A. THE PIPE SHALL BE HANDLED, PLACED AND JOINTEI
		WITH INSTALLATION GUIDES OF THE APPROPRIATE B. PIPES SHALL BE CAREFULLY BEDDED ON A 4 INCH L STONE AND/OR GRAVEL.
er statistica da se		C. BEDDING AND RE-FILL, FOR A DEPTH OF 12 INCHES THE PIPE, SHALL BE CAREFULLY AND THOROUGHLY
		WITH THE APPROPRIATE MECHANICAL DEVICES. D. THE PIPE SHALL BE LAID AT A CONTINUOUS AND CO THE STREET SEWER CONNECTION TO THE HOUSE
Revenue and the second s		GRADE OF NOT LESS THAN 1/8 INCH PER FOOT. E. PIPE JOINTS MUST BE MADE UNDER DRY CONDITIO
is a still of the source of th		PRESENT, ALL NECESSARY STEPS SHALL BE TAKEN TRENCH.
		UTILITY LC 2'-0" BELO
		4" LOAM &
		COMMON
		MATERIAL
		12" SAND E
		COMPACT
		STONE BE SIZE 67 TC PIPE (TYP.
All de la constante de la constant		
re to conserve differences		UNDISTUR
All solutions and a solution of the		
e do tra de grane de la competition de la compet		
dood offer which the dood in the		
- Statement of the statement		
faculti forme in Providence		
un finite de Councilier en avec de la council de la counci		
	TO THE APPROVED BY THE HUDSON, NH PLANNING B	OARD
SUANT	DATE OF MEETING:	
GULATIO		
THE HUD ANNING E	SON BOARDSIGNATURE DATE:-	

(MARCH 2008)

IT IS THE INTENTION THAT THE MANHOLE, INCLUDING ALL COMPONENT PARTS, HAVE ADEQUATE SPACE, STRENGTH AND LEAKPROOF QUALITIES

DRAWING. MANHOLES SHALL BE AN ASSEMBLY OF PRECAST SECTIONS, WITH STEEL REINFORCEMENT AND ADEQUATE JOINTING. THE COMPLETE SEWER MANHOLE DIAMETER SHALL BE AS INDICATED ON THE PLANS. 5. LEAKAGE TEST SHALL BE PERFORMED IN ACCORDANCE WITH THE TOWN OF BEDFORD AND NHDES REQUIREMENTS. INVERT AND SHELF TO BE

CONTINUATION OF THE SEWER INVERT. INVERT BRICKS SHALL BE LAID ON

MANHOLE CHANNELS REQUIRING CHANGE IN ALIGNMENT ARE TO BE BUILT

MANHOLE FRAME ELEVATION SHALL BE A MINIMUM OF 6" ABOVE FINISHED 7. GRADE. GRADE TO PROVIDE POSITIVE DRAINAGE AWAY FROM THE

FRAMES AND COVERS: MANHOLE FRAMES AND COVERS SHALL BE OF HEAVY DUTY DESIGN AND PROVIDE A 30" CLEAR OPENING. 3" (MINIMUM HEIGHT) LETTERS WITH THE WORD "SEWER" SHALL BE PLAINLY CAST INTO

ELASTOMERIC SEALANT

ALL GASKETS AND SEALANTS SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURERS' WRITTEN INSTRUCTIONS.

> DETAIL "B" HORIZONTAL JOINTS NOT TO SCALE

WALL
THICKNESS
"T"

ALL COMPONENT PARTS OF MANHOLE STRUCTURES SHALL HAVE THE STRENGTH, LEAK RESISTANCE AND SPACE NECESSARY FOR THE INTENDED SERVICE. MANHOLE STRUCTURES SHALL HAVE A LIFE EXPECTANCY IN EXCESS OF 25 YEARS. MANHOLE STRUCTURES SHALL BE DESIGNED TO WITHSTAND H-20 LOADING AND SHALL NOT LEAK IN

EXCESS OF ONE GPD PER VERTICAL FOOT OF MANHOLE FOR THE LIFE OF THE STRUCTURE. BARRELS, CONCRETE GRADE RINGS AND CONE SECTIONS SHALL BE CONSTRUCTED OF PRECAST REINFORCED CONCRETE AND SHALL CONFORM TO ASTM C478.

BEDDING: CRUSHED STONE FREE FROM CLAY, LOAM, ORGANIC MATTER AND MEETING ASTM C33 100% PASSING 1 INCH SCREEN

- 90% PASSING 3/4 INCH SCREEN 20-55% PASSING 3/8 INCH SCREEN
- 0-10% PASSING #4 SIEVE

0-5% PASSING #8 SIEVE

WHERE ORDERED BY THE ENGINEER TO STABILIZE THE BASE, CRUSHED STONE 1/2 INCH TO 1-1/2 INCH SHALL BE USED BASE SECTIONS SHALL BE OF MONOLITHIC CONSTRUCTION TO A POINT AT LEAST 6 INCHES ABOVE

THE CROWN OF THE INCOMING PIPE. HORIZONTAL JOINTS BETWEEN SECTIONS OF PRECAST CONCRETE BARRELS SHALL BE OF AN OVERLAPPING TYPE, SEALED FOR WATER-TIGHTNESS USING A DOUBLE ROW OF AN ELASTOMERIC OR MASTIC-LIKE SEALANT.

PIPE TO MANHOLE JOINTS SHALL BE AS FOLLOWS: A. ELASTOMERIC, RUBBER SLEEVE WITH WATERTIGHT JOINTS AT THE MANHOLE OPENING AND PIPE SURFACES

- B. CAST INTO THE WALL OR SECURED WITH STAINLESS STEEL CLAMPS; C. ELASTOMERIC SEALING RING CAST IN THE MANHOLE OPENING WITH SEAL FORMED ON
- THE SURFACE OF THE PIPE BY COMPRESSION OF THE RING; AND D. NON-SHRINK GROUTED JOINTS WHERE WATERTIGHT BONDING TO THE MANHOLE AND PIPE CAN BE OBTAINED.
- 9. MANHOLE CONE SECTIONS SHALL BE ECCENTRIC IN SHAPE.
- ALL PRECAST SECTIONS AND BASES SHALL HAVE THE DATE OF MANUFACTURE AND THE NAME OR TRADEMARK OF THE MANUFACTURER IMPRESSED OR INDELIBLY MARKED ON THE INSIDE WALL. 11. ALL PRECAST SECTIONS AND BASES SHALL BE COATED ON THE EXTERIOR WITH A BITUMINOUS

DAMP-PROOFING COATING. 12. MANHOLES SHALL HAVE A BRICK PAVED SHELF AND INVERT CONSTRUCTED TO CONFORM TO THE SIZE OF PIPE AND FLOW. AT CHANGES IN DIRECTION, THE INVERTS SHALL BE LAID OUT IN CURVES OF THE LONGEST RADIUS POSSIBLE TANGENT TO THE CENTER LINE OF THE SEWER PIPES. SHELVES SHALL BE CONSTRUCTED TO THE ELEVATION OF THE HIGHEST PIPE CROWN AND SLOPED TO DRAIN TOWARD THE FLOWING THROUGH CHANNEL. UNDERLAYMENT OF INVERT AND SHELF SHALL CONSIST OF BRICK MASONRY. INVERTS AND SHELVES SHALL BE PLACED AFTER TESTING.

- 13. MATERIALS OF CONSTRUCTION FOR MANHOLES SHALL BE AS FOLLOWS. A. CONCRETE FOR PRECAST BASES OR GRADE RINGS SHALL CONFORM TO THE REQUIREMENTS FOR CLASS AA CONCRETE IN THE NEW HAMPSHIRE DEPARTMENT OF
 - TRANSPORTATION'S "STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION" B. REINFORCING FOR PRECAST CONCRETE SHALL BE STEEL OR STRUCTURAL FIBERS THAT
 - CONFORM TO THE REQUIREMENTS OF THE NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION'S "STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION"
 - C. PRECAST CONCRETE BARREL SECTIONS, CONES AND BASES SHALL BE CERTIFIED BY THEIR MANUFACTURE(S) AS CONFORM TO ASTM C478; D. THE MANHOLE FRAME AND COVER SHALL PROVIDE A 30-INCH DIAMETER CLEAR OPENING:

E. THE MANHOLE COVER SHALL HAVE THE WORD "SEWER" IN 3-INCH LETTERS CAST INTO THE TOP SURFACE;

F. THE CASTINGS SHALL BE OF EVEN-GRAINED CAST IRON, SMOOTH AND FREE FROM SCALE, LUMPS, BLISTERS, SAND HOLES AND DEFECTS: G. CONTACT SURFACES OF COVERS AND FRAMES SHALL BE MACHINED AT THE FOUNDRY TO PREVENT ROCKING OF COVERS IN ANY ORIENTATION;

H. CASTINGS SHALL BE EQUAL TO CLASS 30, BE CERTIFIED BY THEIR MANUFACTURE(S) AS CONFORMING TO ASTM A48/48M:

BRICK MASONRY FOR SHELF, INVERT AND GRADE ADJUSTMENT SHALL BE CERTIFIED BY THEIR MANUFACTURE(S) AS CONFORMING TO ASTM C32, CLAY OR SHALE, FOR GRADE SS HARD BRICK: J. MORTAR SHALL BE COMPOSED OF TYPE II PORTLAND CEMENT AND SAND WITH OR

WITHOUT HYDRATED LIME ADDITION; K. PROPORTIONS IN MORTAR OF PARTS BY VOLUMES SHALL BE:

1. 4.5 PARTS SAND AND 1.5 PARTS CEMENT; OR

2. 4.5 PARTS SAND, ONE PART CEMENT AND 0.5 PARTS HYDRATED LIME: CEMENT SHALL BE TYPE II PORTLAND CEMENT CONFORMING TO ASTM C150/C150M; M. HYDRATED LIME SHALL BE TYPE S CONFORMING TO THE ASTM C207 "STANDARD SPECIFICATIONS FOR HYDRATED LIME FOR MASONRY PURPOSES"

N. SAND SHALL CONSIST OF INERT NATURAL SAND CONFORMING TO THE ASTM C33 "STANDARD SPECIFICATIONS FOR CONCRETE, FINE AGGREGATES"; O. CONCRETE FOR DROP SUPPORTS SHALL CONFORM TO THE REQUIREMENT FOR CLASS

AAA CONCRETE OF THE NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION'S "STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION": P. SUBJECT TO (Q) BELOW, A FLEXIBLE PIPE JOINT SHALL BE PROVIDED WITHIN THE

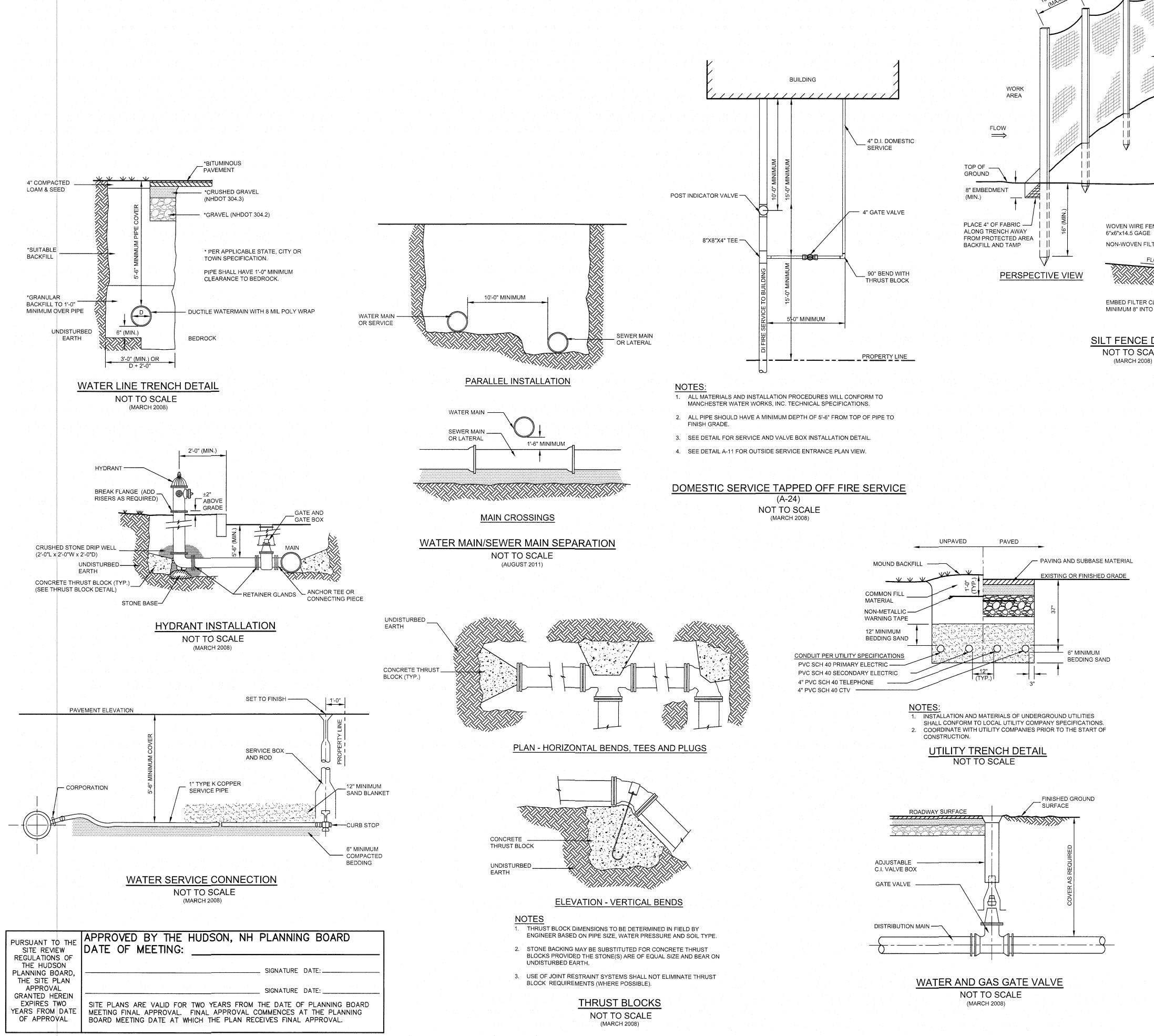
FOLLOWING DISTANCES FROM ANY MANHOLE CONNECTION: 1. WITHIN 48-INCHES FOR REINFORCED CONCRETE (RC) PIPE; AND

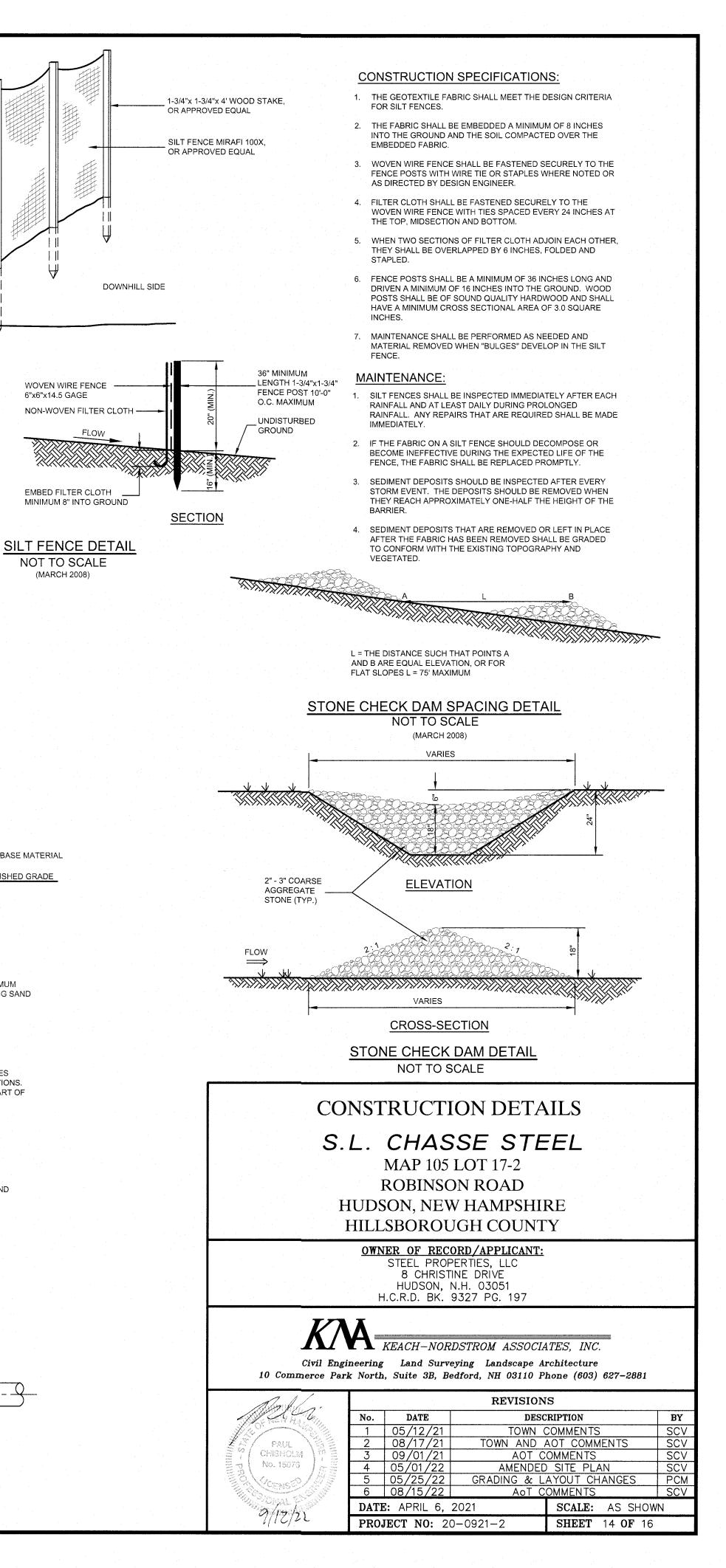
2. WITHIN 60-INCHES FOR PVC PIPE LARGER THAN 15-INCH DIAMETER; Q. NO FLEXIBLE JOINT SHALL BE REQUIRED FOR D.I. PIPE OR FOR PVC PIPE UP THROUGH 15-INCH DIAMETER; AND R. WHEN MANHOLE DEPTH IS LESS THAN 6 FEET, A REINFORCED CONCRETE SLAB COVER

MAY BE USED IN LIEU OF A CONE SECTION, PROVIDED THE SLAB HAS AN ECCENTRIC ENTRANCE OPENING AND IS CAPABLE OF SUPPORTING H-20 LOADS. 14. MANHOLE TESTING:

- A. MANHOLES SHALL BE TESTED FOR LEAKAGE USING A VACUUM TEST B. THE MANHOLE VACUUM TEST SHALL CONFORM TO THE FOLLOWING:
- 1. THE INITIAL VACUUM GAUGE TEST PRESSURE SHALL BE 10 INCHES Hg: AND 2. THE MINIMUM ACCEPTABLE TEST HOLD TIME FOR A 1-INCH Hg PRESSURE DROP TO 9
- INCH Hg SHALL BE: a. NOT LESS THAN 2 MINUTES FOR MANHOLES LESS THAN 10 FEET DEEP IN DEPTH;
- b. NOT LESS THAN 2.5 MINUTES FOR MANHOLES 10 TO 15 FEET DEEP; AND c. NOT LESS THAN 3 MINUTES FOR MANHOLES MORE THAN 15 FEET DEEP.
- C. THE MANHOLE SHALL BE REPAIRED AND RETESTED IF THE TEST HOLD TIMES FAIL TO ACHIEVE THE ACCEPTANCE LIMITS SPECIFIED IN (B) ABOVE. INVERTS AND SHELVES SHALL NOT BE INSTALLED UNTIL AFTER SUCCESSFUL TESTING IS

COMPLETED. E. FOLLOWING COMPLETION OF THE LEAKAGE TEST, THE FRAME AND COVER SHALL BE PLACED ON THE TOP OF THE MANHOLE OR SOME OTHER MEANS USED TO PREVENT ACCIDENTAL ENTRY BY UNAUTHORIZED PERSONS, CHILDREN OR ANIMALS UNTIL THE CONTRACTOR IS READY TO MAKE FINAL ADJUSTMENTS TO GRADE.


CONSTRUCTION DETAILS S.L. CHASSE STEEL MAP 105 LOT 17-2 **ROBINSON ROAD** HUDSON, NEW HAMPSHIRE HILLSBOROUGH COUNTY OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, N.H. 03051 H.C.R.D. BK. 9327 PG. 197 **KEACH-NORDSTROM ASSOCIATES, INC.** Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881 REVISIONS DESCRIPTION DATE No. BY OWN COMMENT 05/12/2 存入出 OWN AND AOT COMMENTS CHISHOLM 08/17/ No. 15076 AOT COMMENTS <u>09/01/2</u> AMENDED SITE PLAN GRADING & LAYOUT CHANGES PCM 05/25/22 AOT COMMENTS 6 08/15/22 9/12/22


DATE: APRIL 6, 2021

PROJECT NO: 20-0921-2

SCALE:

SHEET 13 **OF** 16

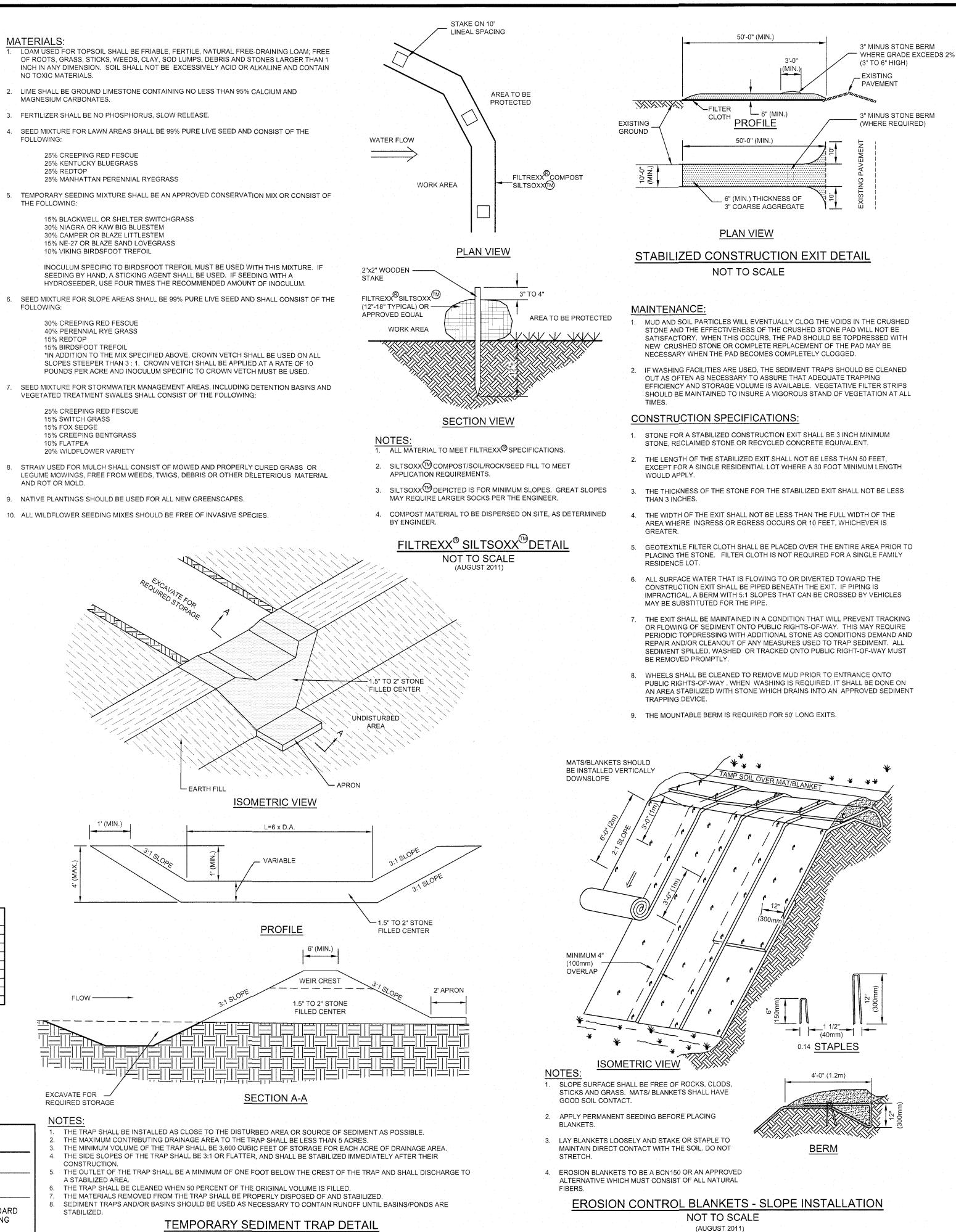
TURF ESTABLISHMENT SCHEDULE

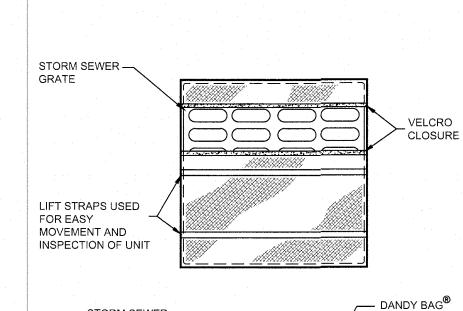
PURPOSE

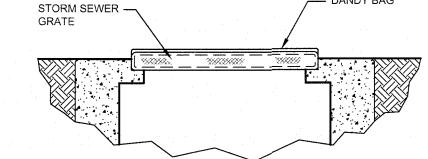
TO ESTABLISH AND MAINTAIN PERMANENT AND TEMPORARY TURF AREAS, RESTORE GROWTH TO EXISTING TURF AREAS DISTURBED DURING CONSTRUCTION AND CONTROL SOIL EROSION. PREPARATION AND EXECUTION

- 1. RAKE THE SUBGRADE OF ALL AREAS TO BE LOAMED AND SEEDED TO REMOVE RUBBISH, STICKS, ROOTS AND STONES LARGER THAN 1 INCH.
- 2. PLACE LOAM OVER AREAS TO BE SEEDED AND SPREAD.
- FINE GRADE SURFACE AND SUPPLEMENT WITH SUITABLE LOAM WHERE NEEDED TO CREATE A UNIFORM SURFACE ACCORDING TO THE FINISH GRADES INDICATED: TOP AND BOTTOM OF SLOPES SHALL BE ROUNDED. NO LOAM SHALL BE SPREAD IF THE SUBGRADE IS EXCESSIVELY WET OR FROZEN.
- APPLY LIME EVENLY OVER LOAM SURFACE AND THOROUGHLY INCORPORATE LIME. INTO THE LOAM BY HEAVY RAKING TO AT LEAST ONE-HALF THE DEPTH OF THE LOAM.
- APPLY NO PHOSPHATE, SLOW RELEASE FERTILIZER AND MIX WITH THE UPPER 2 INCHES OF LOAM.
- 6. DETERMINE APPROPRIATE MIXTURE FOR AREA TO BE SEEDED BASED ON EXAMINATION OF PROJECT PLANS. UNIFORMLY SPREAD THE SEED BY BROADCASTING OR HYDROSEEDING. IF BROADCASTING, LIGHTLY RAKE INTO THE PREPARED SURFACE AND ROLL. IF, HYDROSEEDING, USE 4 TIMES THE RECOMMENDED RATE OF INOCULANT. AFTER SEED IS SPREAD, WATER THOROUGHLY WITH A FINE SPRAY.
- SEEDING FOR PERMANENT COVER SHALL OCCUR BETWEEN SEPTEMBER 15 AND OCTOBER 15 AND BETWEEN APRIL 15 AND JUNE 15. SEEDING SHALL NOT BE DONE DURING WINDY WEATHER, WHEN THE GROUND IS FROZEN OR EXCESSIVELY WET OR OTHERWISE UNTILLABLE.
- WITHIN 24 HOURS AFTER SEEDING OPERATION, UNIFORMLY MULCH THE AREA WITH STRAW. ANCHOR MULCH ON ALL SLOPES EXCEEDING 3 : 1 USING MULCH NETTING INSTALLED IN ACCORDANCE WITH THE MANUFACTURER.
- 9. PROTECT AND PREVENT AGAINST WASHOUTS, ANY WASHOUTS WHICH OCCUR SHALL BE PROMPTLY REGRADED AND RESEFDED.
- 10. WHEN IT IS IMPRACTICAL TO ESTABLISH PERMANENT GROWTH ON DISTURBED EARTH BY OCTOBER 15, A TEMPORARY SEED MIXTURE SHALL BE USED. WHEN TEMPORARY SEEDING CANNOT ESTABLISH VISIBLE GROWTH, THE DISTURBED AREA SHALL BE COVERED WITH SIX INCHES OF MULCH FOR THE WINTER.

MAINTENANCE:

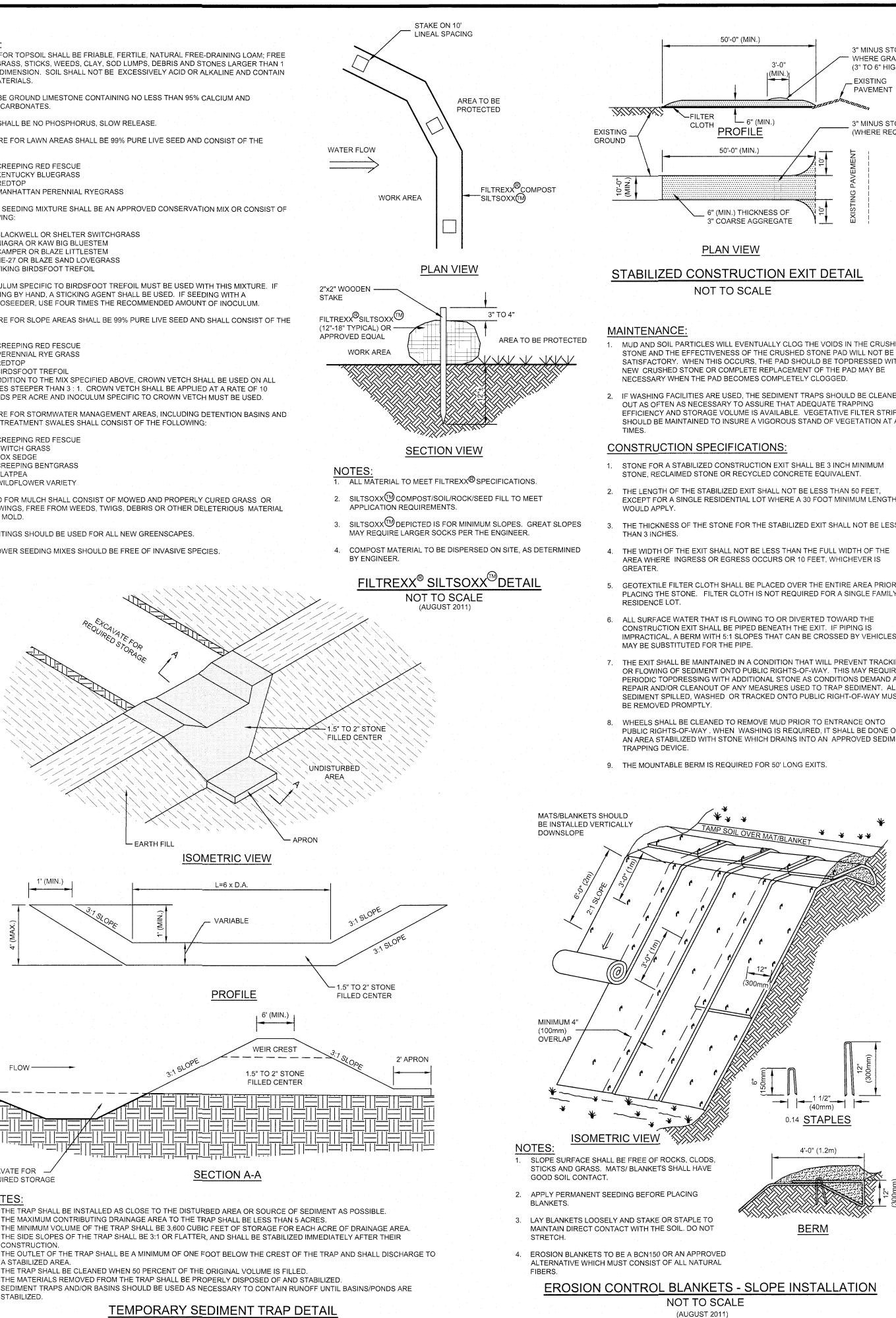

ALL SEEDED AREAS SHALL BE KEPT WATERED AND IN GOOD CONDITION. RESEED AS NECESSARY TO ESTABLISH HEALTHY UNIFORM GROWTH OVER THE ENTIRE SEEDED AREA. MAINTAIN SEEDED AREAS IN AN APPROVED CONDITION UNTIL FINAL ACCEPTANCE. MAINTENANCE SHALL INCLUDE REPAIRS FOR DAMAGE CAUSED BY EROSION. APPLICATION RATES:

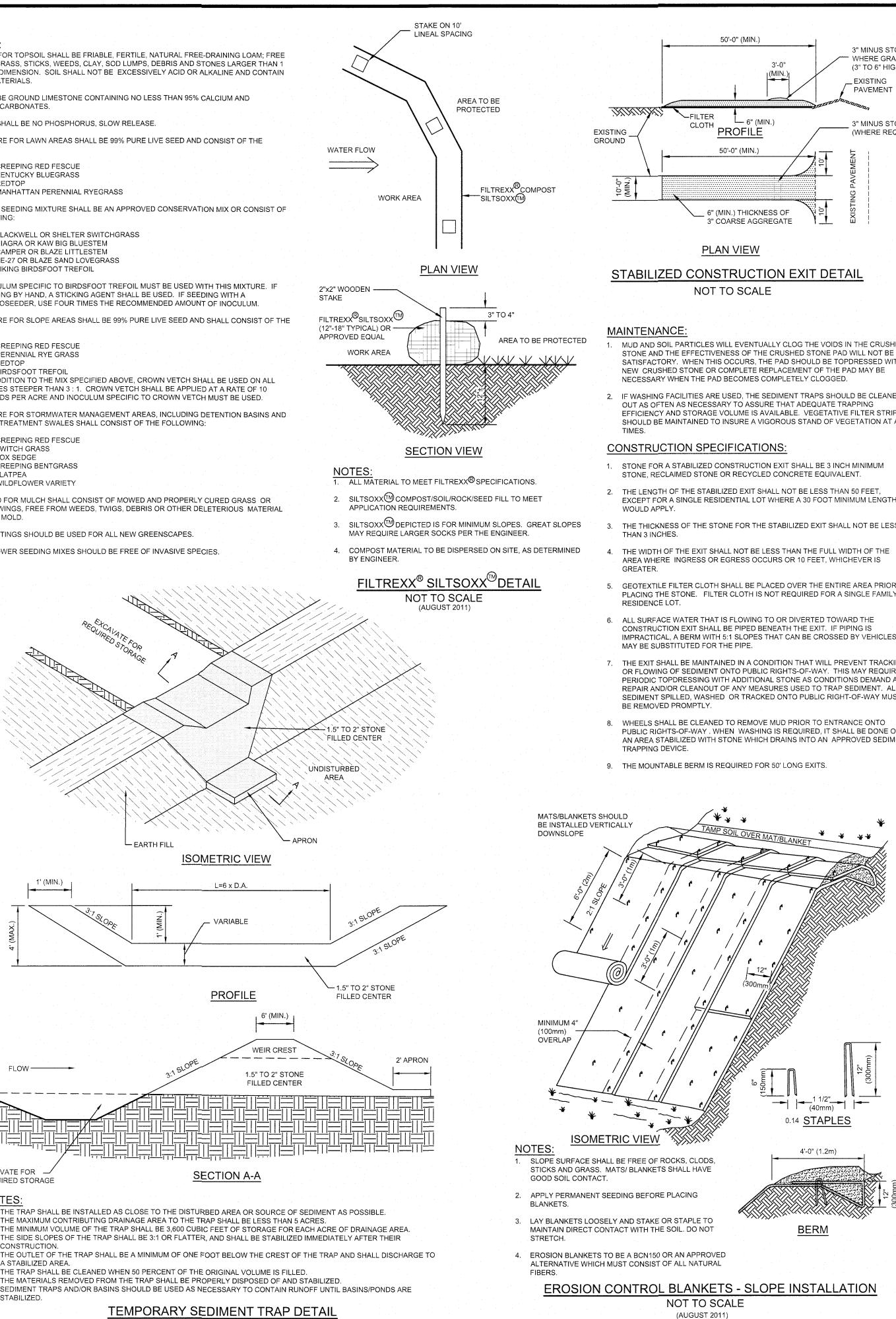

- LOAM SHALL BE APPLIED AT A MINIMUM COMPACTED THICKNESS OF 4 INCHES.
- 2. LIME SHALL BE APPLIED AT A RATE OF 75 TO 100 POUNDS PER 1,000 S.F
- FERTILIZER SHALL BE APPLIED AT A RATE OF 30 POUNDS PER 1,000 S.F. IT IS RECOMMENDED THAT THE SOIL BE TESTED PRIOR TO APPLYING ANY FERTILIZERS TO DETERMINE WHAT LEVELS AND RATES ARE NECESSARY.
- 4. SEED MIXTURE FOR LAWN AREAS SHALL BE APPLIED AT A RATE OF AT LEAST 80 POUNDS PER ACRE OR 2 POUNDS PER 1,000 S.F.
- TEMPORARY SEED MIXTURE SHALL BE APPLIED AT A RATE OF 2 POUNDS PER 1,000 S.F.
- SEED MIXTURE FOR SLOPE AREAS SHALL BE APPLIED AT A RATE OF 80 POUNDS PER ACRE OR 2 POUNDS PER 1,000
- SEED MIXTURE FOR STORMWATER MANAGEMENT AREAS SHALL BE APPLIED AT A RATE OF 70 POUNDS PER ACRE OR 1.6 POUNDS PER 1,000 S.F.
- 8. MULCH SHALL BE APPLIED AT A RATE OF 90 POUNDS PER 1,000 S.F.

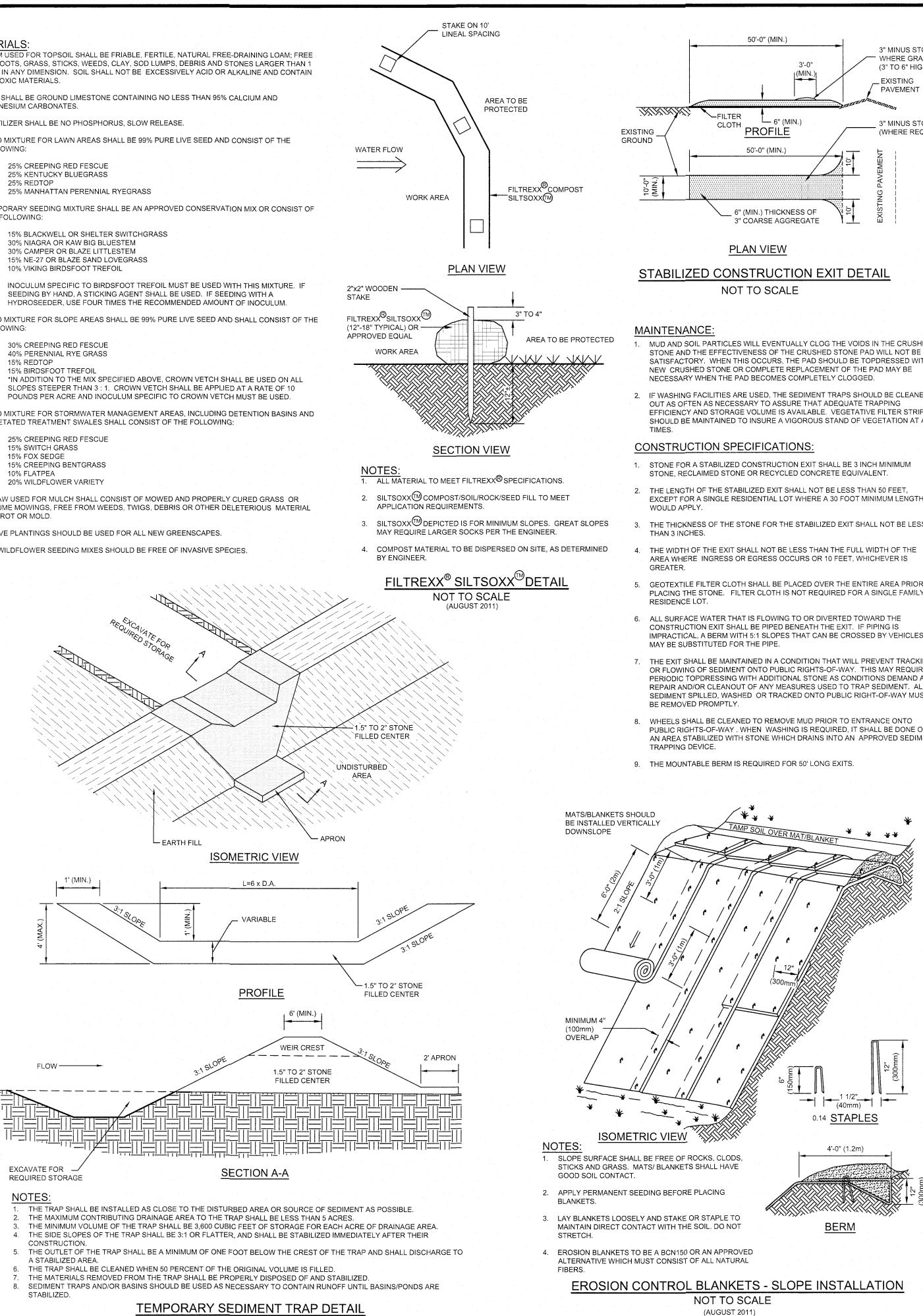

- NO TOXIC MATERIALS.
- MAGNESIUM CARBONATES.

- THE FOLLOWING:
 - 30% NIAGRA OR KAW BIG BLUESTEM 30% CAMPER OR BLAZE LITTLESTEM
- 30% CREEPING RED FESCUE
- 15% REDTOP

- AND ROT OR MOLD


HI-FLOW DANDY BAG[®] (SAFETY ORANGE)


(and the second	
MECHANICAL PROPERTIES	TEST METHOD	UNITS	MARV
GRAB TENSILE STRENGTH	ASTM D 4632	kN (lbs)	1.62 (365) x 0.89 (200)
GRAB TENSILE ELONGATION	ASTM D 4632	%	24 x 10
PUNCTURE STRENGTH	ASTM D 4833	kN (lbs)	0.40 (90)
MULLEN BURST STRENGTH	ASTM D 3786	kPa (psi)	3097 (450)
TRAPEZOID TEAR STRENGTH	ASTM D 4533	kN (lbs)	0.51 (115) x 0.33 (75)
UV RESISTANCE	ASTM D 4355	%	90
APPARENT OPENING SIZE	ASTM D 4751	Mm (US Std Sieve)	0.425 (40)
FLOW RATE	ASTM D 4491	1/min/m ² (gal/min/ft ²)	5907 (145)
	ASTM D 4401	Sec-1	21


DANDY BAG NOT TO SCALE

(APRIL 2010)

APPROVED BY THE HUDSON, NH PLANNING BOARD PURSUANT TO DATE OF MEETING: SITE REVIEW REGULATIONS OF THE HUDSON SIGNATURE DATE: PLANNING BOARD THE SITE PLAN APPROVAL SIGNATURE DATE: _ GRANTED HEREIN SITE PLANS ARE VALID FOR TWO YEARS FROM THE DATE OF PLANNING BOARD EXPIRES TWO YEARS FROM DATE MEETING FINAL APPROVAL. FINAL APPROVAL COMMENCES AT THE PLANNING OF APPROVAL BOARD MEETING DATE AT WHICH THE PLAN RECEIVES FINAL APPROVAL.

EXCAVATE FOR

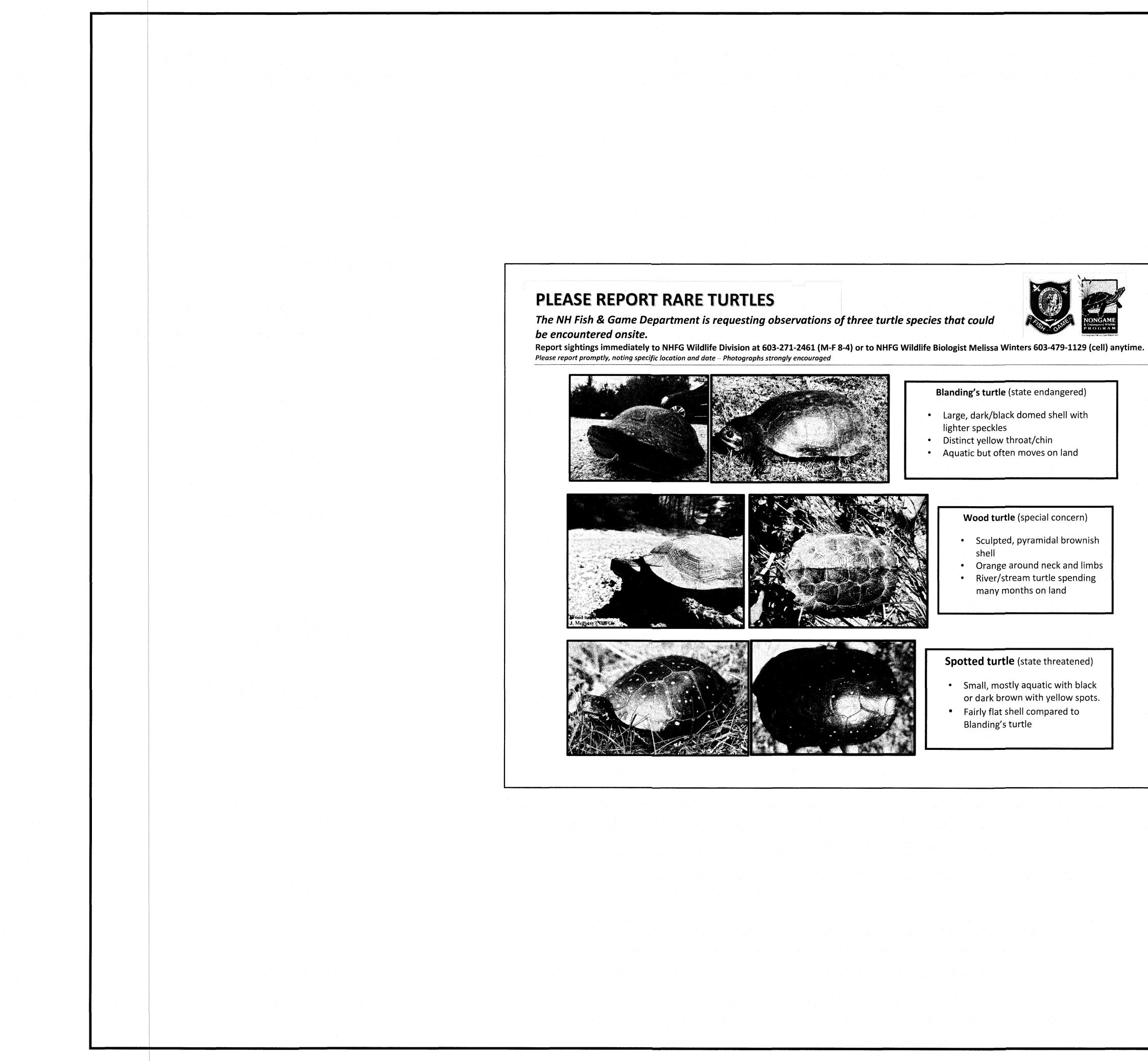
NOT TO SCALE

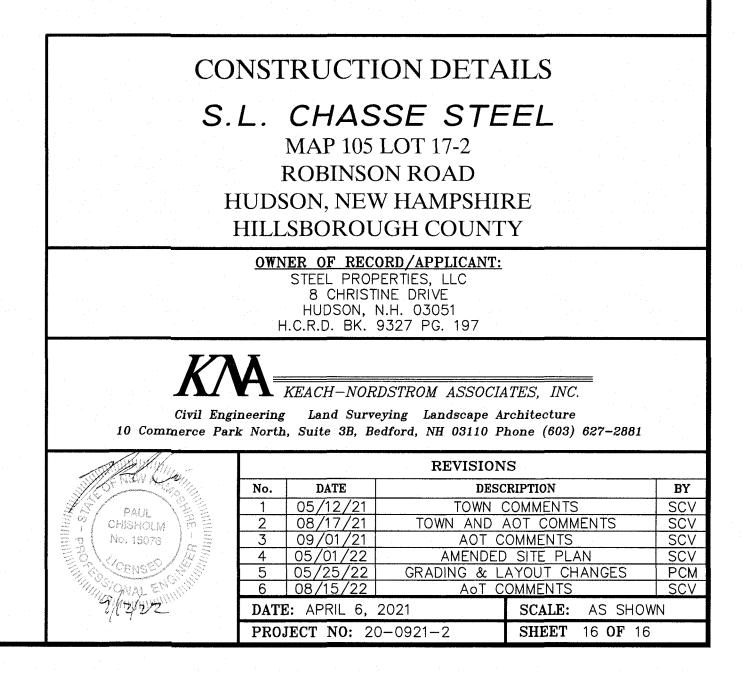
CONSTRUCTION SEQUENCE

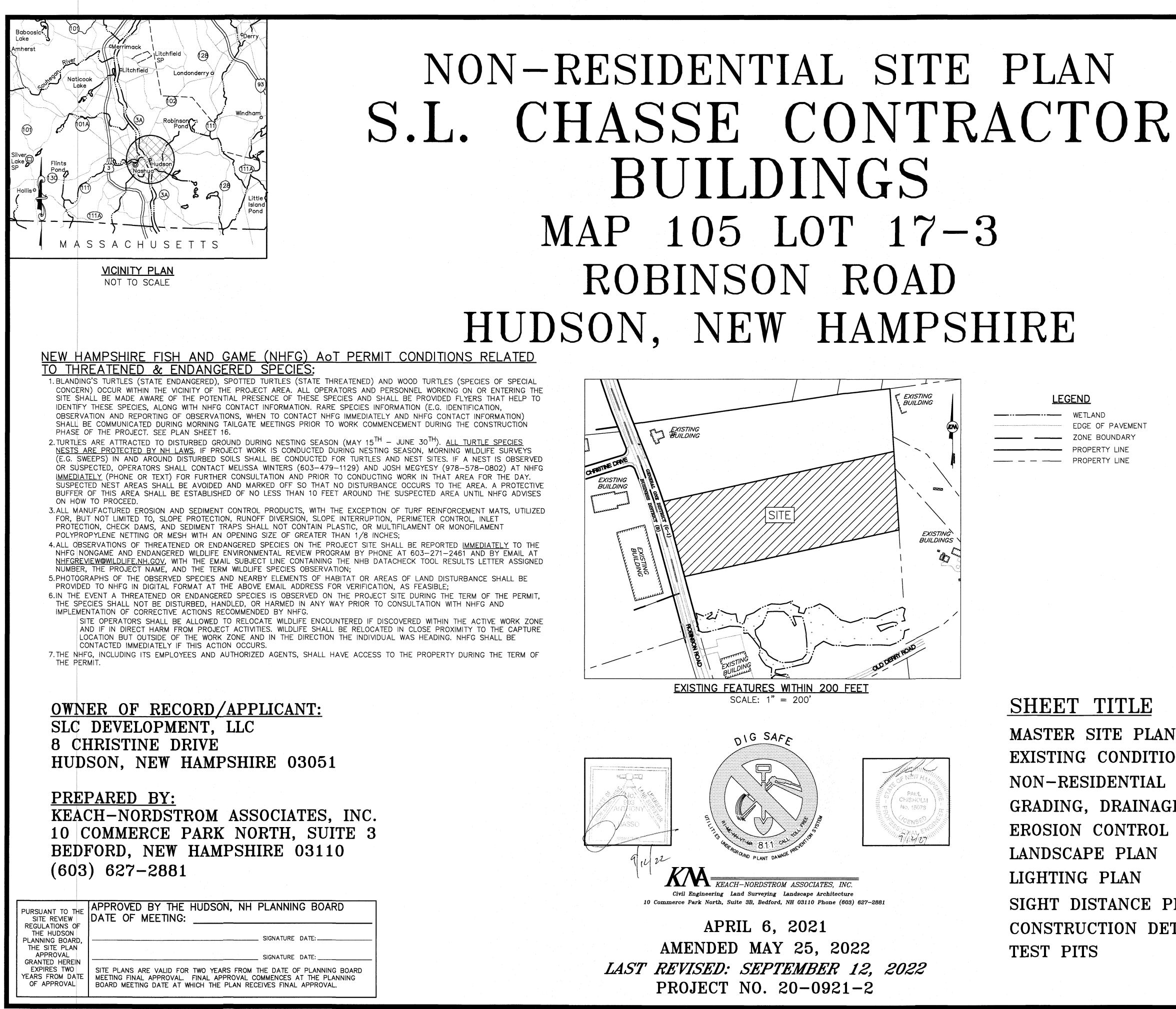
THE CONTRACTOR WILL ENSURE THAT NO MORE THAN 5 ACRES IS DISTURBED AT ANY ONE TIME.

- FIRST CUT AND CLEAR TREES AND BRUSH ONLY WITHIN DESIGNATED LIMITS OF CLEARING AS NECESSARY TO FACILITATE PROPOSED CONSTRUCTION. ALL TREES, BRANCHES AND OTHER VEGETATIVE MATERIALS SHALL BE PROPERLY DISPOSED OF OFF SITE BY THE CONTRACTOR. THIS PROJECT IS MANAGED TO MEET THE REQUIREMENTS AND INTENT OF RSA 430:53 AND AGR 3800 RELATIVE TO INVASIVE SPECIES
- 3. PRIOR TO COMMENCEMENT OF ANY EARTHMOVING OPERATIONS, ALL APPLICABLE TEMPORARY EROSION CONTROL MEASURES, INCLUDIN SPECIFIED PERIMETER SILTATION FENCING AND STABILIZED CONSTRUCTION EXIT SHALL BE IN PLACE AS SHOWN ON THE PROJECT PLANS. COMPLETE GRUBBING OPERATIONS. ALL STUMPS AND SIMILAR ORGANIC DEBRIS SHALL BE PROPERLY DISPOSED OF BY THE CONTRACTOR NATIVE ORGANIC SOIL MATERIALS SUITABLE FOR USE AS TOPSOIL SHALL BE STOCKPILED WITHIN AREAS OUT OF THE WAY OF OTHER CONSTRUCTIONS ACTIVITIES AND DRAINAGE FLOW. STOCKPILES SHALL BE TEMPORARILY SEEDED WITH WINTER RYE AND BE
- SURROUNDED WITH STRAW BALES AND/OR FABRIC SILTATION FENCE IN ORDER TO PREVENT LOSS DUE TO EROSION. BEGIN EARTHMOVING OPERATIONS, COMMENCING WITH WORK NEEDED TO BALANCE SITE AND FACILITATE BUILDING FOUNDATION AND RETAINING WALL CONSTRUCTION. PERMANENT DOWNSLOPE WORK SHALL BE PROTECTED FROM UPGRADIENT STORMWATER FLOW BY THI CONSTRUCTION OF TEMPORARY EARTHEN DIKES OR EXCAVATED SWALES.
- ONCE BUILDING FOUNDATION WORK IS UNDERWAY, CONTINUE EARTHMOVING OPERATIONS UNTIL DESIGN SUBGRADE IS ACHIEVED. DETENTION BASINS/SWALES SHALL BE INSTALLED BEFORE ROUGH GRADING THE SITE.
- DITCHES/SWALES/BASINS SHALL BE STABILIZED PRIOR TO DIRECTING RUNOFF TO THEM
- TEMPORARY WATER DIVERSION (SWALES, BASINS, ETC.) MUST BE USED AS NECESSARY UNTIL SOILS ARE STABILIZED. 10. INSTALL DRAINAGE SWALE SYSTEMS AND OTHER UTILITIES WORKING FROM LOW TO HIGH. INCOMPLETE WORK SHALL BE PROTECTED FROM
- SILTATION BY THE USE OF SILTATION BARRIERS AROUND SWALES UNTIL THE SITE HAS BECOME FULLY STABILIZED. 11. DEEPLY TILL THE BASE OF THE INFILTRATION BASIN TO RESTORE INFILTRATION RATES FOLLOWED BY A PASS WITH A LEVELING DRAG. STORMWATER FLOWS ARE NOT TO BE DIRECTED TO THE INFILTRATION AREA UNTIL CONTRIBUTING AREAS HAVE BEEN FULLY STABILIZED. 12. PLACE GRAVEL AND CRUSHED GRAVEL OVER PROPOSED DRIVEWAY, WALKS AND PARKING AREAS AND COMPACT IN SPECIFIED LIFT
- THICKNESS. 13. COMPLETE EXCAVATION/STABILIZATION GRADING ACTIVITIES. WHEN COMPLETE, IMMEDIATELY BEGIN TOPSOILING PROPOSED TURF AREAS USING STOCKPILED LOAM SUPPLEMENTED WITH BORROW LOAM, IF NECESSARY, TO LEAVE A THICKNESS OF 4 INCHES OF FRIABLE LOAM. 14. FINE GRADE ALL FUTURE TURF AREAS AND HYDROSEED WITH THE SPECIFIED SEED MIXTURE IMMEDIATELY AFTER FINE GRADING IS
- COMPLETED. ALL AREAS SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISH GRADE. 15. INSTALL THE BINDER COURSE OF PAVEMENT OVER ALL DESIGNATED AREAS. 16. CONTINUE TO MONITOR AND RECTIFY MINOR SITE AND SLOPE EROSION UNTIL ENTIRE SITE APPEARS TO BE COMPLETELY STABILIZED AND /EGETATED WITH A HEALTHY STAND OF TURF OR GROUND COVER. MAINTAIN SPECIFIED SILTATION/EROSION CONTROL MEASURES THROUGH ONE WINTER.
- 17. INSTALL THE SPECIFIED WEARING COURSE OF PAVEMENT OVER THE BINDER COURSE. 18. COMPLETE INSTALLATION OF LANDSCAPING, SIGNAGE AND OTHER SITE AMENITIES.
- CERTIFICATE OF OCCUPANCY PHASING PLAN AGREEMENT
- 1. THE FOLLOWING SITE IMPROVEMENTS ARE REQUIRED FOR INDIVIDUAL CERTIFICATES OF OCCUPANCY AS CONSTRUCTION PROGRESSES: A. ROAD BASE COAT;
 - STOP SIGNS AND TEMPORARY STRIPING OF STOP BARS; GRADING AND DRAINAGE:
 - LOAM AND SEED THAT SUPPORTS THE SUBJECT UNIT OF THE CERTIFICATE OF OCCUPANCY;
- TEMPORARY STRIPING OF VISITOR PARKING; AND UTILITIES.

EROSION CONTROL NOTES


EXPOSED EARTHWORK SHALL BE CONFINED TO AS LIMITED AN AREA AS IS PRACTICAL AT ANY GIVEN TIME THROUGHOUT THE


- CONSTRUCTION SEQUENCE. AT NO TIME SHALL MORE THAN FIVE (5) ACRES OF SITE AREA BE IN AN UNSTABLE CONDITION UNLESS AN ENVIRONMENTAL MONITOR IS EMPLOYED THROUGH THE DURATION OF CONSTRUCTION. NO GIVEN AREA OF THE SITE SHALL BE LEFT IN AN UNSTABILIZED CONDITION FOR A PERIOD OF TIME EXCEEDING FORTY-FIVE (45) CALENDAR DAYS.
- TEMPORARY EROSION CONTROL MEASURES SHALL BE INSTALLED IN STRICT ACCORDANCE WITH PROJECT PLANS. IN ADDITION, SIMILAR MEASURES SHALL BE INSTALLED WHERE AND WHEN THE FIELD CONDITION, OR FIELD OPERATION OF THE INDIVIDUAL SITE CONTRACTOR MAY WARRANT. ALL TEMPORARY EROSION CONTROL MEASURES USED SHALL BE INSPECTED WEEKLY AND WITHIN 24 HOURS AFTER 0.25" OF RAINFALL OR MORE. THEY SHALL BE CLEANED AND MAINTAINED AND OTHERWISE KEPT IN AN EFFECTIVE OPERATING MANNER THROUGHOUT THE CONSTRUCTION PERIOD.
- 3. ALL DISTURBED AREAS DESIGNATED TO BE TURF, SHALL RECEIVE A MINIMUM APPLICATION OF 4 INCHES OF LOAM (COMPACTED THICKNESS), PRIOR TO FINAL SEEDING AND MULCHING.
- 4. EROSION CONTROL AND STABILIZATION SHALL BE IN ACCORDANCE WITH HILLSBOROUGH COUNTY CONSERVATION DISTRICT-VEGETATIVE STANDARD AND SPECIFICATIONS FOR SEEDING GRASSES AND LEGUMES FOR LONG-TERM COVER ON EXCAVATED AREAS.
- ALL SWALES AND DITCHLINES SHALL BE PERIODICALLY CLEANED OF DEPOSITED SEDIMENT SO AS TO MAINTAIN AN EFFECTIVE GRADE AND CROSS SECTION. ALL SWALES AND DITCHLINES SHALL BE FULLY STABILIZED PRIOR TO HAVING STORMWATER DIRECTED TOWARDS THEM 6. IN THE EVENT THAT, DURING CONSTRUCTION OF ANY PORTION OF THIS PROJECT, A WINTER SHUTDOWN IS NECESSARY, THE
- CONTRACTOR SHALL STABILIZE ALL INCOMPLETE WORK AND PROVIDE FOR SUITABLE METHODS OF DIVERTING RUNOFF IN ORDER TO ELIMINATE SHEET FLOW ACROSS FROZEN SURFACES.
- 7. AN AREA SHALL BE CONSIDERED STABLE IF ONE OF THE FOLLOWING HAS OCCURRED:
 - A. BASE COURSE GRAVELS ARE INSTALLED IN AREAS TO BE PAVED; A MINIMUM OF 85% VEGETATED GROWTH HAS BEEN ESTABLISHED;
 - A MINIMUM OF 3" OF NON-EROSIVE MATERIAL SUCH AS STONE OR RIP RAP HAS BEEN INSTALLED; OR
- EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED. 8. DUST SHALL BE CONTROLLED BY THE USE OF WATER AS NECESSARY THROUGHOUT THE CONSTRUCTION PERIOD, IN ACCORDANCE WITH
- ENV-A 1000.
-). IN NO WAY ARE THOSE TEMPORARY EROSION CONTROL MEASURES INDICATED ON THESE PLANS TO BE CONSIDERED ALL INCLUSIVE. THE CONTRACTOR SHALL USE JUDGEMENT IN INSTALLING SUPPLEMENTARY EROSION CONTROL MEASURES WHERE AND WHEN SPECIFIC SITE CONDITIONS AND/OR CONSTRUCTION METHODOLOGIES MAY WARRANT.
- 0. THE TOWN RESERVES THE RIGHT TO REQUIRE ADDITIONAL EROSION CONTROL MEASURES DURING CONSTRUCTION. 11. AREAS HAVING FINISH GRADE SLOPES OF 3 : 1 OR STEEPER, SHALL BE STABILIZED WITH JUTE MATTING WHEN AND IF FIELD CONDITIONS WARRANT, OR IF SO ORDERED. JUTE MATTING INSTALLED TO CONFORM WITH THE RECOMMENDED BEST MANAGEMENT PRACTICE OUTLINED IN VOLUME 3 OF THE NEW HAMPSHIRE STORMWATER MANUAL "EROSION AND SEDIMENT CONTROLS DURING CONSTRUCTION." 12. DETENTION BASINS/SWALES SHALL BE INSTALLED BEFORE ROUGH GRADING THE SITE.
- 13. DITCHES/SWALES/BASINS SHALL BE STABILIZED PRIOR TO DIRECTING RUNOFF TO THEM
- 14. TEMPORARY WATER DIVERSION (SWALES, BASINS, ETC.) MUST BE USED AS NECESSARY UNTIL SOILS ARE STABILIZED.
- 15. ALL ROADWAYS AND PARKING AREAS SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE. 16. ALL CUT AND FILL SLOPES SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE.
- 17. ALL MANUFACTURED EROSION AND SEDIMENT CONTROL PRODUCTS, EXCEPT FOR SILT FENCE INSTALLED IN ACCORDANCE WITH ENV-WQ 1506.04, UTILIZED FOR, BUT NOT LIMITED TO, SLOPE PROTECTION, RUNOFF DIVERSION, SLOPE INTERRUPTION, PERIMETER CONTROL, 'ECTION, CHECK DAMS, AND SEDIMENT TRAPS SHALL NOT CONTAIN WELDED PLASTIC, PLASTIC, OR MULTI-FILAMENT
- MONOFILAMENT POLYPROPYLENE NETTING OR MESH WITH AN OPENING SIZE OF GREATER THAN # 8. TURF REINFORCEMENT MATS SHALL BE COVERED WITH SOIL TO PREVENT EXPOSURE OF THE MATS TO THE SURFACE


WINTER CONSTRUCTION NOTES:

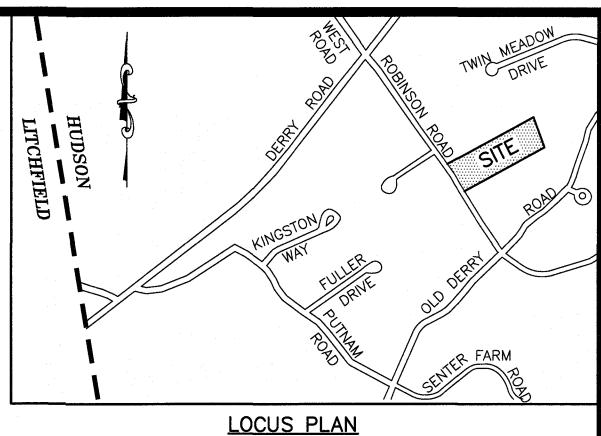
- ALL PROPOSED POST-DEVELOPMENT VEGETATED AREAS WHICH DO NOT EXHIBIT A MINIMUM OF 85% VEGETATIVE GROWTH BY OCTOBER 15TH, OR WHICH ARE DISTURBED AFTER OCTOBER 15TH, SHALL BE STABILIZED BY SEEDING AND INSTALLING EROSION CONTROL BLANKETS ON SLOPES GREATER THAN 4:1, AND SEEDING AND PLACING 3 TO 4 TONS OF MULCH PER ACRE, SECURED WITH ANCHORED NETTING, ELSEWHERE. THE PLACEMENT OF EROSION CONTROL BLANKETS OR MULCH AND NETTING SHALL NOT OCCUR OVER ACCUMULATED SNOW OR ON FROZEN GROUND AND SHALL BE COMPLETED IN ADVANCE OF THAW OR SPRING MELT EVENTS. ALL DITCHES OR SWALES WHICH DO NOT EXHIBIT A MINIMUM OF 85% VEGETATIVE GROWTH BY OCTOBER 15TH, OR WHICH ARE DISTURBED AFTER OCTOBER 15TH, SHALL BE STABILIZED WITH STONE OR EROSION CONTROL BLANKETS APPROPRIATE FOR THE DESIGN FLOW CONDITIONS.
- 3. AFTER OCTOBER 15TH, INCOMPLETE ROAD OR PARKING SURFACES SHALL BE PROTECTED WITH A MINIMUM OF 3 INCHES OF CRUSHED GRAVEL PER NHDOT ITEM 304.3 OR, IF CONSTRUCTION IS TO CONTINUE THROUGH THE WINTER SEASON, BE CLEARED OF ANY ACCUMULATED SNOW AFTER EACH STORM EVENT.
- 4. AN AREA SHALL BE CONSIDERED STABLE IF ONE OF THE FOLLOWING HAS OCCURRED
 - BASE COURSE GRAVELS ARE INSTALLED IN AREAS TO BE PAVED: B. A MINIMUM OF 85% VEGETATED GROWTH HAS BEEN ESTABLISHED:
 - A MINIMUM OF 3" OF NON-EROSIVE MATERIAL SUCH AS STONE OR RIP RAP HAS BEEN INSTALLED; OR D. EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED.
 - CONSTRUCTION DETAILS S.L. CHASSE STEEL MAP 105 LOT 17-2 **ROBINSON ROAD** HUDSON, NEW HAMPSHIRE HILLSBOROUGH COUNTY OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, N.H. 03051 H.C.R.D. BK. 9327 PG. 197 KEACH-NORDSTROM ASSOCIATES. INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881

		REVISIONS						
A STANE A SAL	No.	DATE	DESC	RIPTION	BY			
	1	05/12/21	TOWN (COMMENTS	SCV			
EXT PAUL NE	2	08/17/21	TOWN AND /	AOT COMMENTS	SCV			
E Y CHISHULM I E	3	09/01/21	AOT C	OMMENTS	SCV			
■	4	05/01/22	AMENDED	SITE PLAN	SCV			
ER Vormer 18	5	05/25/22	GRADING & L	AYOUT CHANGES	PCM			
A A A A A A A A A A A A A A A A A A A	6	08/15/22	Aot C	OMMENTS	SCV			
9/12/22	DAT	E: APRIL 6,	2021	SCALE: AS SHOW	N			
· · · · · · · · · · · · · · · · · · ·	PRO	JECT NO: 2 (0-0921-2	SHEET 15 OF 16				

NON-RESIDENTIAL SITE PLAN MAP 105 LOT 17-3HUDSON, NEW HAMPSHIRE

SHEET TIT MASTER SITE EXISTING CON NON-RESIDEN GRADING, DRA **EROSION CON** LANDSCAPE P LIGHTING PLA SIGHT DISTAN **CONSTRUCTIO** TEST PITS

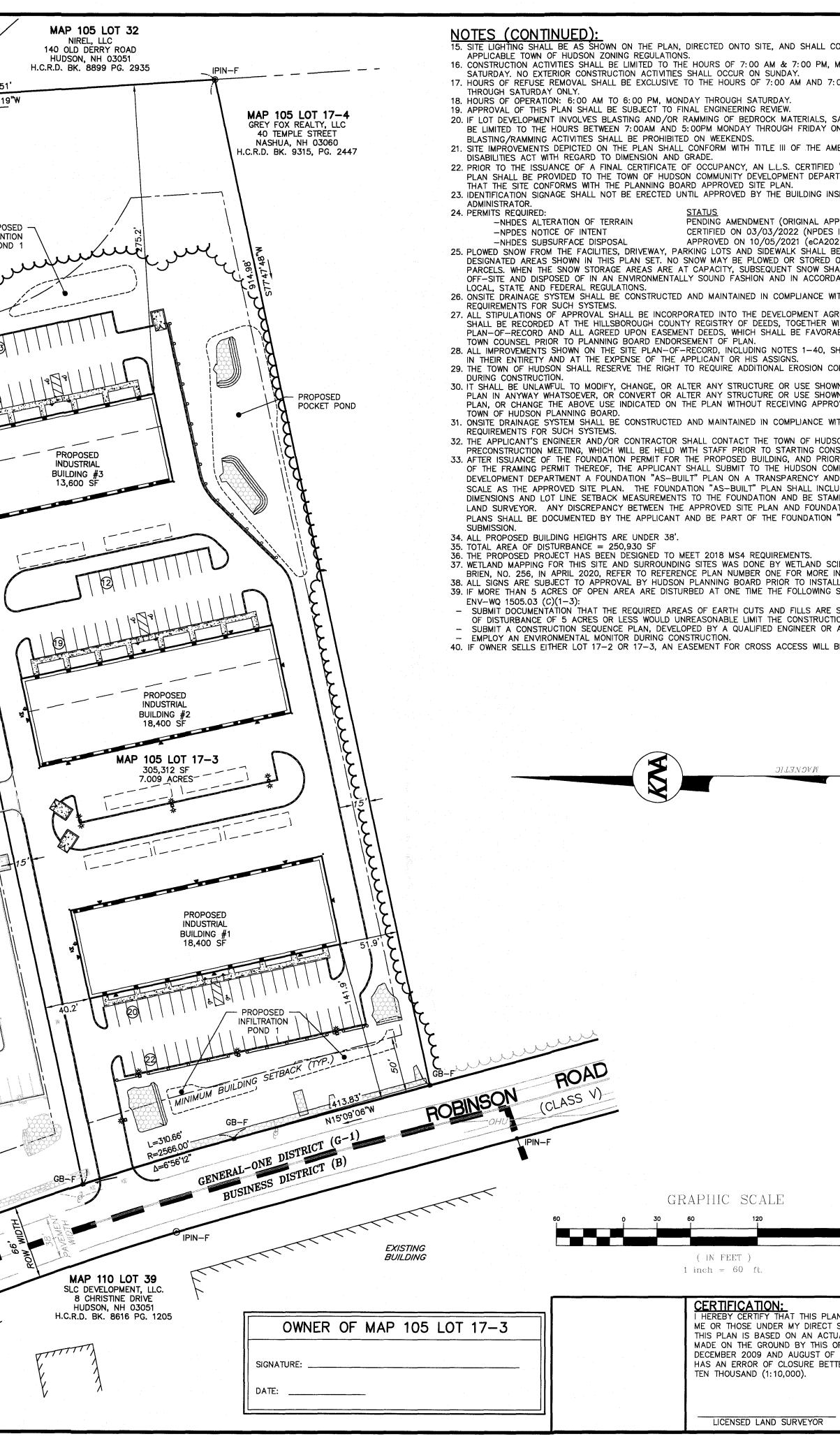
LEGEND

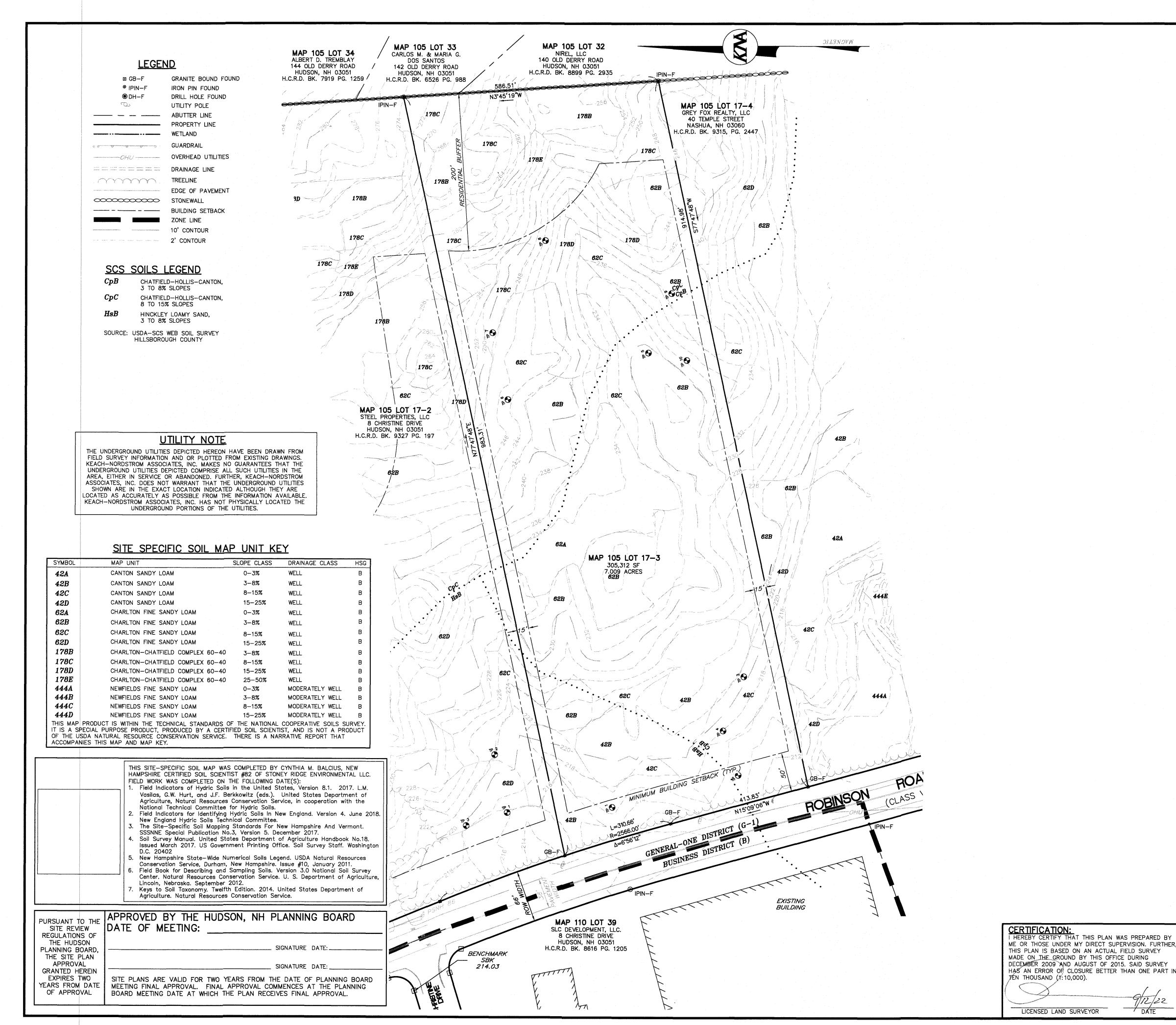

WETLAND

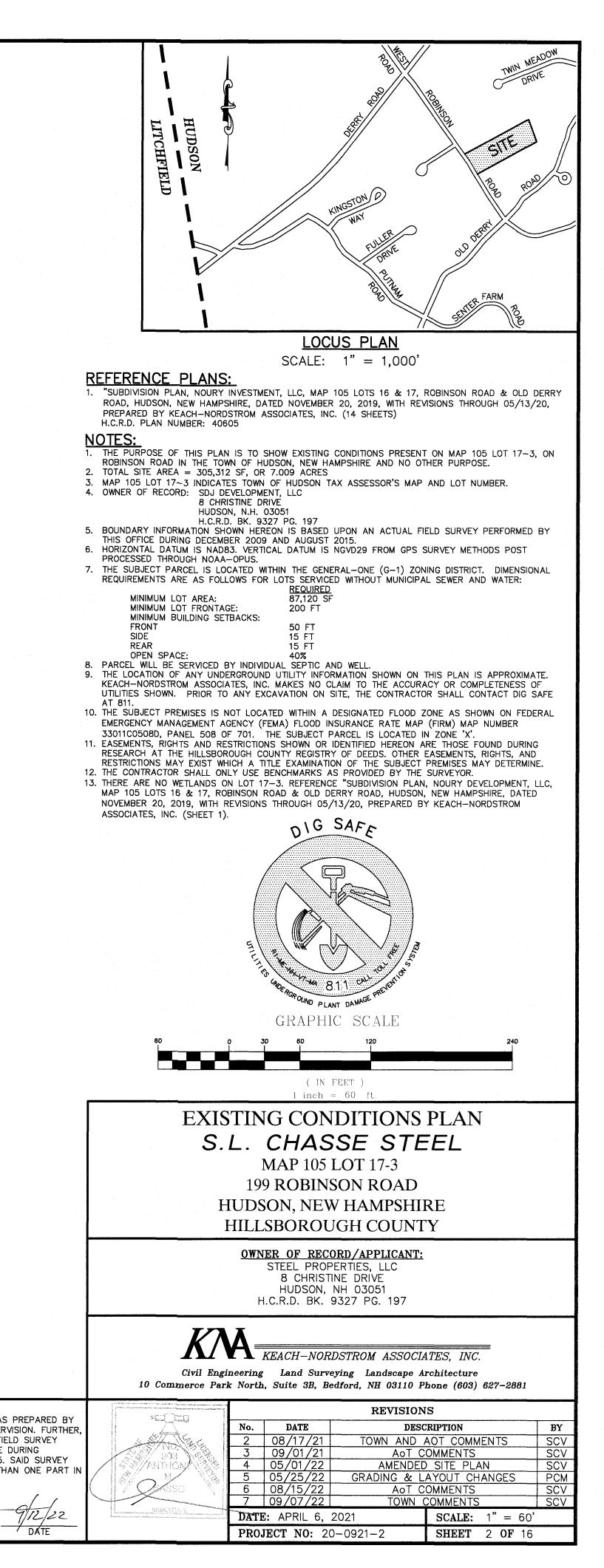
EDGE OF PAVEMENT

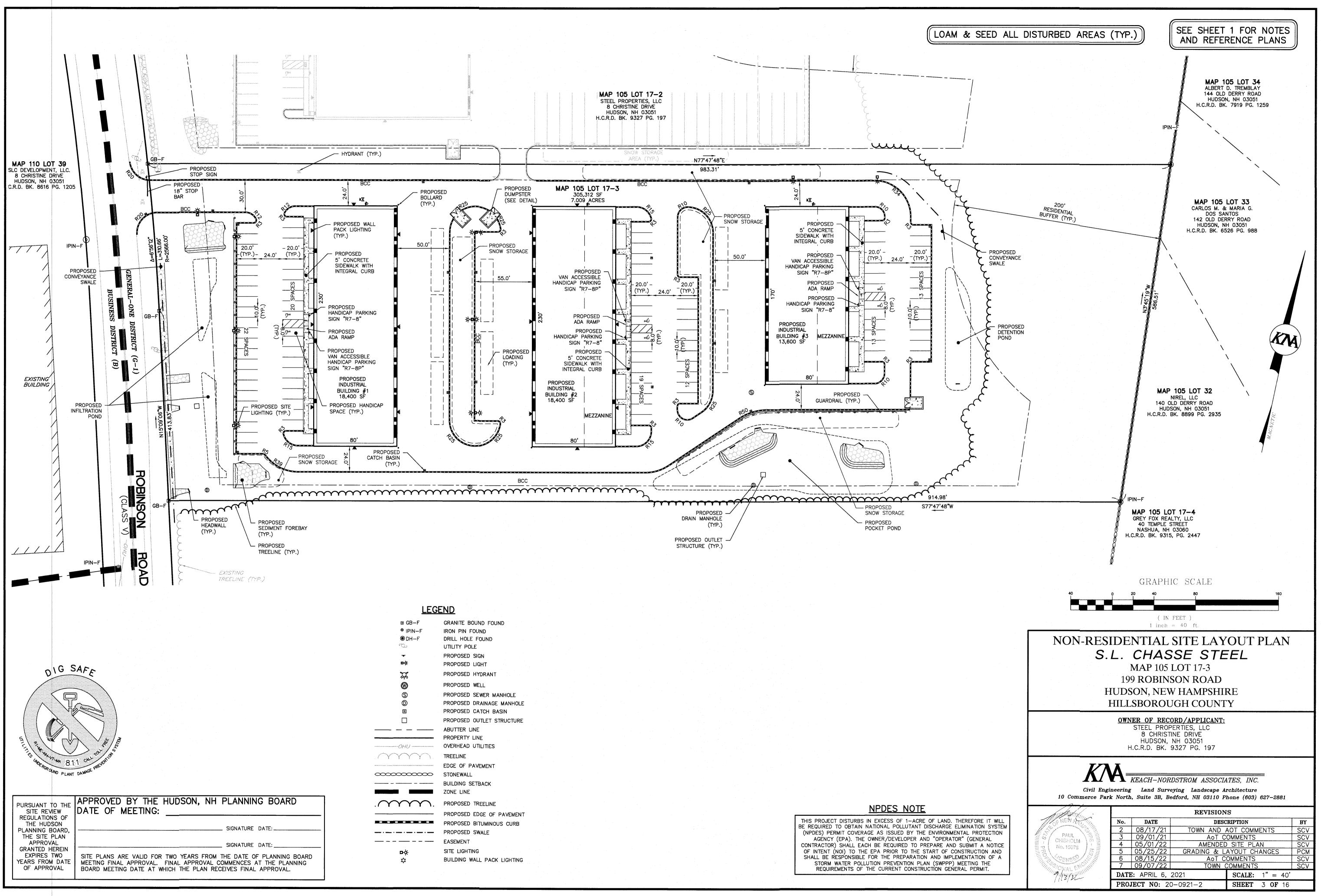
ZONE BOUNDARY

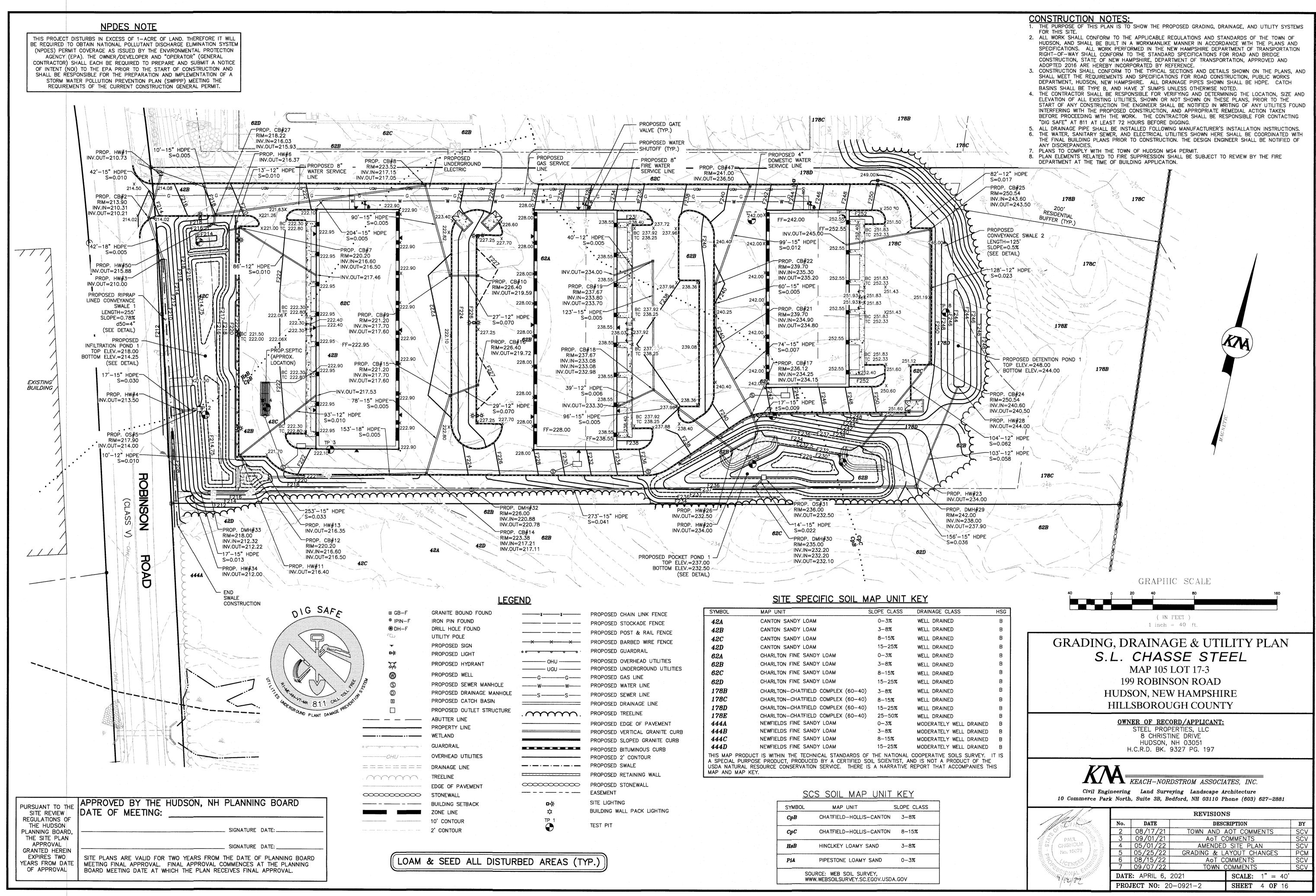
PROPERTY LINE

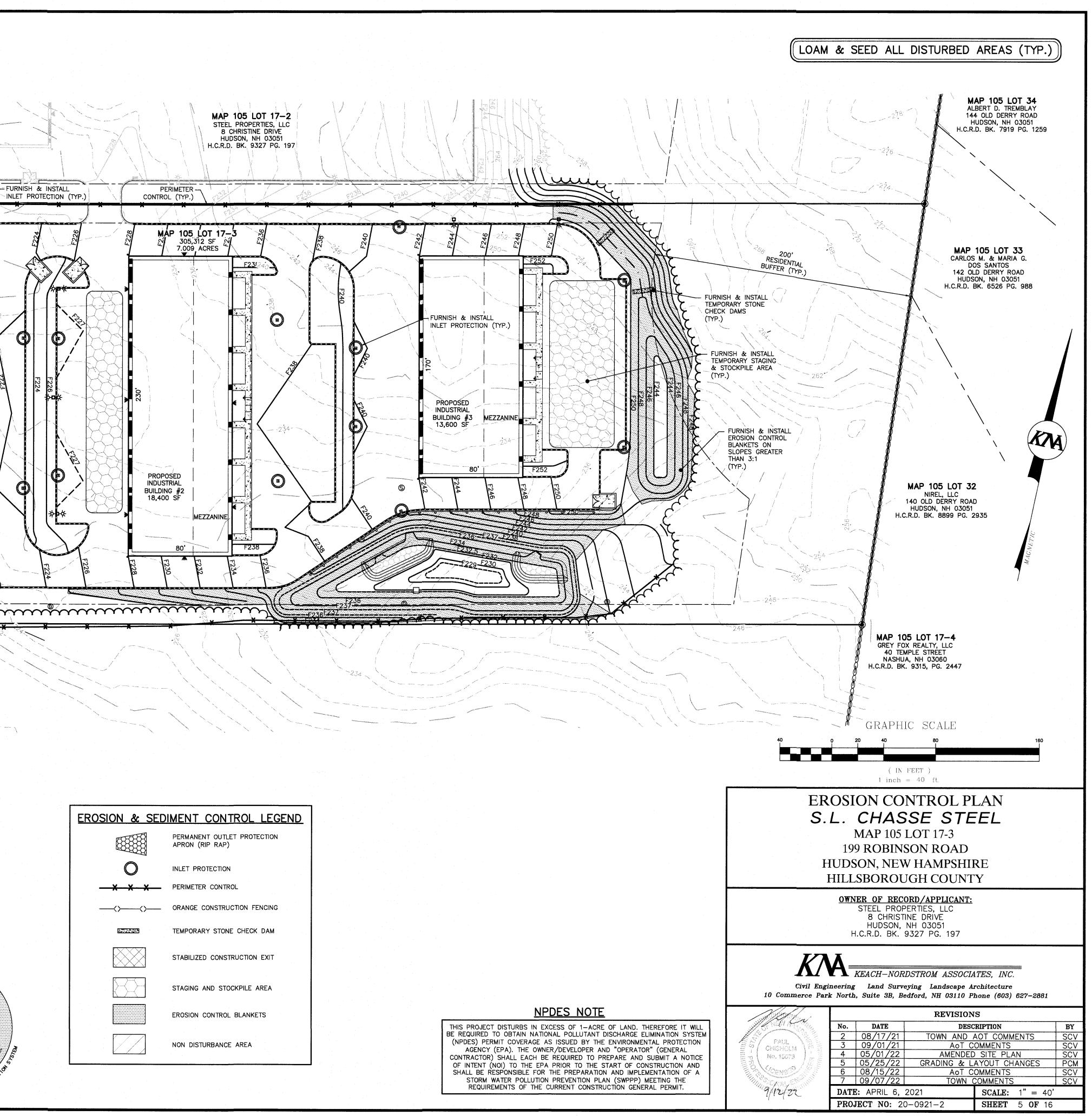

PROPERTY LINE

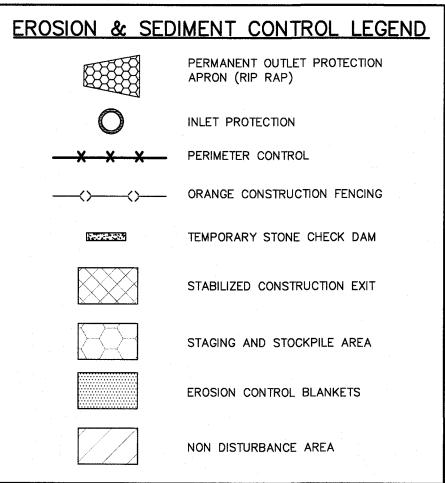

SCALE: 1" = 1.000

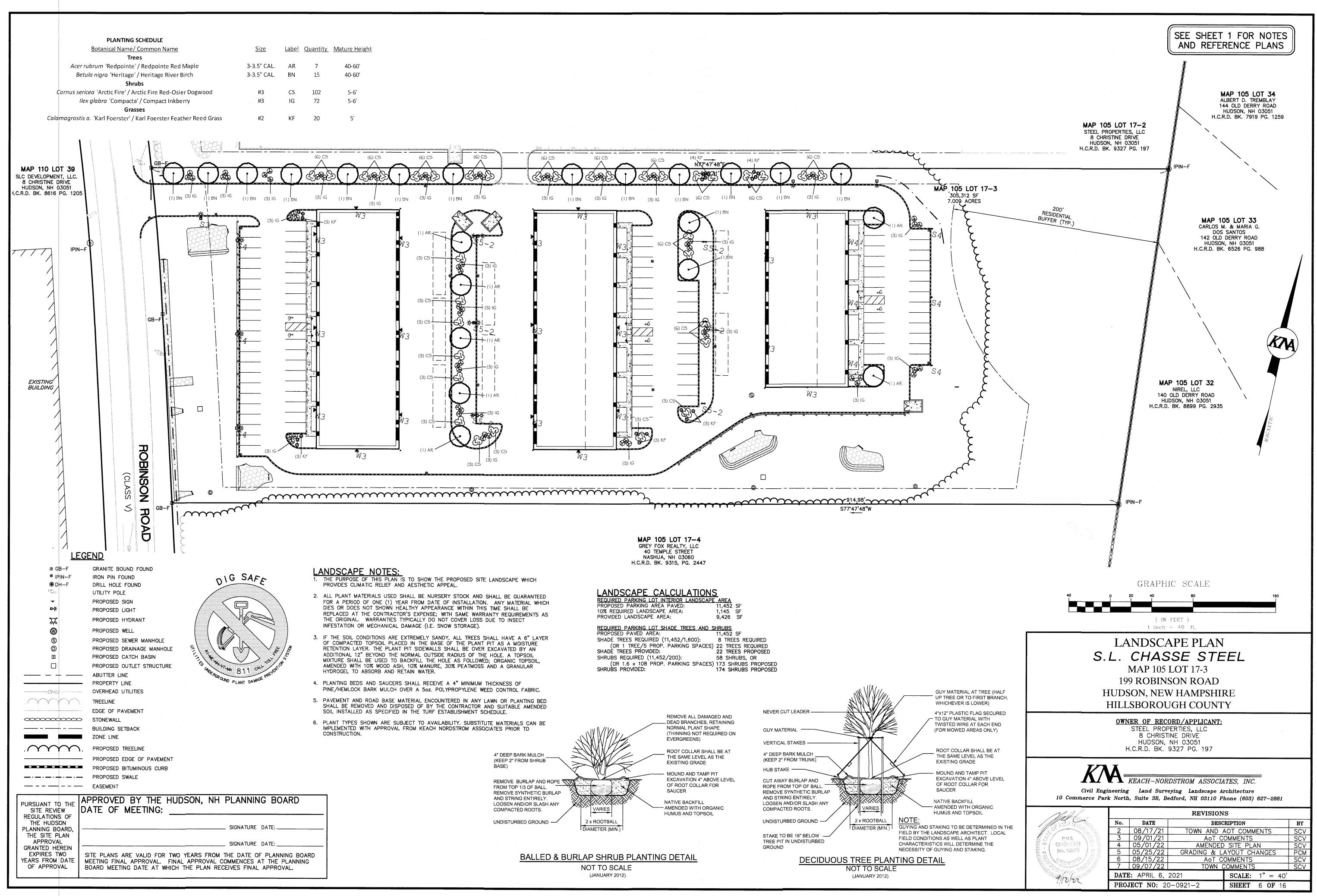

<u>CLE</u>	SHEET No.
PLAN	1
NDITIONS PLAN	2
NTIAL SITE LAYOUT PLAN	3
AINAGE & UTILITY PLAN	4
NTROL PLAN	5
PLAN	6
AN	7
NCE PLAN & PROFILE	8
N DETAILS	9 - 15
	16

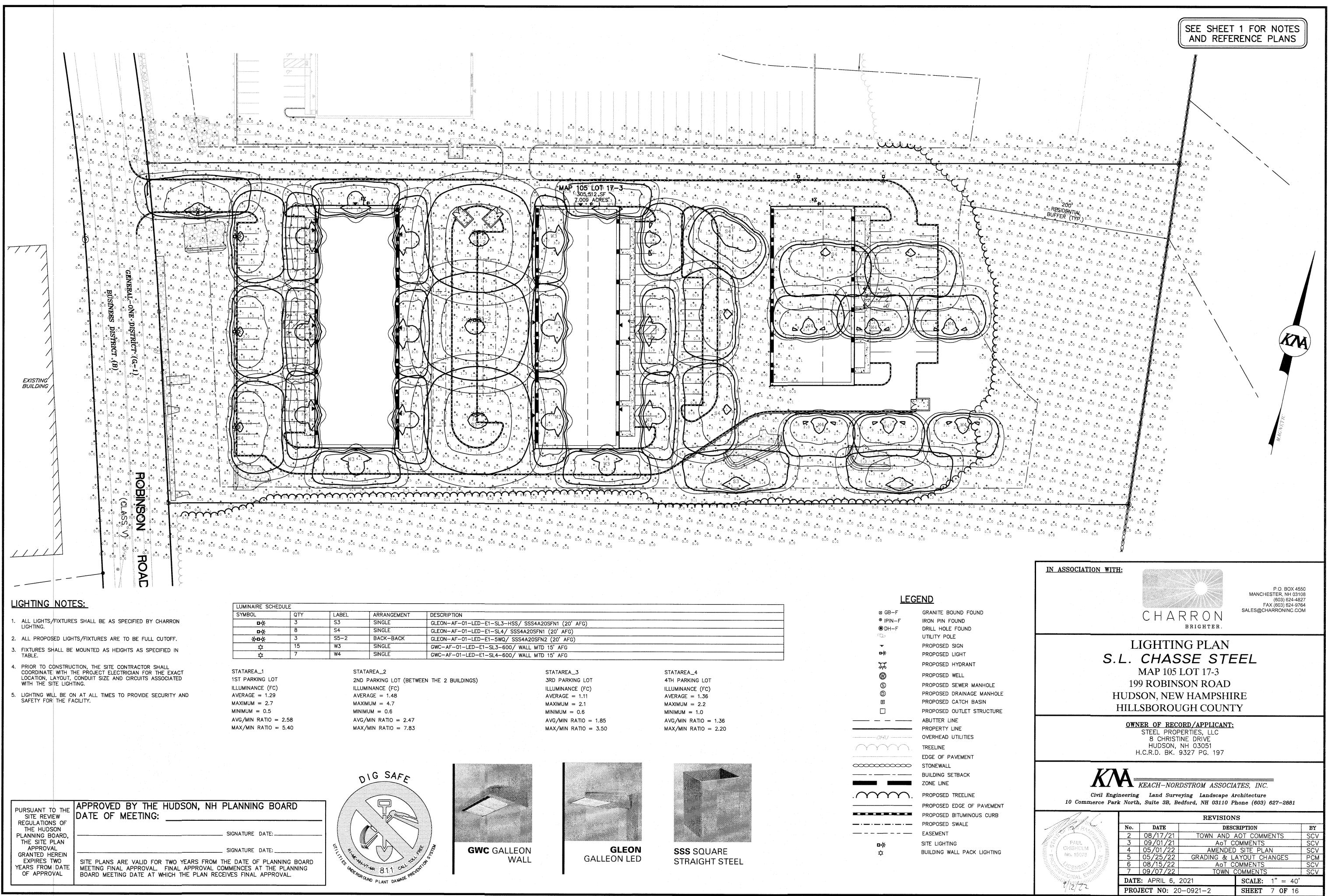

	LEC	GEND	MAP 105 LOT 34 / CARL ALBERT D. TREMBLAY 144 OLD DERRY ROAD / 142 HUDSON, NH 03051 / HU	P 105 LOT 33 OS M. & MARIA G. DOS SANTOS OLD DERRY ROAD DOSON, NH 03051 D. BK. 6526 PG. 988
	GB-TBS	GRANITE BOUND TO BE SET		586.51' N3'45'19'
	 IPIN-TBS DH-TBS 	IRON PIN TO BE SET DRILL HOLE TO BE SET	IPIN-F	
	പ പ	PROPOSED UTILITY POLE PROPOSED SIGN		
	₽¢	PROPOSED LIGHT		ER
	°⊳ N	PROPOSED GAS VALVE		BUFFER
	W N	PROPOSED WATER VALVE		00, AL
	×	PROPOSED HYDRANT PROPOSED CHAIN LINK FENCE		
	××	PROPOSED BARBED WIRE FENCE		Sodona 200, 2001 Pitvatad 200 Pond Residentia
	OHU UGU	PROPOSED OVERHEAD UTILITIES PROPOSED UNDERGROUND UTILITIES		
G	GG	PROPOSED GAS LINE		مرين ا
w s		PROPOSED WATER LINE PROPOSED SEWER LINE		
		PROPOSED DRAINAGE LINE	Γ	
. ~~	·····	PROPOSED TREELINE PROPOSED EDGE OF PAVEMENT		
		PROPOSED VERTICAL GRANITE CURB		Y A
		PROPOSED 2' CONTOUR PROPOSED RETAINING WALL		
		PROPOSED BITUMINOUS CURB		3 4
		ABUTTER LINE PROPERTY LINE		
	•••	WETLAND	· AAAAA	
		EDGE OF PAVEMENT 10' CONTOUR		× A
		2' CONTOUR		•
		BUILDING SETBACK	and the second	
		GREEN SPACE BUFFER EASEMENT	MAP 105 LO	T 17-2
		ZONE LINE	STEEL PROPERT 8 CHRISTINE	TES. LLC
	© IPIN ▣ SB	IRON PIN STONE BOUND	HUDSON, NH H.C.R.D. BK. 932	DRIVE 03051 7 PG. 197
	-725 V 9	UTILITY POLE		EZ 8
	WV WV	GAS VALVE		
	X X	WATER VALVE HYDRANT		
	***	WATER SHUT OFF	j j	
U.		SEWER MANHOLE TREELINE		
			no na	
			and the second	
			en salat en	
			and a start of the	
			and second and	
	and a second s		and a second	
				A second s
٢	IG SAFE			
			Will the manufacture	
		OUT SO		
NDE ROK	MA 811 CAN OUND PLANT DAMAGE	PREVI		
			(7
				20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			į	NH 86
				PSN: '
PURSUANT TO		OVED BY THE HUDSON, NH PL	and the second	
SITE REVIE REGULATIONS THE HUDSO	OF	OF MEETING:		BENCHMARK
PLANNING BO THE SITE PL	ARD,	S	GNATURE DATE:	BENCHMARK SBK 214.03
APPROVAI GRANTED HE	REIN	S		
EXPIRES TW YEARS FROM	VO SITE PI DATE MEETIN	LANS ARE VALID FOR TWO YEARS FROM THE G FINAL APPROVAL. FINAL APPROVAL COM	IENCES AT THE PLANNING	
OF APPROV	AL BOARD	MEETING DATE AT WHICH THE PLAN RECEIV	ES FINAL APPROVAL.	\ * ? \


	BO TWIN MEADOW
MONDAY THROUGH	DRIVE DRIVE
00 PM, MONDAY	
	HUDSON HUDSON
SAID ACTIVITIES SHALL DNLY. SAID	CH I NON
ERICANS WITH	E and C
"AS-BUILT" SITE TMENT CONFIRMING	KINGSTON @
SPECTOR AND ZONING	North LER LER
PROVAL: AOT-2021)	FULL OLD
ID: NHR1001DJ) 21100533) BE STORED IN THE	Real Provide American Street Provi
ON THE ABUTTING ALL BE HAULED	B B FARM
ANCE WITH ALL	LOCUS DI AN
REEMENT, WHICH	LOCUS PLAN REFERENCE PLANS: SCALE: 1" = 1,000'
NITH THE SITE ABLY REVIEWED BY	1. "SUBDIVISION PLAN, NOURY INVESTEMENTS, LLC, MAP 105 LOTS 16 & 17, ROBINSON ROAD & OLD DERRY ROAD, HUDSON, NEW HAMPSHIRE, DATED NOVEMBER 20, 2019, WITH REVISIONS THROUGH 05/13/20,
HALL BE COMPLETED	PREPARED BY KEACH-NORDSTROM ASSOCIATES, INC. (14 SHEETS) H.C.R.D. PLAN NUMBER: 40605
ONTROL MEASURES	NOTES: 1. THE PURPOSE OF THIS PLAN IS TO SHOW THREE PROPOSED INDUSTRIAL BUILDINGS TOTALING 50,400 SF
IN ON THIS SITE OVAL FROM THE	AND ASSOCIATED PARKING ON ROBINSON ROAD ON MAP 105 LOT 17-3 IN THE TOWN OF HUDSON, NEW HAMPSHIRE, AND NO OTHER PURPOSE.
ITH NHDES	 MAP 105 LOT 17-3 INDICATES TOWN OF HUDSON TAX ASSESSOR'S MAP AND LOT NUMBER. OWNER OF RECORD: STEEL PROPERTIES, LLC. 8 CHRISTINE DRIVE
SON TO SCHEDULE A	HUDSON, N.H. 03051 H.C.R.D. BK. 9327 PG. 197
R TO THE ISSUANCE MMUNITY D TO THE SAME	 AREA OF SUBJECT PARCEL = 305,312 SF, OR 7.009 ACRES BOUNDARY INFORMATION SHOWN HEREON IS BASED UPON AN ACTUAL FIELD SURVEY PERFORMED BY THIS OFFICE DURING DECEMBER 2009 AND AUGUST 2015.
UDE ALL STRUCTURAL MPED BY A LICENSED	 HORIZONTAL DATUM IS NAD83. VERTICAL DATUM IS NGVD29 FROM GPS SURVEY METHODS POST PROCESSED THROUGH NOAA-OPUS.
ATION "AS-BUILT" "AS-BUILT"	7. THE SUBJECT PARCEL IS LOCATED WITHIN THE GENERAL-ONE (G-1) ZONING DISTRICT. DIMENSIONAL REQUIREMENTS ARE AS FOLLOWS FOR LOTS SERVICED WITHOUT MUNICIPAL SEWER AND WATER: REQUIRED PROPOSED
	MINIMUM LOT AREA 87,120 SF 305,312 SF MINIMUM LOT FRONTAGE 200 FT 322.8 (ROBINSON),
CIENTIST JOSHUA	MINIMUM BUILDING SETBACKS: FRONT 50 FT 141.9 FT SIDE 15 FT 40.2 FT
NFORMATION. LATION. SHALL BE MET PER	REAR 15 FT 275.2 FT 8. PARCEL WILL BE SERVICED BY INDIVIDUAL SEPTIC AND TOWN WATER.
SUCH THAT AN AREA	9. THE LOCATION OF ANY UNDERGROUND UTILITY INFORMATION SHOWN ON THIS PLAN IS APPROXIMATE. KEACH-NORDSTROM ASSOCIATES, INC. MAKES NO CLAIM TO THE ACCURACY OR COMPLETENESS OF UTILITIES SHOWN. PRIOR TO ANY EXCAVATION ON SITE THE CONTRACTOR SHALL CONTACT DIG SAFE AT
ION SCHEDULE. A CPESC SPECIALIST.	811. 10. THE SUBJECT PREMISES IS NOT LOCATED WITHIN A DESIGNATED FLOOD ZONE AS SHOWN ON FEDERAL
BE NECESSARY.	EMERGENCY MANAGEMENT AGENCY (FEMA) FLOOD INSURANCE RATE MAP (FIRM) MAP NUMBER 33011C0508D, PANEL 508 OF 701, AND MAP NUMBER 33011C0509D, PANEL 509 OF 701, EFFECTIVE DATE SEPTEMBER 25, 2009. THE SUBJECT PARCEL IS LOCATED IN ZONES 'A' & 'X'.
	11. EASEMENTS, RIGHTS AND RESTRICTIONS SHOWN OR IDENTIFIED HEREON ARE THOSE FOUND DURING RESEARCH AT THE HILLSBOROUGH COUNTY REGISTRY OF DEEDS. OTHER EASEMENTS, RIGHTS, AND
	RESTRICTIONS MAY EXIST WHICH A TITLE EXAMINATION OF THE SUBJECT PREMISES MAY DETERMINE. 12. OPEN SPACE: REQUIRED = 40%, PROPOSED = 48% 13. PARKING CALCULATIONS:
	REQUIRED: INDUSTRIAL = 1 SPACE/600 SF
	BUILDING 1: 1 SPACE/600 SF X 17,480 SF = 29.13 SPACES BUILDING 2: 1 SPACE/600 SF X 17,480 SF = 29.13 SPACES
_	BUILDING 3: 1 SPACE/600 SF X 12,920 SF = 21.53 SPACES OFFICE = 1 SPACE/300 SF BUILDING 1: 1 SPACE/300 SF X 920 SF = 3.07 SPACES
	BUILDING 2: 1 SPACE/300 SF X 920 SF = 3.07 SPACES BUILDING 3: 1 SPACE/300 SF X 680 SF = 2.27 SPACES
	TOTAL BUILDING 1: 29.13 SPACES + 3.07 SPACES = 33 SPACES BUILDING 2: 29.13 SPACES + 3.07 SPACES = 33 SPACES
	BUILDING 3: 21.53 SPACES + 2.27 SPACES = 24 SPACES TOTAL COMBINED SPACES REQUIRED = 90 SPACES
	PROPOSED: BUILDING 1: 43 SPACES + 2 HANDICAP SPACES = 44 SPACES BUILDING 2: 32 SPACES + 2 HANDICAP SPACES = 31 SPACES
	BUILDING 3: 27 SPACES + 2 HANDICAP SPACES = 26 SPACES TOTAL PROPOSED = 44 SPACES + 31 SPACES + 26 SPACES = 99 TOTAL SPACES
	14. LOADING: REQUIRED: 1 SPACE/FIRST 5,000 SF + 1 SPACE/10,000 SF x 45,400 SF = 1 + 4.54 = 6 SPACES
	BUILDING 1: 1 + 1.34 = 3 LOADING SPACES BUILDING 2: 1 + 1.34 = 3 LOADING SPACES
	BUILDING 3: $1 + 0 = 1$ LOADING SPACE PROPOSED:
	BUILDING 1: 3 SPACES BUILDING 2: 3 SPACES
	BUILDING 3: 1 SPACE TOTAL PROPOSED: 7 SPACES
	MASTER SITE PLAN
	S.L. CHASSE STEEL
	MAP 105 LOT 17-3
	199 ROBINSON ROAD
	HUDSON, NEW HAMPSHIRE
	HILLSBOROUGH COUNTY
	OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC
	8 CHRISTINE DRIVE HUDSON, NH 03051
240	H.C.R.D. BK. 9327 PG. 197
	Ζλλ
	KEACH-NORDSTROM ASSOCIATES, INC.
	Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881
	REVISIONS
N WAS PREPARED BY SUPERVISION. FURTHER JAL FIELD SURVEY	No. DATE DESCRIPTION BY
DFFICE DURING 2015. SAID SURVEY	
TER THAN ONE PART II	No. 15076 5 05/25/22 GRADING & LAYOUT CHANGES PCM
DATE	DATE: APRIL 6, 2021 SCALE: $1" = 60'$ PROJECT NO: $20-0921-2$ SHEET 1 OF 16

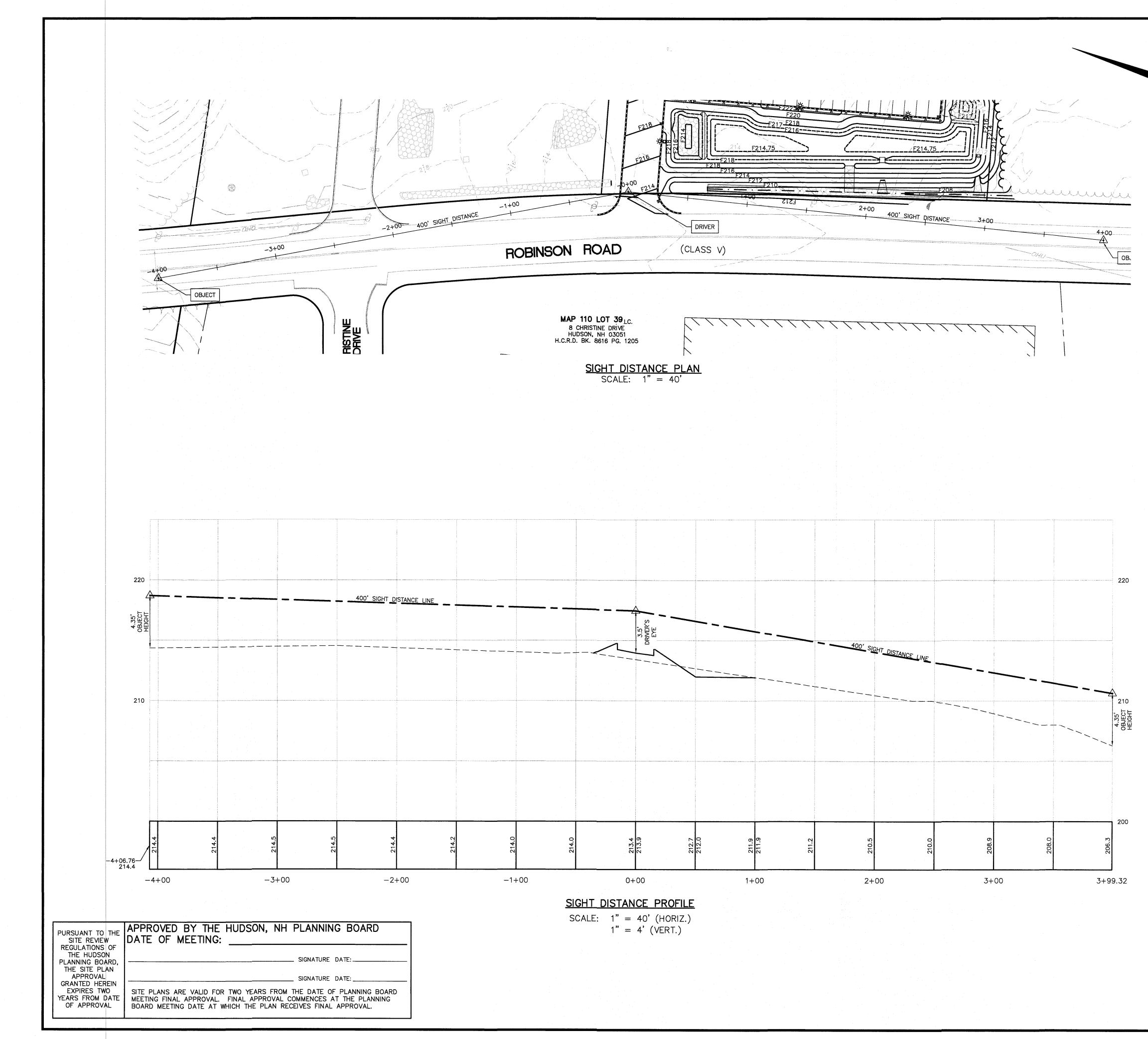



LEG	END					
B-F N-F	GRANITE BOUND FOUND IRON PIN FOUND					
HF	DRILL HOLE FOUND UTILITY POLE					
	PROPOSED SIGN PROPOSED LIGHT					
	PROPOSED HYDRANT					
	PROPOSED WELL PROPOSED SEWER MANHOLE					
	PROPOSED DRAINAGE MANHOLE PROPOSED CATCH BASIN					
<u> </u>	PROPOSED OUTLET STRUCTURE ABUTTER LINE					
/	PROPERTY LINE OVERHEAD UTILITIES					
	TREELINE EDGE OF PAVEMENT STONEWALL					
	BUILDING SETBACK ZONE LINE					
M.	PROPOSED TREELINE					NE
	PROPOSED EDGE OF PAVEMENT				THIS PROJECT DISTURE	
	PROPOSED BITUMINOUS CURB PROPOSED SWALE				BE REQUIRED TO OBTAIL (NPDES) PERMIT COVE	N NATIO RAGE A
	EASEMENT SITE LIGHTING				AGENCY (EPA). TH CONTRACTOR) SHALL E OF INTENT (NOI) TO T	HE OWNE EACH BE
	BUILDING WALL PACK LIGHTING				SHALL BE RESPONSIB STORM WATER PC REQUIREMENTS O	LE FOR DLLUTION




top have the last									
E BOUND FOUND	xx	PROPOSED CHAIN LINK FENCE	SYMBOL	MAP UN	IT		SLOPE CLASS	DRAINAGE CLASS	
IN FOUND		PROPOSED STOCKADE FENCE	42A	CANTON	SANDY LOAN	Λ	0-3%	WELL DRAINED	
IOLE FOUND		PROPOSED POST & RAIL FENCE	42B	CANTON	SANDY LOAN	A	3-8%	WELL DRAINED	
POLE		PROPOSED BARBED WIRE FENCE	42C	CANTON	SANDY LOAN	A	8-15%	WELL DRAINED	
SED SIGN		PROPOSED GUARDRAIL	42D	CANTON	SANDY LOAN	Λ	15-25%	WELL DRAINED	
SED LIGHT			62A	CHARLT	ON FINE SANI	DY LOAM	0-3%	WELL DRAINED	
SED HYDRANT	OHU	PROPOSED OVERHEAD UTILITIES PROPOSED UNDERGROUND UTILITIES	62B	CHARLT	ON FINE SANI	DY LOAM	3-8%	WELL DRAINED	
SED WELL	GG	PROPOSED GAS LINE	62C	CHARLT	ON FINE SANI	DY LOAM	8–15 %	WELL DRAINED	
SED SEWER MANHOLE		PROPOSED WATER LINE	62D	CHARLT	ON FINE SANI	DY LOAM	15-25%	WELL DRAINED	
SED DRAINAGE MANHOLE	SS	PROPOSED SEWER LINE	178B	CHARLT	ON-CHATFIELI	D COMPLEX (60-40)) 3–8%	WELL DRAINED	
SED CATCH BASIN		PROPOSED DRAINAGE LINE	178C	CHARLT	ON-CHATFIELI	D COMPLEX (60-40)	8—15%	WELL DRAINED	
SED OUTLET STRUCTURE			178D			COMPLEX (60-40)		WELL DRAINED	
R LINE	\cdots	PROPOSED TREELINE	178E			D COMPLEX (60-40)		WELL DRAINED	
RTY LINE		PROPOSED EDGE OF PAVEMENT	444A		DS FINE SAN		0-3%	MODERATELY WELL	
ID		PROPOSED VERTICAL GRANITE CURB	444B 444C		DS FINE SANI DS FINE SANI		3-8% 8-15%	MODERATELY WELL	
RAIL		PROPOSED SLOPED GRANITE CURB	444C 444D		DS FINE SAN		15-25%	MODERATELY WELL MODERATELY WELL	
AD UTILITIES		PROPOSED BITUMINOUS CURB						COOPERATIVE SOILS	
		PROPOSED 2' CONTOUR	A SPECIAL PUR	RPOSE PRODU	CT, PRODUCE	D BY A CERTIFIED S	SOIL SCIENTIST, A	AND IS NOT A PRODUC	CT
GE LINE		PROPOSED SWALE	MAP AND MAP		CONSERVATION	N SERVICE. THERE	IS A NARRAIIVE	REPORT THAT ACCOM	۸P
Е <u>-</u>	<u> </u>	PROPOSED RETAINING WALL							
F PAVEMENT		PROPOSED STONEWALL			~ ~ ~				
/ALL		EASEMENT			<u>SC</u>	<u>s soil maf</u>	<u>, UNIT KF</u>	<u>Y</u>	
G SETBACK	₽¢	SITE LIGHTING		Γ	SYMBOL	MAP UNIT	SLOPE	CLASS	
INE	\$	BUILDING WALL PACK LIGHTING			СрВ	CHATFIELD-HOLLIS			
ITOUR	TP 1	TEST PIT			<u>срь</u>				
TOUR	\bullet				CpC	CHATFIELD-HOLLIS	-CANTON 8-	15%	
					HsB	HINCLKEY LOAMY	SAND 3-	8%	
ED ALL DISTURBE	D AREAS (T)	(P)			PiA	PIPESTONE LOAMY	SAND 0-	3%	

[111117]	STABILIZED CONSTRUCTION EXIT
MAP 110 SLC DEVELO 8 CHRISTI HUDSON, H.C.R.D. BK. 8	PMENT, LLC. NE DRIVE NH 03051
EXIST. BUILD	ING CHECK DAMS (ITP.)
	IPIN-F IPIN-F
1.THE PURF MEASURES2.ALL MEAS VOLUME 3 CONSTRUC3.WHENEVEF STRIPPING4.APPROPRI5.THE AREA 30 DAYS6.MEASURES SHALL BE AND SURF7.OFFSITE S AREAS W DRAINAGE8.ALL TEMP UNTIL FIN9.ALL TEMP	OSE OF THIS PLAN IS TO DEPICT THE REQUIRED ONSITE TEMPORARY CONSTRUCTION EROSION CONTROL S AS WELL AS THE PERMANENT EROSION CONTROL MEASURES. URES IN THE PLAN SHALL MEET AS A MINIMUM THE BEST MANAGEMENT PRACTICES SET FORTH IN 5 OF THE NEW HAMPSHIRE STORMWATER MANUEL TITLED "EROSION AND SEDIMENT CONTROLS DURING CTION," DATED DECEMBER 2010, AS AMENDED FROM TIME TO TIME. 8 PRACTICAL, NATURAL VEGETATION SHALL BE RETAINED, PROTECTED OR SUPPLEMENTED. THE 5 OF VEGETATION SHALL BE ADONE IN A MANNER THAT MINIMIZES SOIL EROSION. ATE EROSION AND SEDIMENT CONTROL MEASURES SHALL BE INSTALLED PRIOR TO LAND DISTURBANCE. 5 OF VEGETATION SHALL BE KEPT TO A MINIMUM. DISTURBED AREAS REMAINING IDLE FOR MORE THAN SHALL BE KEPT TO A MINIMUM. DISTURBED AREAS REMAINING IDLE FOR MORE THAN SHALL BE TAKEN TO CONTROL EROSION WITHIN THE PROJECT AREA. SEDIMENT IN RUNOFF WATER TRAPPED AND RETAINED WITHIN THE PROJECT AREA USING APPROVED MEASURES. WETLAND AREAS ACE WATERS SHALL BE PROTECTED FROM SEDIMENT. URFACE WATERS SHALL BE PROTECTED FROM SEDIMENT. URFACE WATER AND RUNOFF FROM UNDISTURBED AREAS SHALL BE DIVERTED AWAY FROM DISTURBED HERE FEASIBLE OR CARRIED NON-EROSIVELY THROUGH THE PROJECT AREA. INTEGRITY OF DOWNSTREAM SYSTEMS SHALL BE MAINTAINED. ORARY EROSION AND SEDIMENT CONTROL MEASURES SHALL BE MAINTAINED IN FUNCTIONING CONDITION AL SITE STABILIZATION IS ACCOMPLISHED.
TEMPORAF OTHERWIS 10. THE TOWN CONSTRUC 11. INFILTRAT 12. SLOPES C 17. ALL MANU ACCORDAT DIVERSION SHALL NC OR MESH	RY MEASURES SHALL BE PERMANENTLY STABILIZED WITHIN 30 DAYS UNLESS CONDITIONS DICTATE I OF HUDSON SHALL RESERVE THE RIGHT TO REQUIRE FURTHER EROSION CONTROL PRACTICES DURING CTION SHOULD THEY FIND IT NECESSARY. ON AREAS ARE TO BE PROTECTED FROM OVER-COMPACTION DURING CONSTRUCTION. VER 2:1 TO BE DESIGNED BY A GEOTECHNICAL ENGINEER PRIOR TO CONSTRUCTION. IFACTURED EROSION AND SEDIMENT CONTROL PRODUCTS, EXCEPT FOR SILT FENCE INSTALLED IN NCE WITH ENV-WQ 1506.04, UTILIZED FOR, BUT NOT LIMITED TO, SLOPE PROTECTION, RUNOFF , SLOPE INTERRUPTION, PERIMETER CONTROL, INLET PROTECTION, CHECK DAMS, AND SEDIMENT TRAPS T CONTAIN WELDED PLASTIC, PLASTIC, OR MULTI-FILAMENT OR MONOFILAMENT POLYPROPYLENE NETTING WITH AN OPENING SIZE OF GREATER THAN J". IFORCEMENT MATS SHALL BE COVERED WITH SOIL TO PREVENT EXPOSURE OF THE MATS TO THE
PURSUANT TO SITE REVIE REGULATIONS THE HUDSO PLANNING BO THE SITE PI APPROVA GRANTED HE EXPIRES TO YEARS FROM OF APPROV	W DATE OF MEETING:

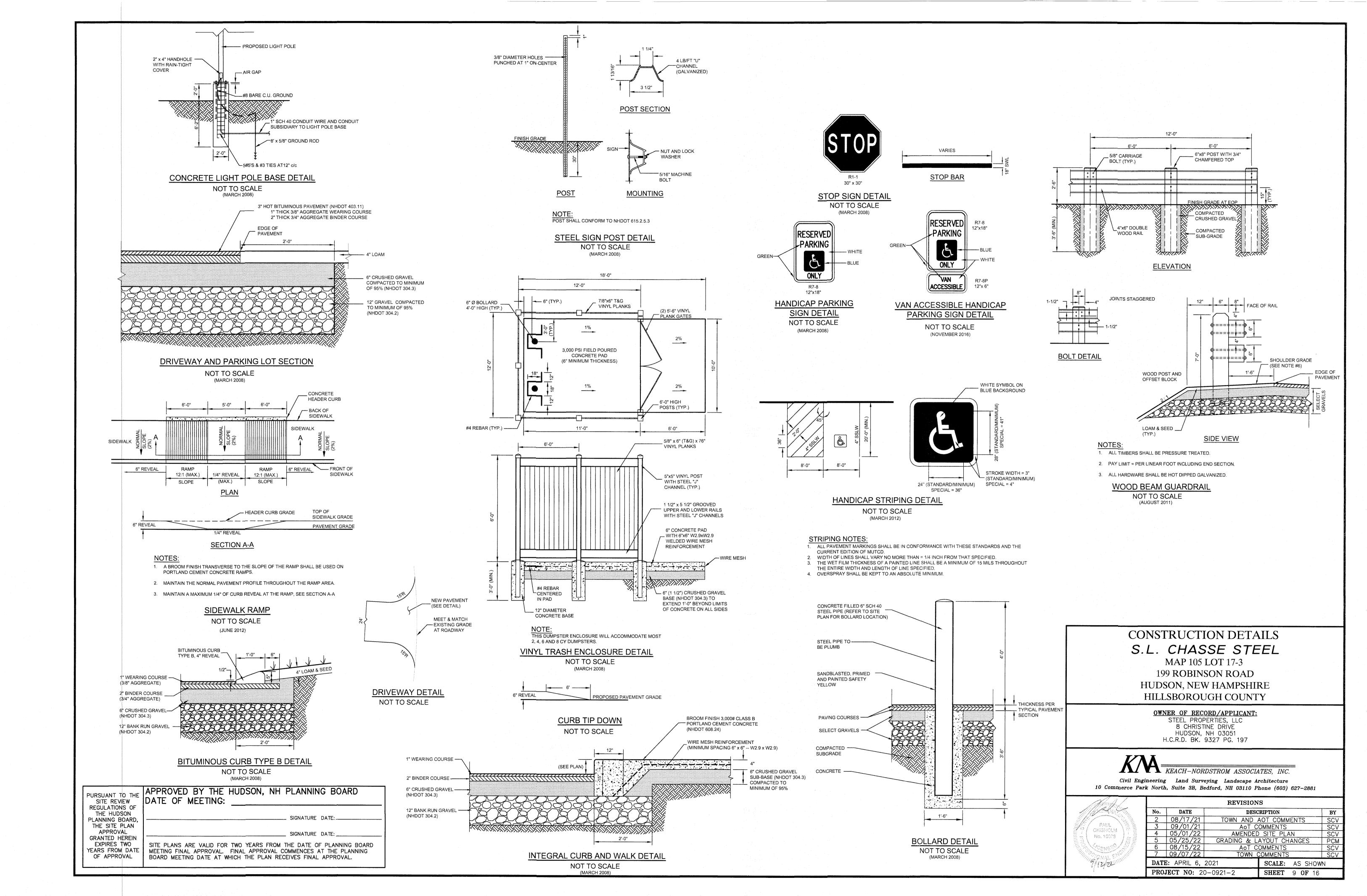


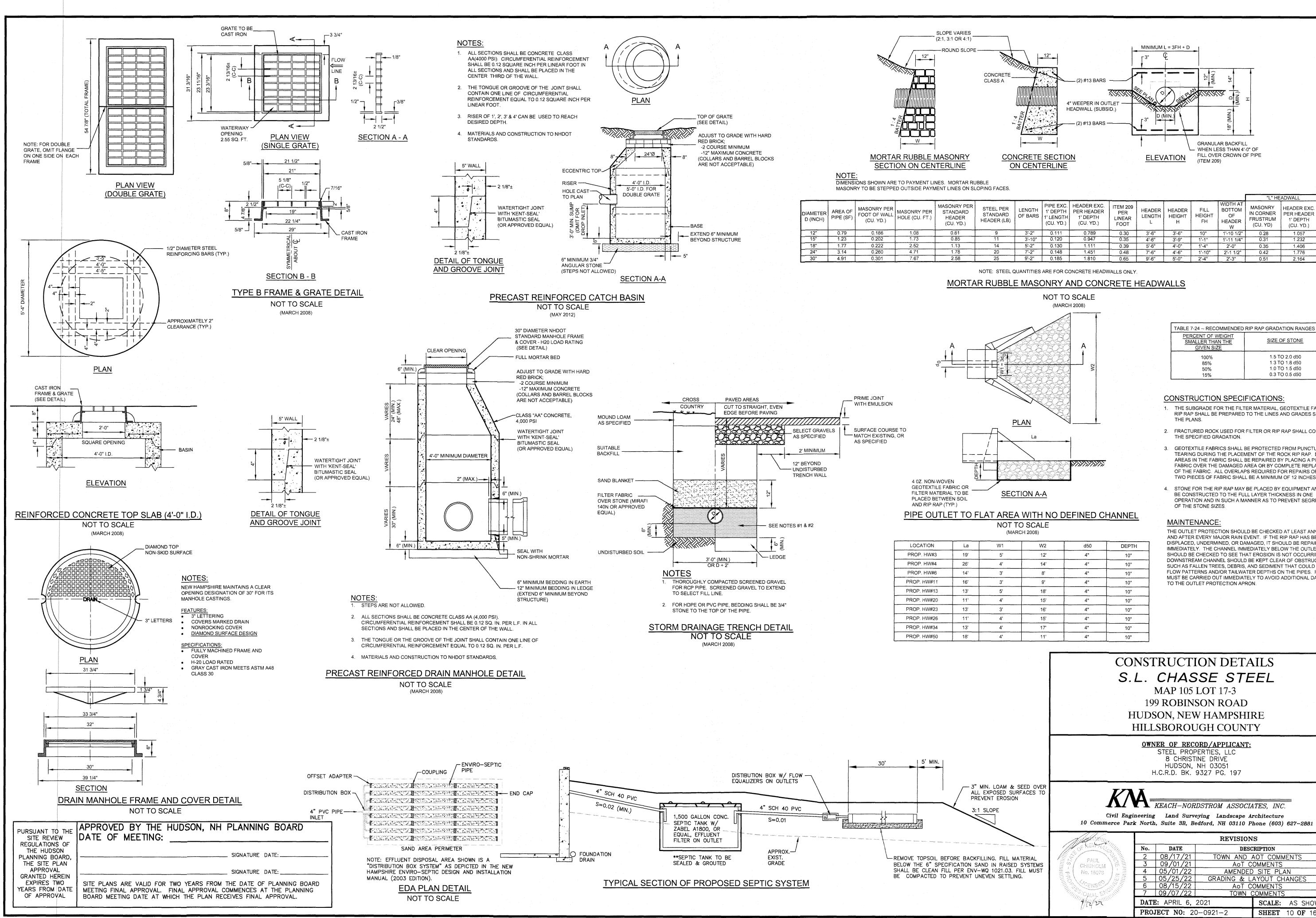


PTION			▣ GB∽
-AF-01-LED-E1-SL3-HSS/ SSS4A20SF	N1 (20' AFG)		© IPIN
-AF-01-LED-E1-SL4/ SSS4A20SFN1 (2			◉ DH-
-AF-01-LED-E1-5WQ/ SSS4A20SFN2 (· · · · · · · · · · · · · · · · · · ·		Sec. 1
F-01-LED-E1-SL3-600/ WALL MTD 15			.
F-01-LED-E1-SL4-600/ WALL MTD 15			₽¢÷
BUILDINGS) 3RI ILL AV MA MIN AV	ATAREA_3 D PARKING LOT UMINANCE (FC) ERAGE = 1.11 XIMUM = 2.1 IIMUM = 0.6 G/MIN RATIO = 1.85 X/MIN RATIO = 3.50	STATAREA_4 4TH PARKING LOT ILLUMINANCE (FC) AVERAGE = 1.36 MAXIMUM = 2.2 MINIMUM = 1.0 AVG/MIN RATIO = 1.36 MAX/MIN RATIO = 2.20	
			· · · · · · · · · · · · · · · · · · ·
	GLEON	SSS SQUARE	中 徐

<u>LEGEND</u>

GRAPHIC SCALE


(IN FEET) 1 inch = 40 ft.


SIGHT DISTANCE PLAN & PROFILE S.L. CHASSE STEEL MAP 105 LOT 17-3 199 ROBINSON ROAD HUDSON, NEW HAMPSHIRE HILLSBOROUGH COUNTY

OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197

KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881

North States	REVISIONS							
OF CEW SAL	No.	DATE	CRIPTION	BY				
E & Contraction	2	08/17/21	TOWN AND	AOT COMMENTS	SCV			
SS/ PAUL NE	3	09/01/21	AoT C	OMMENTS	SCV			
CHISHOLM RA	4) SITE PLAN	SCV					
EAL	5	05/25/22	GRADING & L	AYOUT CHANGES	PCM			
EN ROSNER/SE	6	08/15/22	AoT C	OMMENTS	SCV			
14 Storage ASS	7	09/07/22	TOWN (COMMENTS	SCV			
2/12/22	DATE	SCALE: $1" = 40'$						
	PRO	ECT NO: 20	0-0921-2	SHEET 8 OF 16				

				. · · ·					"L" HE	ADWALL
EEL PER ANDARD DER (LB)	LENGTH OF BARS	PIPE EXC. 1' DEPTH 1' LENGTH (CU. YD.)	HEADER EXC. PER HEADER 1' DEPTH (CU. YD.)	ITEM 209 PER LINEAR FOOT	HEADER LENGTH L	HEADER HEIGHT H	FILL HEIGHT FH	WIDTH AT BOTTOM OF HEADER W	MASONRY IN CORNER FRUSTRUM (CU. YD)	HEADER EXC. PER HEADER 1' DEPTH (CU. YD.)
9	3'-2"	0.111	0.789	0.30	3'-6"	3'-6"	10"	1'-10 1/2"	0.28	1.057
11	3'-10"	0.120	0.947	0.35	4'-6"	3'-9"	1'-1"	1'-11 1/4"	0.31	1.232
14	5'-2"	0.130	1.111	0.39	5'-6"	4'-0"	1'-4"	2'-0"	0.35	1.406
20	7'-2"	0.148	1.451	0.48	7'-6"	4'-6"	1'-10"	2'-1 1/2"	0.42	1.776
25	9'-2"	0.185	1.810	0.65	9'-6"	5'-0"	2'-4"	2'-3"	0.51	2.164

W1	W2	d50	DEPTH
5'	12'	4"	10"
4'	14'	4"	10"
3'	8'	4"	10"
3'	9'	4"	10"
5'	18'	4"	10"
4'	15'	4 ¹¹	10"
3'	16'	4"	10"
4'	15'	4"	10"
4'	17'	4"	10"
4'	11'	4"	10"

1. THE SUBGRADE FOR THE FILTER MATERIAL, GEOTEXTILE FABRIC AND RIP RAP SHALL BE PREPARED TO THE LINES AND GRADES SHOWN ON

SIZE OF STONE

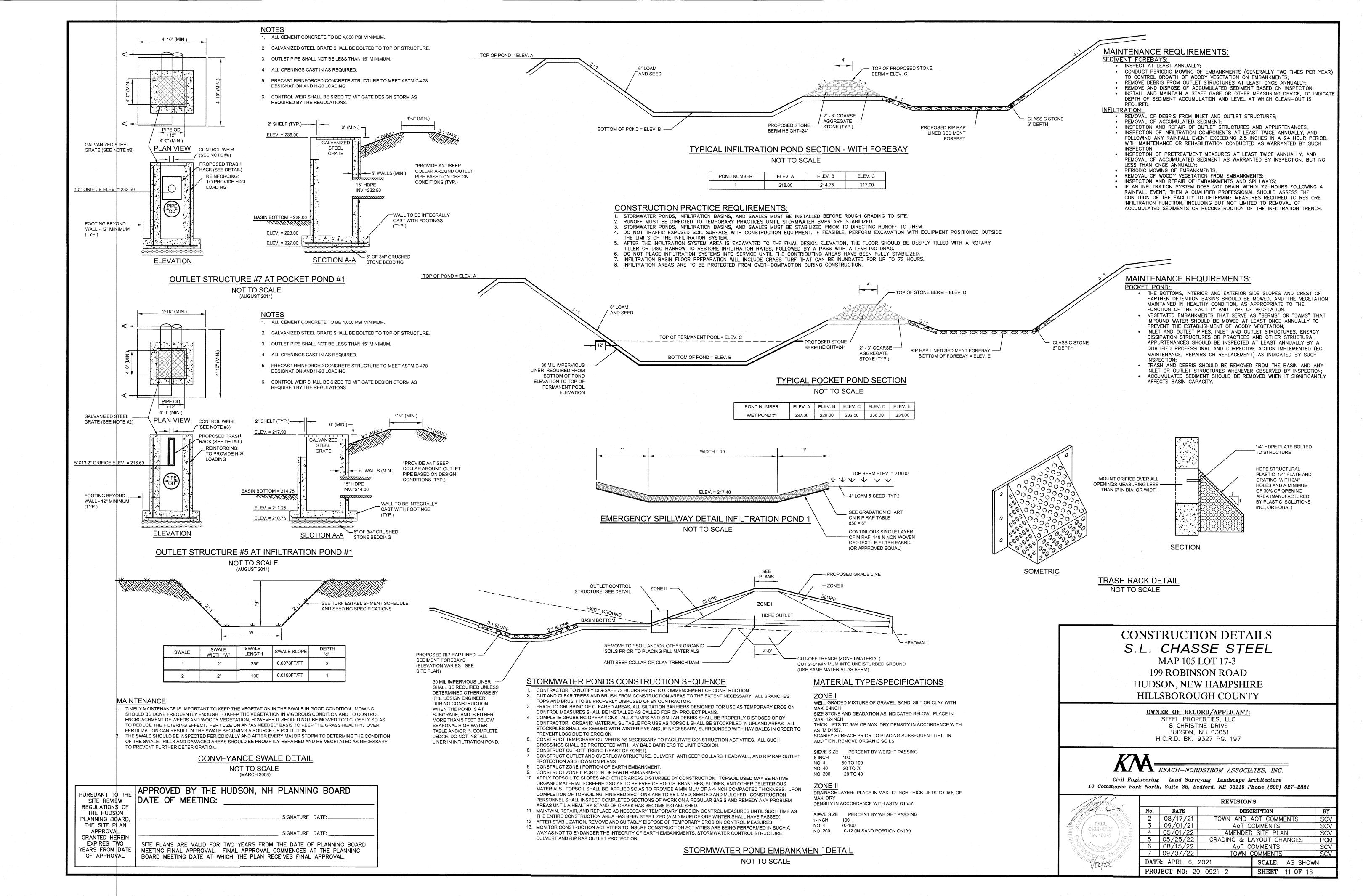
1.5 TO 2.0 d50

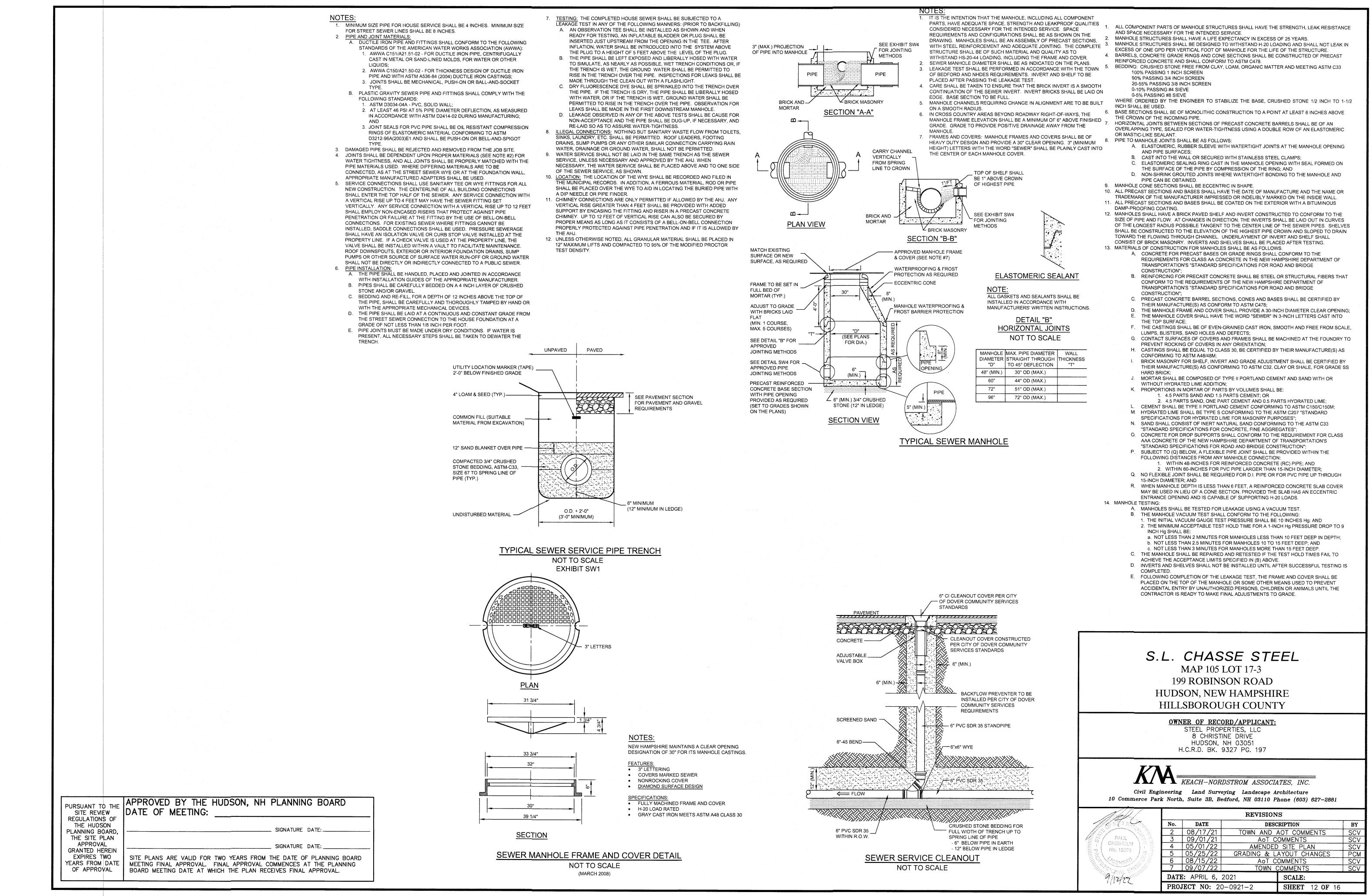
1.3 TO 1.8 d50

1.0 TO 1.5 d50

0.3 TO 0.5 d50

- 2. FRACTURED ROCK USED FOR FILTER OR RIP RAP SHALL CONFORM TO
- 3. GEOTEXTILE FABRICS SHALL BE PROTECTED FROM PUNCTURE OR TEARING DURING THE PLACEMENT OF THE ROCK RIP RAP. DAMAGED AREAS IN THE FABRIC SHALL BE REPAIRED BY PLACING A PIECE OF FABRIC OVER THE DAMAGED AREA OR BY COMPLETE REPLACEMENT OF THE FABRIC. ALL OVERLAPS REQUIRED FOR REPAIRS OR JOINING TWO PIECES OF FABRIC SHALL BE A MINIMUM OF 12 INCHES.
- 4. STONE FOR THE RIP RAP MAY BE PLACED BY EQUIPMENT AND SHALL BE CONSTRUCTED TO THE FULL LAYER THICKNESS IN ONE OPERATION AND IN SUCH A MANNER AS TO PREVENT SEGREGATION

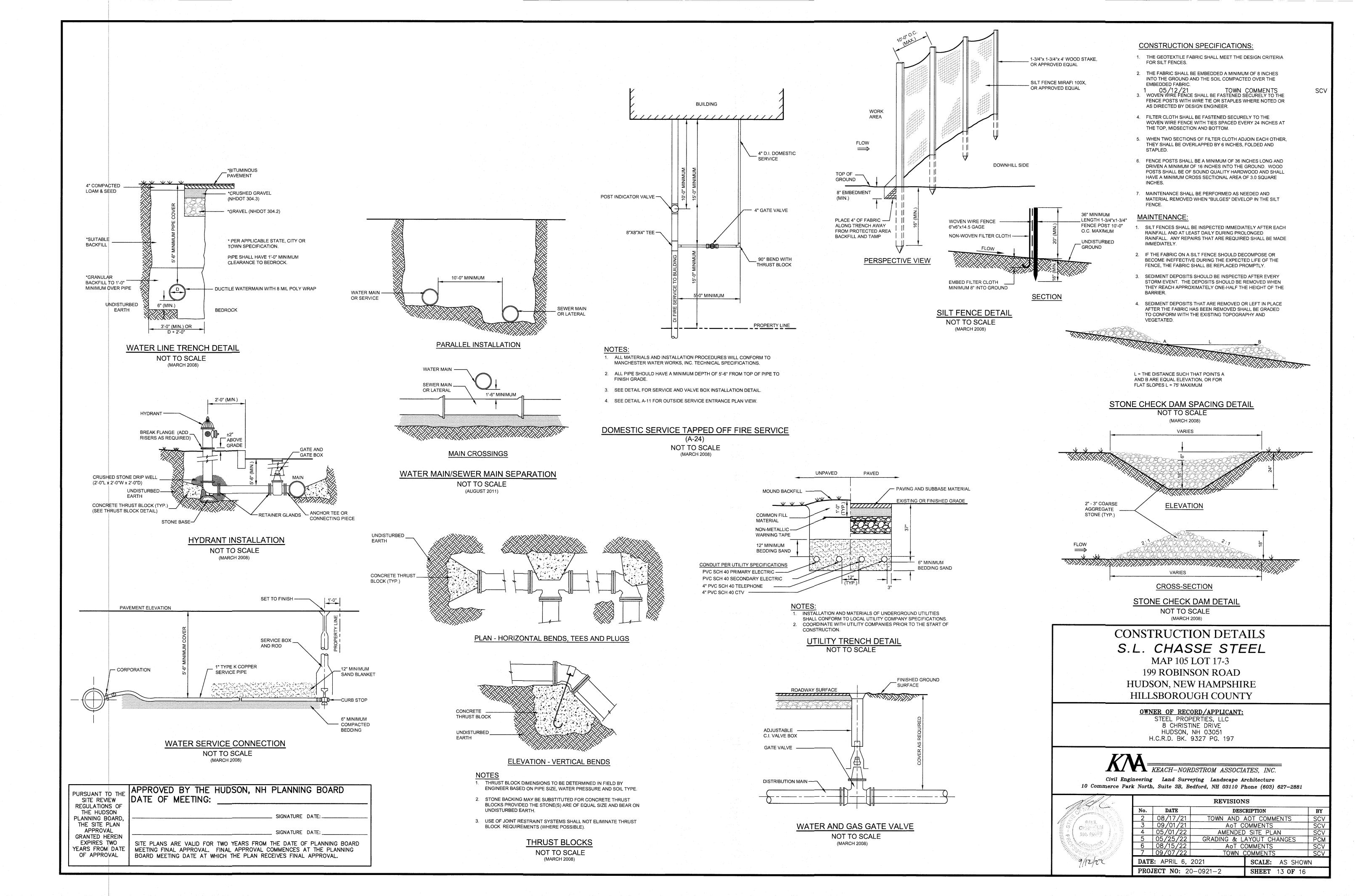

THE OUTLET PROTECTION SHOULD BE CHECKED AT LEAST ANNUALLY AND AFTER EVERY MAJOR RAIN EVENT. IF THE RIP RAP HAS BEEN DISPLACED, UNDERMINED, OR DAMAGED, IT SHOULD BE REPAIRED IMMEDIATELY. THE CHANNEL IMMEDIATELY BELOW THE OUTLET SHOULD BE CHECKED TO SEE THAT EROSION IS NOT OCCURRING. TH DOWNSTREAM CHANNEL SHOULD BE KEPT CLEAR OF OBSTRUCTIONS SUCH AS FALLEN TREES, DEBRIS, AND SEDIMENT THAT COULD CHANGE FLOW PATTERNS AND/OR TAILWATER DEPTHS ON THE PIPES. REPAIRS MUST BE CARRIED OUT IMMEDIATELY TO AVOID ADDITIONAL DAMAGE


CONSTRUCTION DETAILS	
S.L. CHASSE STEEL	
MAP 105 LOT 17-3	
199 ROBINSON ROAD	
HUDSON, NEW HAMPSHIRE	
HILLSBOROUGH COUNTY	
OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, NH 03051	

KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881

- Iller.	REVISIONS									
	No.	DATE	DESC	CRIPTION	Τ					
	2	08/17/21	TOWN AND	AOT COMMENTS	1					
M 1 177	3	09/01/21	ΑοΤ Ο	OMMENTS	1					
	4	05/01/22	AMENDED) SITE PLAN	T					
148	5	05/25/22	GRADING & L	AYOUT CHANGES						
LES -	6	08/15/22	ΑοΤ Ο	OMMENTS						
States	7	09/07/22	TOWN (COMMENTS						
Curr.	DAT	E: APRIL 6,	SCALE: AS SHOW	٧N						
	PRO	JECT NO: 2	0-0921-2	SHEET 10 OF 16						

BY SCV SCV SCV PCM SCV SCV



SITE	PLANS	ARF	VALID	FOR	TWO	YEARS	FROM	THE	DATE	OF P	LANNING	BOARD
											THE PLAI	
BOA	RD MEE	TING	DATE	AT WH	ICH	THE PL	AN RE	CEIVE	S FIN	AL AP	PROVAL.	

	WALL THICKNESS "T"
45° DEFLECTION	
30" OD (MAX.)	
44" OD (MAX.)	
51" OD (MAX.)	
72" OD (MAX.)	

TURF ESTABLISHMENT SCHEDULE

PURPOSE

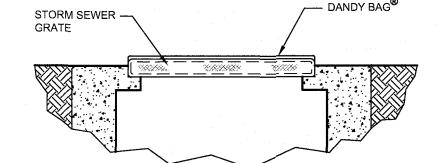
TO ESTABLISH AND MAINTAIN PERMANENT AND TEMPORARY TURF AREAS, RESTORE GROWTH TO EXISTING TURF AREAS DISTURBED DURING CONSTRUCTION AND CONTROL SOIL EROSION. PREPARATION AND EXECUTION:

RAKE THE SUBGRADE OF ALL AREAS TO BE LOAMED AND SEEDED TO REMOVE RUBBISH, STICKS, ROOTS AND STONES LARGER THAN 1 INCH.

- 2. PLACE LOAM OVER AREAS TO BE SEEDED AND SPREAD.
- 3. FINE GRADE SURFACE AND SUPPLEMENT WITH SUITABLE LOAM WHERE NEEDED TO CREATE A UNIFORM SURFACE ACCORDING TO THE FINISH GRADES INDICATED; TOP AND BOTTOM OF SLOPES SHALL BE ROUNDED. NO LOAM SHALL BE \$PREAD IF THE SUBGRADE IS EXCESSIVELY WET OR FROZEN.
- APPLY LIME EVENLY OVER LOAM SURFACE AND THOROUGHLY INCORPORATE LIME INTO THE LOAM BY HEAVY RAKING TO AT LEAST ONE-HALF THE DEPTH OF THE LOAM.
- 5. APPLY NO PHOSPHATE, SLOW RELEASE FERTILIZER AND MIX WITH THE UPPER 2 INCHES OF LOAM.
- 6. DETERMINE APPROPRIATE MIXTURE FOR AREA TO BE SEEDED BASED ON EXAMINATION OF PROJECT PLANS. UNIFORMLY SPREAD THE SEED BY BROADCASTING OR HYDROSEEDING. IF BROADCASTING, LIGHTLY RAKE INTO THE PREPARED SURFACE AND ROLL. IF, HYDROSEEDING, USE 4 TIMES THE RECOMMENDED RATE OF INOCULANT. AFTER SEED IS SPREAD, WATER THOROUGHLY WITH A FINE SPRAY
- SEEDING FOR PERMANENT COVER SHALL OCCUR BETWEEN SEPTEMBER 15 AND OCTOBER 15 AND BETWEEN APRIL 15 AND JUNE 15. SEEDING SHALL NOT BE DONE DURING WINDY WEATHER, WHEN THE GROUND IS FROZEN OR EXCESSIVELY WET OR OTHERWISE UNTILLABLE.
- 8. WITHIN 24 HOURS AFTER SEEDING OPERATION, UNIFORMLY MULCH THE AREA WITH STRAW. ANCHOR MULCH ON ALL SLOPES EXCEEDING 3 : 1 USING MULCH NETTING INSTALLED IN ACCORDANCE WITH THE MANUFACTURER.
- 9. PROTECT AND PREVENT AGAINST WASHOUTS, ANY WASHOUTS WHICH OCCUR SHALL BE PROMPTLY REGRADED AND RESEEDED.
- 10. WHEN IT IS IMPRACTICAL TO ESTABLISH PERMANENT GROWTH ON DISTURBED EARTH BY OCTOBER 15, A TEMPORARY SEED MIXTURE SHALL BE USED. WHEN TEMPORARY SEEDING CANNOT ESTABLISH VISIBLE GROWTH, THE DISTURBED AREA SHALL BE COVERED WITH SIX INCHES OF MULCH FOR THE WINTER. MAINTENANCE

ALL SEEDED AREAS SHALL BE KEPT WATERED AND IN GOOD CONDITION. RESEED AS NECESSARY TO ESTABLISH HEALTHY UNIFORM GROWTH OVER THE ENTIRE SEEDED AREA. MAINTAIN SEEDED AREAS IN AN APPROVED CONDITION UNTIL FINAL ACCEPTANCE. MAINTENANCE SHALL INCLUDE REPAIRS FOR DAMAGE CAUSED BY EROSION. APPLICATION RATES:

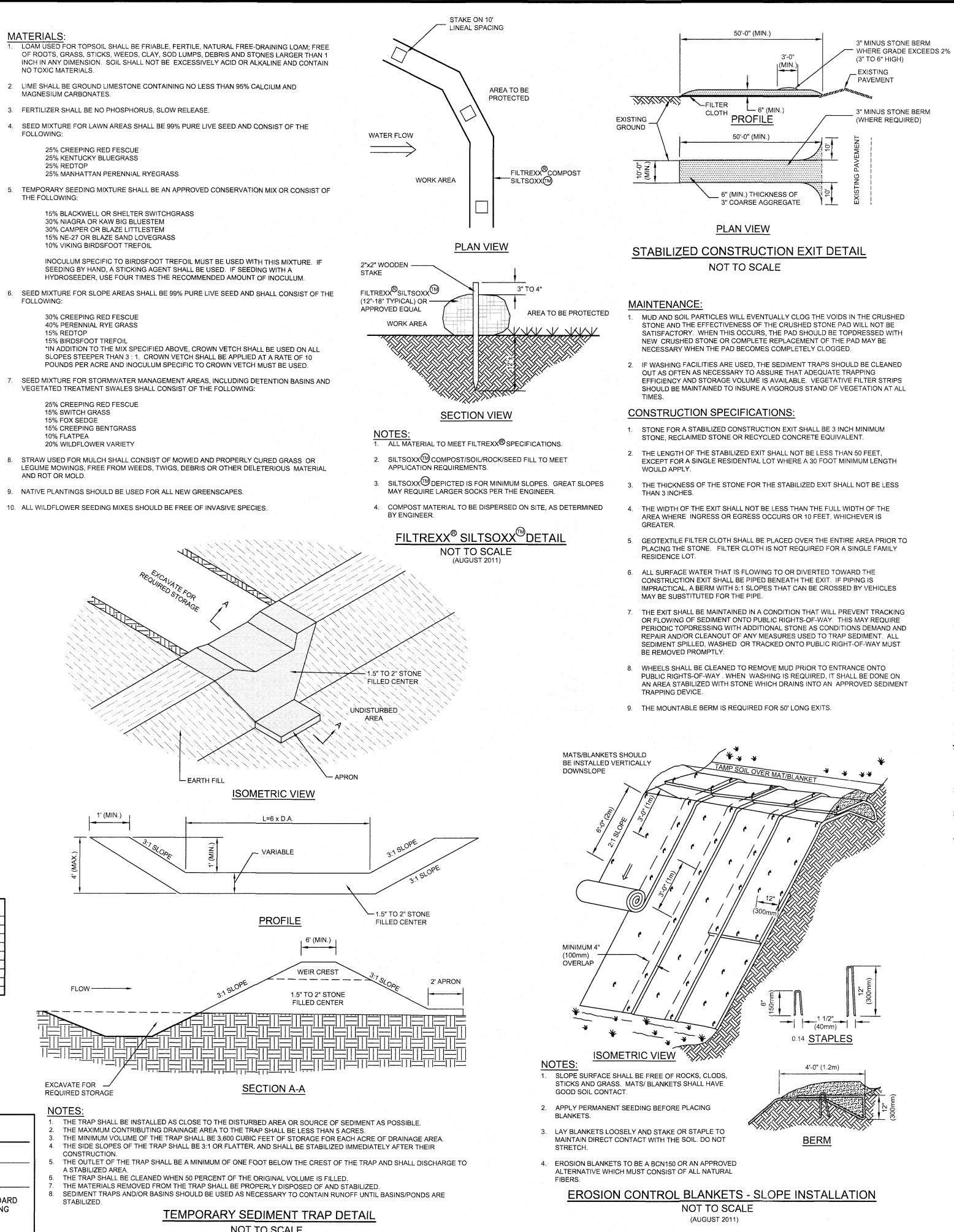

- LOAM SHALL BE APPLIED AT A MINIMUM COMPACTED THICKNESS OF 4 INCHES.
- 2. LIME SHALL BE APPLIED AT A RATE OF 75 TO 100 POUNDS PER 1,000 S.F.
- 3. FERTILIZER SHALL BE APPLIED AT A RATE OF 30 POUNDS PER 1 000 S.F. IT IS RECOMMENDED THAT THE SOIL BE TESTED PRIOR TO APPLYING ANY FERTILIZERS TO DETERMINE WHAT LEVELS AND RATES ARE NECESSARY.
- 4. SEED MIXTURE FOR LAWN AREAS SHALL BE APPLIED AT A RATE OF AT LEAST 80 POUNDS PER ACRE OR 2 POUNDS PER 1,000 S.F.
- 5. TEMPORARY SEED MIXTURE SHALL BE APPLIED AT A RATE OF 2 POUNDS PER 1,000 S.F.
- 6. SEED MIXTURE FOR SLOPE AREAS SHALL BE APPLIED AT A RATE OF 80 POUNDS PER ACRE OR 2 POUNDS PER 1,000 SEED MIXTURE FOR STORMWATER MANAGEMENT AREAS SHALL BE APPLIED AT A RATE OF 70 POUNDS PER ACRE
- OR 1.6 POUNDS PER 1.000 S.F.
- 8. MULCH SHALL BE APPLIED AT A RATE OF 90 POUNDS PER 1,000 S.F.


MATERIALS

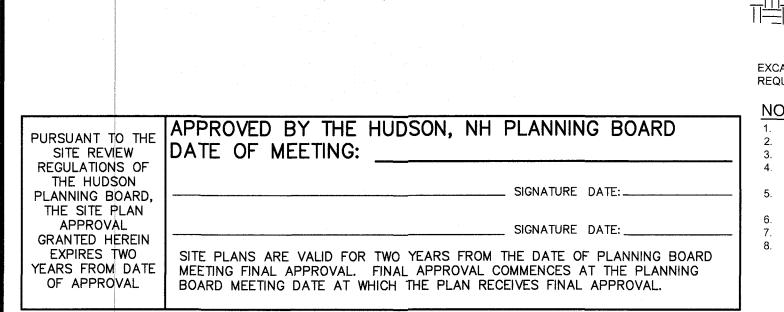
- NO TOXIC MATERIALS.
- 3. FERTILIZER SHALL BE NO PHOSPHORUS, SLOW RELEASE.

THE FOLLOWING:

- AND ROT OR MOLD.


HI-FLOW DANDY BAG[®] (SAFETY ORANGE)

MECHANICAL PROPERTIES	TEST METHOD	UNITS	MARV
GRAB TENSILE STRENGTH	ASTM D 4632	kN (lbs)	1.62 (365) x 0.89 (200)
GRAB TENSILE ELONGATION	ASTM D 4632	%	24 x 10
PUNCTURE STRENGTH	ASTM D 4833	kN (lbs)	0.40 (90)
MULLEN BURST STRENGTH	ASTM D 3786	kPa (psi)	3097 (450)
TRAPEZOID TEAR STRENGTH	ASTM D 4533	kN (lbs)	0.51 (115) x 0.33 (75)
UV RESISTANCE	ASTM D 4355	%	90
APPARENT OPENING SIZE	ASTM D 4751	Mm (US Std Sieve)	0.425 (40)
FLOW RATE	ASTM D 4491	1/min/m ² (gal/min/ft ²)	5907 (145)
PERMITTIVITY	ASTM D 4491	Sec ⁻¹	2.1

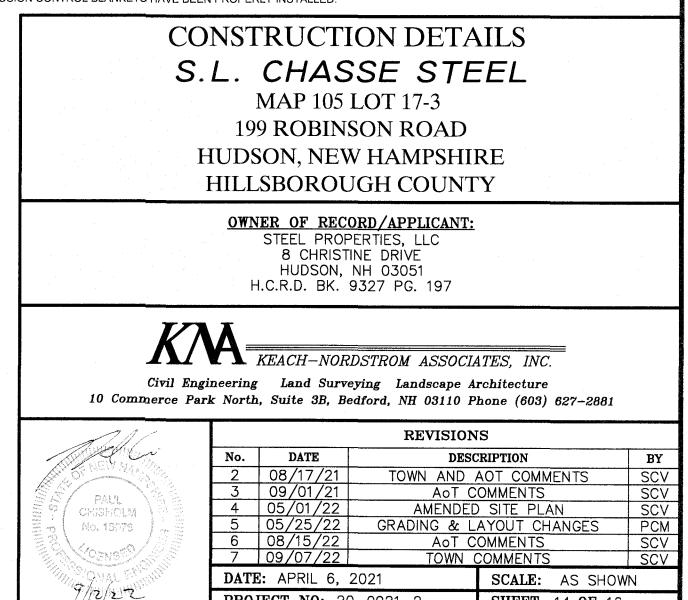

DANDY BAG

NOT TO SCALE

(APRIL 2010)

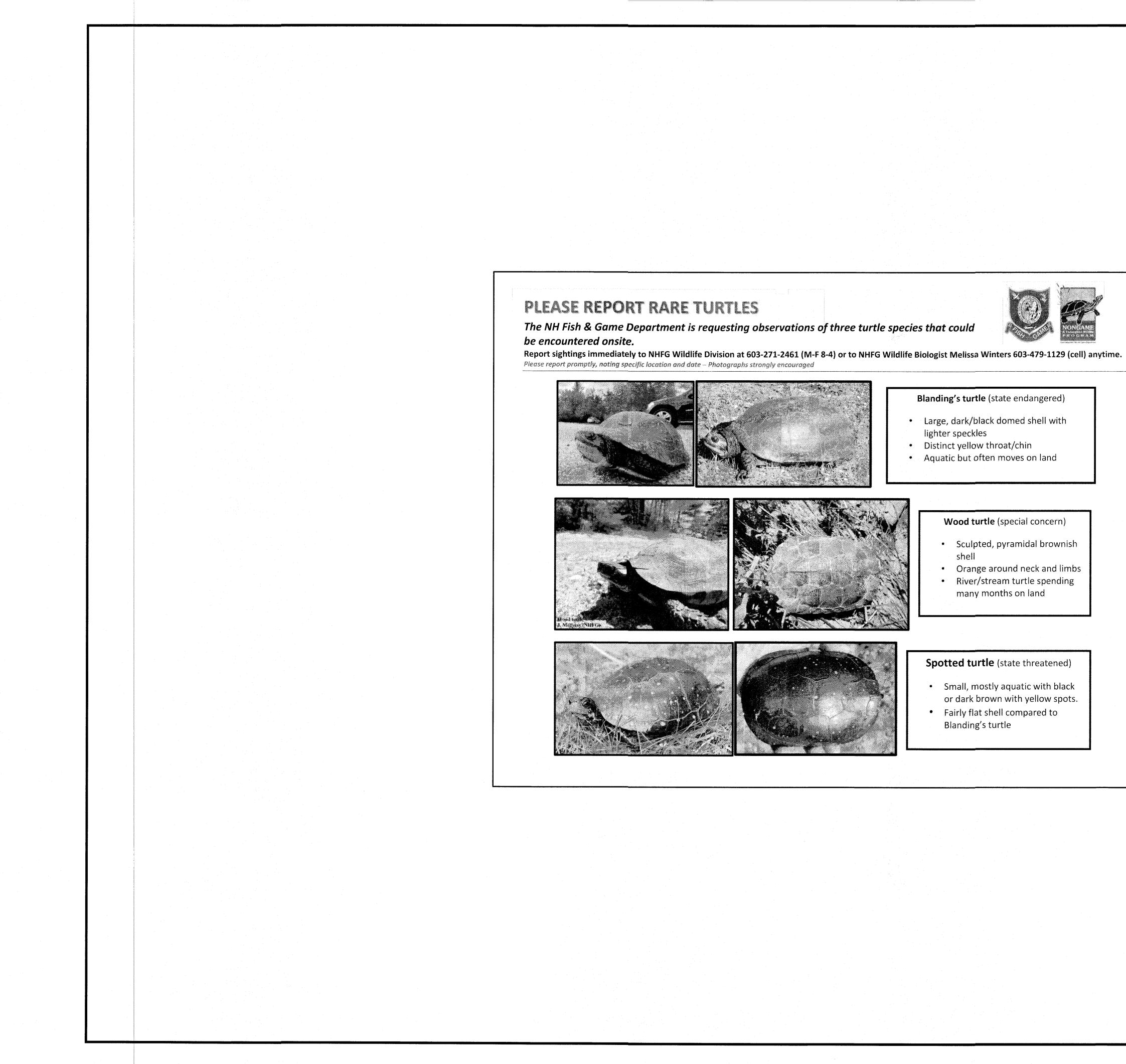
NOT TO SCALE

CONSTRUCTION SEQUENCE


- THE CONTRACTOR WILL ENSURE THAT NO MORE THAN 5 ACRES IS DISTURBED AT ANY ONE TIME.
- FIRST CUT AND CLEAR TREES AND BRUSH ONLY WITHIN DESIGNATED LIMITS OF CLEARING AS NECESSARY TO FACILITATE PROPOSED CONSTRUCTION. ALL TREES, BRANCHES AND OTHER VEGETATIVE MATERIALS SHALL BE PROPERLY DISPOSED OF OFF SITE BY THE CONTRACTOR. THIS PROJECT IS MANAGED TO MEET THE REQUIREMENTS AND INTENT OF RSA 430:53 AND AGR 3800 RELATIVE TO INVASIVE
- SPECIES. PRIOR TO COMMENCEMENT OF ANY EARTHMOVING OPERATIONS, ALL APPLICABLE TEMPORARY EROSION CONTROL MEASURES, INCLUDING SPECIFIED PERIMETER SILTATION FENCING AND STABILIZED CONSTRUCTION EXIT SHALL BE IN PLACE AS SHOWN ON THE PROJECT PLANS. 4. COMPLETE GRUBBING OPERATIONS. ALL STUMPS AND SIMILAR ORGANIC DEBRIS SHALL BE PROPERLY DISPOSED OF BY THE CONTRACTOR. NATIVE ORGANIC SOIL MATERIALS SUITABLE FOR USE AS TOPSOIL SHALL BE STOCKPILED WITHIN AREAS OUT OF THE WAY OF OTHER
- CONSTRUCTIONS ACTIVITIES AND DRAINAGE FLOW. STOCKPILES SHALL BE TEMPORARILY SEEDED WITH WINTER RYE AND BE SURROUNDED WITH STRAW BALES AND/OR FABRIC SILTATION FENER IN ORDER TO PREVENT LOSSIDUE TO PREVENT LO 5. BEGIN EARTHMOVING OPERATIONS, COMMENCING WITH WORK NEEDED TO BALANCE SITE AND FACILITATE BUILDING FOUNDATION AND RETAINING WALL CONSTRUCTION. PERMANENT DOWNSLOPE WORK SHALL BE PROTECTED FROM UPGRADIENT STORMWATER FLOW BY THE CONSTRUCTION OF TEMPORARY EARTHEN DIKES OR EXCAVATED SWALES.
- ONCE BUILDING FOUNDATION WORK IS UNDERWAY, CONTINUE EARTHMOVING OPERATIONS UNTIL DESIGN SUBGRADE IS ACHIEVED. DETENTION BASINS/SWALES SHALL BE INSTALLED BEFORE ROUGH GRADING THE SITE.
- DITCHES/SWALES/BASINS SHALL BE STABILIZED PRIOR TO DIRECTING RUNOFF TO THEM. 9. TEMPORARY WATER DIVERSION (SWALES, BASINS, ETC.) MUST BE USED AS NECESSARY UNTIL SOILS ARE STABILIZED.
- 10. INSTALL DRAINAGE SWALE SYSTEMS AND OTHER UTILITIES WORKING FROM LOW TO HIGH. INCOMPLETE WORK SHALL BE PROTECTED FROM SILTATION BY THE USE OF SILTATION BARRIERS AROUND SWALES UNTIL THE SITE HAS BECOME FULLY STABILIZED. 11. DEEPLY TILL THE BASE OF THE INFILTRATION BASIN TO RESTORE INFILTRATION RATES FOLLOWED BY A PASS WITH A LEVELING DRAG.
- STORMWATER FLOWS ARE NOT TO BE DIRECTED TO THE INFILTRATION AREA UNTIL CONTRIBUTING AREAS HAVE BEEN FULLY STABILIZED. 12. PLACE GRAVEL AND CRUSHED GRAVEL OVER PROPOSED DRIVEWAY, WALKS AND PARKING AREAS AND COMPACT IN SPECIFIED LIFT THICKNESS
- 13. COMPLETE EXCAVATION/STABILIZATION GRADING ACTIVITIES. WHEN COMPLETE, IMMEDIATELY BEGIN TOPSOILING PROPOSED TURF AREAS USING STOCKPILED LOAM SUPPLEMENTED WITH BORROW LOAM, IF NECESSARY, TO LEAVE A THICKNESS OF 4 INCHES OF FRIABLE LOAM. 14. FINE GRADE ALL FUTURE TURF AREAS AND HYDROSEED WITH THE SPECIFIED SEED MIXTURE IMMEDIATELY AFTER FINE GRADING IS COMPLETED. ALL AREAS SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISH GRADE.
- 15. INSTALL THE BINDER COURSE OF PAVEMENT OVER ALL DESIGNATED AREAS.
- 16. CONTINUE TO MONITOR AND RECTIFY MINOR SITE AND SLOPE EROSION UNTIL ENTIRE SITE APPEARS TO BE COMPLETELY STABILIZED AND VEGETATED WITH A HEALTHY STAND OF TURF OR GROUND COVER. MAINTAIN SPECIFIED SILTATION/EROSION CONTROL MEASURES THROUGH ONE WINTER.
- 17. INSTALL THE SPECIFIED WEARING COURSE OF PAVEMENT OVER THE BINDER COURSE 18. COMPLETE INSTALLATION OF LANDSCAPING, SIGNAGE AND OTHER SITE AMENITIES.
- CERTIFICATE OF OCCUPANCY PHASING PLAN AGREEMENT
- 1. THE FOLLOWING SITE IMPROVEMENTS ARE REQUIRED FOR INDIVIDUAL CERTIFICATES OF OCCUPANCY AS CONSTRUCTION PROGRESSES ROAD BASE COAT:
- STOP SIGNS AND TEMPORARY STRIPING OF STOP BARS;
- GRADING AND DRAINAGE; LOAM AND SEED THAT SUPPORTS THE SUBJECT UNIT OF THE CERTIFICATE OF OCCUPANCY;
- TEMPORARY STRIPING OF VISITOR PARKING; AND UTILITIES.

EROSION CONTROL NOTES

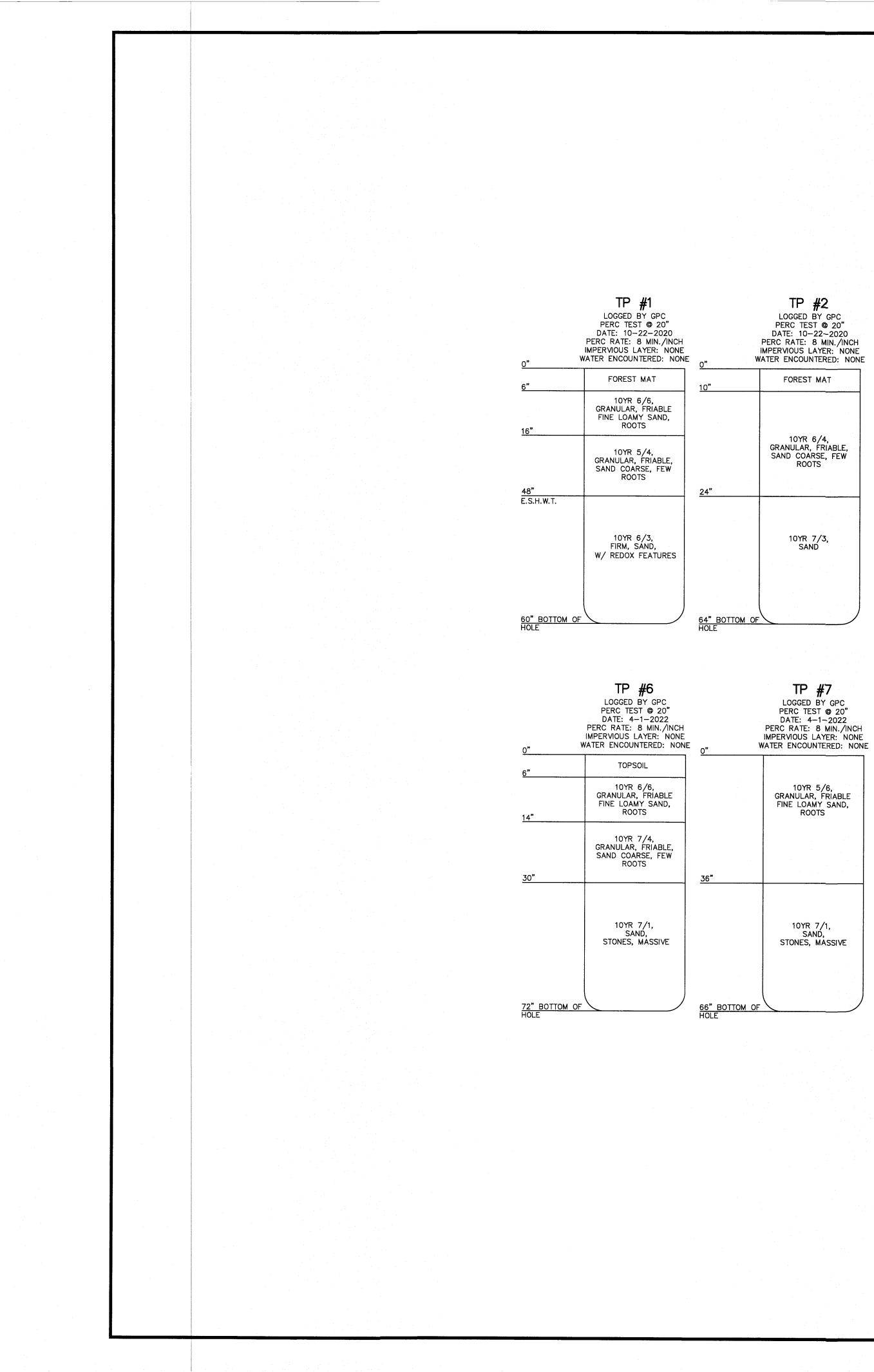
- 1. EXPOSED EARTHWORK SHALL BE CONFINED TO AS LIMITED AN AREA AS IS PRACTICAL AT ANY GIVEN TIME THROUGHOUT THE CONSTRUCTION SEQUENCE. AT NO TIME SHALL MORE THAN FIVE (5) ACRES OF SITE AREA BE IN AN UNSTABLE CONDITION UNLESS AN ENVIRONMENTAL MONITOR IS EMPLOYED THROUGH THE DURATION OF CONSTRUCTION. NO GIVEN AREA OF THE SITE SHALL BE LEFT IN AN UNSTABILIZED CONDITION FOR A PERIOD OF TIME EXCEEDING FORTY-FIVE (45) CALENDAR DAYS.
- TEMPORARY EROSION CONTROL MEASURES SHALL BE INSTALLED IN STRICT ACCORDANCE WITH PROJECT PLANS. IN ADDITION, SIMILAR MEASURES SHALL BE INSTALLED WHERE AND WHEN THE FIELD CONDITION, OR FIELD OPERATION OF THE INDIVIDUAL SITE CONTRACTOR, MAY WARRANT. ALL TEMPORARY EROSION CONTROL MEASURES USED SHALL BE INSPECTED WEEKLY AND WITHIN 24 HOURS AFTER 0.25" OF RAINFALL OR MORE. THEY SHALL BE CLEANED AND MAINTAINED AND OTHERWISE KEPT IN AN EFFECTIVE OPERATING MANNER THROUGHOUT THE CONSTRUCTION PERIOD.
- 3. ALL DISTURBED AREAS DESIGNATED TO BE TURF, SHALL RECEIVE A MINIMUM APPLICATION OF 4 INCHES OF LOAM (COMPACTED
- THICKNESS), PRIOR TO FINAL SEEDING AND MULCHING. 4. EROSION CONTROL AND STABILIZATION SHALL BE IN ACCORDANCE WITH HILLSBOROUGH COUNTY CONSERVATION DISTRICT-VEGETATIVE
- STANDARD AND SPECIFICATIONS FOR SEEDING GRASSES AND LEGUMES FOR LONG-TERM COVER ON EXCAVATED AREAS. 5. ALL SWALES AND DITCHLINES SHALL BE PERIODICALLY CLEANED OF DEPOSITED SEDIMENT SO AS TO MAINTAIN AN EFFECTIVE GRADE AND CROSS SECTION. ALL SWALES AND DITCHLINES SHALL BE FULLY STABILIZED PRIOR TO HAVING STORMWATER DIRECTED TOWARDS
- 6. IN THE EVENT THAT, DURING CONSTRUCTION OF ANY PORTION OF THIS PROJECT, A WINTER SHUTDOWN IS NECESSARY. THE CONTRACTOR SHALL STABILIZE ALL INCOMPLETE WORK AND PROVIDE FOR SUITABLE METHODS OF DIVERTING RUNOFF IN ORDER TO
- ELIMINATE SHEET FLOW ACROSS FROZEN SURFACES.
- 7. AN AREA SHALL BE CONSIDERED STABLE IF ONE OF THE FOLLOWING HAS OCCURRED: A. BASE COURSE GRAVELS ARE INSTALLED IN AREAS TO BE PAVED;
 - B. A MINIMUM OF 85% VEGETATED GROWTH HAS BEEN ESTABLISHED;
- A MINIMUM OF 3" OF NON-EROSIVE MATERIAL SUCH AS STONE OR RIP RAP HAS BEEN INSTALLED; OR
- D. EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED. 8. DUST SHALL BE CONTROLLED BY THE USE OF WATER AS NECESSARY THROUGHOUT THE CONSTRUCTION PERIOD, IN ACCORDANCE WITH
- ENV-A 1000. 9. IN NO WAY ARE THOSE TEMPORARY EROSION CONTROL MEASURES INDICATED ON THESE PLANS TO BE CONSIDERED ALL INCLUSIVE. THE CONTRACTOR SHALL USE JUDGEMENT IN INSTALLING SUPPLEMENTARY EROSION CONTROL MEASURES WHERE AND WHEN SPECIFIC SITE
- CONDITIONS AND/OR CONSTRUCTION METHODOLOGIES MAY WARRANT.
- 10. THE TOWN RESERVES THE RIGHT TO REQUIRE ADDITIONAL EROSION CONTROL MEASURES DURING CONSTRUCTION. 11. AREAS HAVING FINISH GRADE SLOPES OF 3 : 1 OR STEEPER, SHALL BE STABILIZED WITH JUTE MATTING WHEN AND IF FIELD CONDITIONS WARRANT, OR IF SO ORDERED. JUTE MATTING INSTALLED TO CONFORM WITH THE RECOMMENDED BEST MANAGEMENT PRACTICE OUTLINED IN VOLUME 3 OF THE NEW HAMPSHIRE STORMWATER MANUAL "EROSION AND SEDIMENT CONTROLS DURING CONSTRUCTION." 12. DETENTION BASINS/SWALES SHALL BE INSTALLED BEFORE ROUGH GRADING THE SITE.
- 13. DITCHES/SWALES/BASINS SHALL BE STABILIZED PRIOR TO DIRECTING RUNOFF TO THEM.
- 14. TEMPORARY WATER DIVERSION (SWALES, BASINS, ETC.) MUST BE USED AS NECESSARY UNTIL SOILS ARE STABILIZED.
- 15. ALL ROADWAYS AND PARKING AREAS SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE. 16. ALL CUT AND FILL SLOPES SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE.
- 17. ALL MANUFACTURED EROSION AND SEDIMENT CONTROL PRODUCTS, EXCEPT FOR SILT FENCE INSTALLED IN ACCORDANCE WITH ENV-WQ 1506.04, UTILIZED FOR, BUT NOT LIMITED TO, SLOPE PROTECTION, RUNOFF DIVERSION, SLOPE INTERRUPTION, PERIMETER CONTROL. INLET PROTECTION, CHECK DAMS, AND SEDIMENT TRAPS SHALL NOT CONTAIN WELDED PLASTIC, PLASTIC, OR MULTI-FILAMENT OR
- MONOFILAMENT POLYPROPYLENE NETTING OR MESH WITH AN OPENING SIZE OF GREATER THAN 18" 18. TURF REINFORCEMENT MATS SHALL BE COVERED WITH SOIL TO PREVENT EXPOSURE OF THE MATS TO THE SURFACE.


WINTER CONSTRUCTION NOTES:

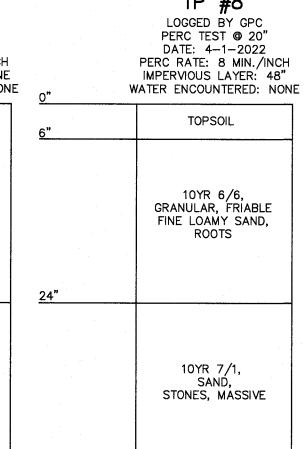
- ALL PROPOSED POST-DEVELOPMENT VEGETATED AREAS WHICH DO NOT EXHIBIT A MINIMUM OF 85% VEGETATIVE GROWTH BY OCTOBER 15TH, OR WHICH ARE DISTURBED AFTER OCTOBER 15TH, SHALL BE STABILIZED BY SEEDING AND INSTALLING EROSION CONTROL BLANKETS ON SLOPES GREATER THAN 4:1, AND SEEDING AND PLACING 3 TO 4 TONS OF MULCH PER ACRE, SECURED WITH ANCHORED NETTING, ELSEWHERE. THE PLACEMENT OF EROSION CONTROL BLANKETS OR MULCH AND NETTING SHALL NOT OCCUR OVER ACCUMULATED SNOW OR ON FROZEN GROUND AND SHALL BE COMPLETED IN ADVANCE OF THAW OR SPRING MELT EVENTS. ALL DITCHES OR SWALES WHICH DO NOT EXHIBIT A MINIMUM OF 85% VEGETATIVE GROWTH BY OCTOBER 15TH, OR WHICH ARE DISTURBED AFTER OCTOBER 15TH, SHALL BE STABILIZED WITH STONE OR EROSION CONTROL BLANKETS APPROPRIATE FOR THE
- DESIGN FLOW CONDITIONS AFTER OCTOBER 15TH, INCOMPLETE ROAD OR PARKING SURFACES SHALL BE PROTECTED WITH A MINIMUM OF 3 INCHES OF CRUSHED GRAVEL PER NHDOT ITEM 304.3 OR, IF CONSTRUCTION IS TO CONTINUE THROUGH THE WINTER SEASON, BE CLEARED OF ANY
- ACCUMULATED SNOW AFTER EACH STORM FVFNT
- 4. AN AREA SHALL BE CONSIDERED STABLE IF ONE OF THE FOLLOWING HAS OCCURRED A. BASE COURSE GRAVELS ARE INSTALLED IN AREAS TO BE PAVED:
 - B. A MINIMUM OF 85% VEGETATED GROWTH HAS BEEN ESTABLISHED;
 - A MINIMUM OF 3" OF NON-EROSIVE MATERIAL SUCH AS STONE OR RIP RAP HAS BEEN INSTALLED; OR D. EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED.

PROJECT NO: 20-0921-2

SHEET 14 OF 16


	05/12/21	

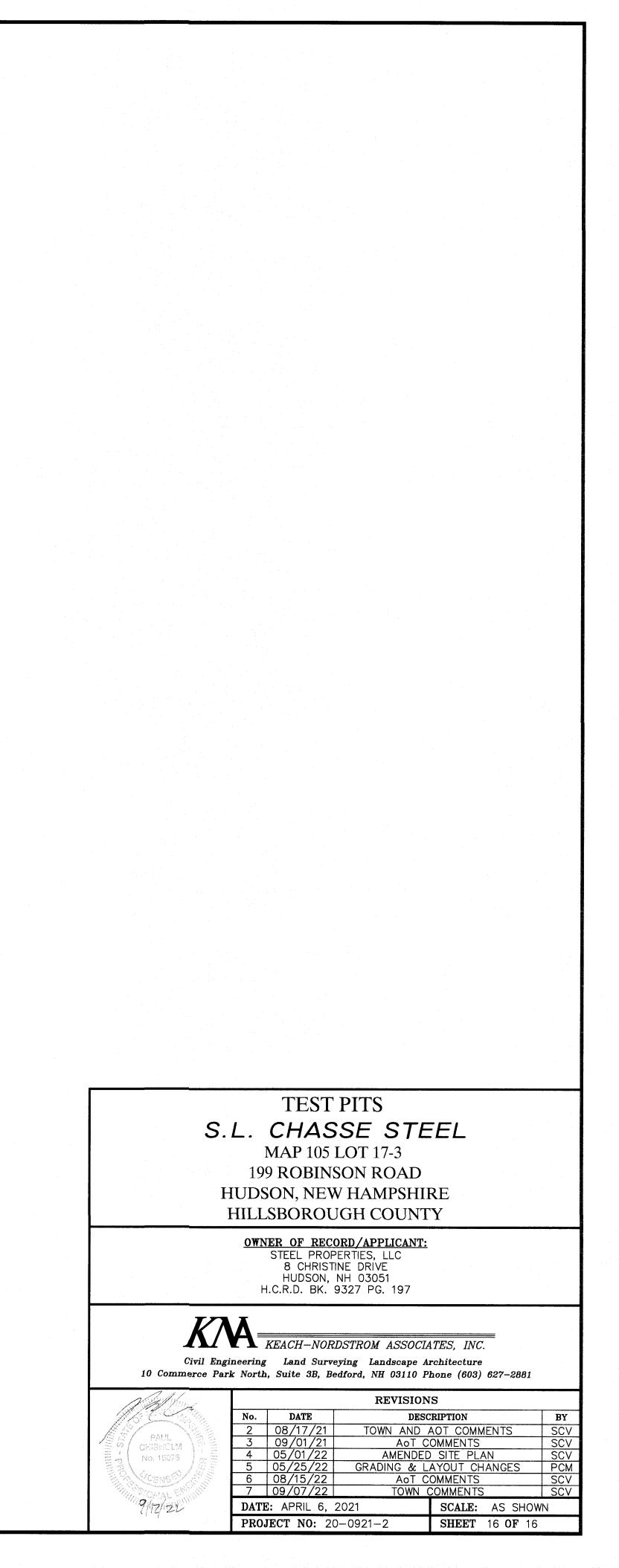
<u></u>1


TOWN COMMENTS

SCV

CONSTRUCTION DETAILS										
S.L. CHASSE STEEL										
MAP 105 LOT 17-3										
	199 ROBINSON ROAD									
H	UDS	SON, NEV	V HAMPSHII	RE						
H I I I I I I I I I I I I I I I I I I I	HILL	SBOROL	JGH COUNT	Y						
	OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197 KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881									
			REVISION	S						
	No.	DATE		RIPTION	BY					
EE PAUL NEE	<u>2</u> 3	08/17/21		AOT COMMENTS	SCV					
E (CHISHOLM)	<u> </u>	09/01/21		OMMENTS SITE PLAN	SCV SCV					
	5	05/25/22		AYOUT CHANGES	PCM					
	6	08/15/22		OMMENTS	SCV					
Million and a start	7	09/07/22		COMMENTS	SCV					
7/12/22		E: APRIL 6,		SCALE: AS SHOW	N					
	PROJ	JECT NO: 20	0-0921-2	SHEET 15 OF 16						

2		TP #3		TP #4		TP #5
GPC 20"		LOGGED BY GPC PERC TEST @ 20"		LOGGED BY GPC PERC TEST @ 20"		LOGGED BY GPC PERC TEST @ 20"
-2020 /IN./INCH		DATE: 3-16-2020 PERC RATE: 8 MIN./INCH		DATE: 3-16-2020 PERC RATE: 8 MIN./INCH		DATE: 10-22-2020 PERC RATE: 8 MIN./INCH
R: NONE	14	IMPERVIOUS LAYER: NONE	- · · · .	IMPERVIOUS LAYER NONE	•	IMPERVIOUS LAYER: NONE
RED: NONE	<u>0" "</u>	VATER ENCOUNTERED: NONE	<u>o" v</u>	VATER ENCOUNTERED: NON	۱۴ <u>0</u> "	WATER ENCOUNTERED: NONE
AT	8"	TOP SOIL	8"	TOP SOIL	6"	FOREST MAT
	<u>v</u>	5Y 5/4,	<u>.</u>	5Y 5/4,	<u> </u>	10YR 5/6,
		GRANULAR, FRIABLE LOAMY SAND, ROOTS		GRANULAR, FRIABLE LOAMY SAND, ROOTS		GRANULAR, FRIABLE FINE LOAMY SAND,
	18"		18"		24"	ROOTS
i, NABLE,						
, FEW		10YR 5/6, GRANULAR, FRIABLE,		10YR 5/6, GRANULAR, FRIABLE,		10YR 5/2, GRANULAR, FRIABLE,
		LOAMY SAND, FEW ROOTS		LOAMY SAND, FEW ROOTS		SAND COARSE, FEW ROOTS
	28"		28"		44"	
					E.S.H.W.T.	
5,		10YR 6/6, SAND SINGLE GRAIN		10YR 6/6,		10YR 4/2,
		GRAVELLY		SAND SINGLÉ GRAIN GRAVELLY		FIRM, SÁND, W/ REDOX FEATURES
	70" BOTTOM OF		70" BOTTOM OF		60" BOTTOM OF	
	HOLE		HOLE		HOLE	
7						
GPC		TP #8 LOGGED BY GPC		TP #9 LOGGED BY GPC		TP #10 LOGGED BY GPC
© 20" ~2022		PERC TEST @ 20" DATE: 4-1-2022		PERC TEST © 20" DATE: 4–1–2022		PERC TEST @ 20" DATE: 4-1-2022



POSSIBLE LEDGE

48" BOTTOM OF

<u>0" v</u>	TP #9 LOGGED BY GPC PERC TEST © 20" DATE: 4-1-2022 PERC RATE: 8 MIN./INCH IMPERVIOUS LAYER: 48" VATER ENCOUNTERED: NONE
6"	TOPSOIL
30"	10YR 5/6, GRANULAR, FRIABLE FINE LOAMY SAND, ROOTS
	10YR 7/1, SAND, STONES, MASSIVE
<u>90" BOTTOM OF</u> HOLE	

0"W	DATE: 4-1-2022 PERC RATE: 8 MIN./INCH IMPERVIOUS LAYER: 48" ATER ENCOUNTERED: NONE
6"	TOPSOIL
	10YR 5/6, GRANULAR, FRIABLE FINE LOAMY SAND, ROOTS
30"	·
	10YR 7/1, SAND, STONES, MASSIVE
<u>90" BOTTOM OF</u> HOLE	

Alteration of Terrain Application

S.L. Chasse Steel

Map 105; Lot 17-2 & 17-3 Robinson Road Hudson, New Hampshire

June 7, 2022

Amended: September 12, 2022

KNA Project No. 20-0921-2

Prepared For:	Steel Properties, LLC 8 Christine Drive Hudson, New Hampshire 03051
Prepared By:	Keach-Nordstrom Associates, Inc. 10 Commerce Park North, Suite

Prepared By: Keach-Nordstrom Associates, Inc. 10 Commerce Park North, Suite 3 Bedford, New Hampshire 03110 (603) 627-2881 (603) 627-2915 (fax)

KA KEACH-NORDSTROM ASSOCIATES, INC.

Table of Contents

- 1. SIGNED OWNER AFFIDAVIT
- 2. AOT APPLICATION
- 3. AOT APPLICATION CHECKLIST
- 4. COPY OF AOT APPLICATION CHECK
- 5. MUNICIPAL SUBMISSION: TOWN OF HUDSON
- 6. USGS LOCATION MAP
- 7. PROJECT NARRATIVE
- 8. SURFACE WATER IMPAIRMENTS
- 9. SCREENING LAYERS
- 10. NEW HAMPSHIRE NATURAL HERITAGE INVENTORY DATABASE CHECK
- 11. WEB SOIL SURVEY
- **12. AERIAL PHOTOGRAPH**
- **13. SITE PHOTOGRAPHS**
- 14. GRV CALCULATION
- **15. BMP WORKSHEETS**
- **16. EXTREME PRECIPITATION TABLES**
- 17. HYDROCAD DRAINAGE ANALYSIS
- **18. RIP RAP APRON CALCULATIONS**
- **19. SITE SPECIFIC SOIL SURVEY REPORT**
- 20. INFILTRATION FEASIBILITY REPORT
- 21. OPERATION and MAINTENANCE PLAN with CHECKLIST
- 22. PLANS

NON-RESIDENTIAL SITE PLAN SET (22"x34" – Colorless) PRE-DEVELOPMENT DRAIN AREA PLAN (22"x34" – Colorless) POST-DEVELOPMENT DRAIN AREA PLANS (22"x34" – Colorless) PRE-DEVELOPMENT DRAIN AREA PLAN (22"x34" – with Color) POST-DEVELOPMENT DRAIN AREA PLANS (22"x34" – with Color)

1. SIGNED OWNER AFFIDAVIT

I, <u>Steve Chasse</u>, authorized representative of S.L. Chasse Steel and owner of the properties referenced on Tax Map 105 as Lots 17-2 & 17-3, located along Robinson Road, Hudson, New Hampshire, hereby verify that I have authorized Keach-Nordstrom Associates, Inc. to submit on my behalf, any and all applicable State and local permit applications as they pertain to improvements on said property.

Additionally, I authorize Keach-Nordstrom Associates, Inc. to aid in the representation of these applications throughout the approval process.

Signature of Owner:

Citythe L. Clean STRAHEN L. CHASSIE

Printed Name of Owner:

Address of Owner:

8 Christine Drive

Hudson, NH 03051

Date:

2. AOT APPLICATION

ALTERATION OF TERRAIN PERMIT APPLICATION

Water Division/ Alteration of Terrain Bureau/ Land Resources Management Check the Status of your Application: <u>www.des.nh.gov/onestop</u>

RSA/ Rule: RSA 485-A:17, Env-Wq 1500

			File Number:
Administrative	Administrative	Administrative	Check No.
Use Only	Use Only	Use Only	Amount:
			Initials:

1. APPLICANT INFORMATION (INTENDED PERMIT HOLDER)							
Applicant Name: S.L. Chasse Steel	Contact Name: Steve Chasse						
Email: s.chasse@slchassesteelfab.com	Daytime Telephone: (603) 886-3436					
Mailing Address: 8 Christine Drive							
Town/City: Hudson		State: NH	Zip Code: 03051				
2. APPLICANT'S AGENT INFORMATION If none, check here:							
Business Name:	Contact Name:						
Email:	Daytime Telephone:						
Address:							
Town/City:		State:	Zip Code:				
3. PROPERTY OWNER INFORMATION (IF DIFFERENT FROM APPLICANT)							
Applicant Name:	Contact Name:						
Email:	Daytime Telephone:						
Mailing Address:							
Town/City:		State:	Zip Code:				
4. PROPERTY OWNER'S AGENT INFORMATION If none, check I	nere: 🔀						
Business Name:	Contact Name:						
Email:	Daytime Telephone:						
Address:							
Town/City:		State:	Zip Code:				
5. CONSULTANT INFORMATION If none, check here:							
Engineering Firm: Keach-Nordstrom Associates, Inc.	Contact Name: Shaun Vando						
Email: svando@keachnordstrom.com	Daytime Telephone: (603) 627-2881						
Address: 3 Commerce Park North, Suite 3							
Town/City: Bedford		State: NH	Zip Code: 03110				

NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095

NHDES-W-01-003								
6. PROJECT TYPE								
Excavation Only Residential		Commercial	Golf Cours	e 🗌 Schoo	ol 🗌 Municipal			
Agricultural Land	Conversion	🔀 Othe	r: Industrial					
7. PROJECT LOCATION INFORMATION								
Project Name: S.L. Chasse Steel								
Street/Road Address: Robinson Road								
Town/City: Hudson		ounty: Hillsboroug	gh					
Tax Map: 105	Block:	Lot Number: 1	.7-2&3	Unit:				
Location Coordinates: 42.816781, -71.	40948	🛛 Latitude/	Longitude		State Plane			
Post-development, will the proposed pro	oject withdraw fro	m or directly dis	scharge to any of th	e following? If yes,	, identify the purpose.			
1. Stream or Wetland			Yes	Withdrawa	I Discharge			
Purpose:			No No					
2. Man-made pond created by impour	iding a stream or v	wetland	Yes	Withdrawa	I Discharge			
Purpose:			No No					
3. Unlined pond dug into the water tak	ble		Yes	Withdrawa	I Discharge			
Purpose:			No No					
 Post-development, will the proposed pro A surface water impaired for phosphor 			Vos - includo inform	action to domonst	rate that project will not			
cause net increase in phosphorus a			res - include inform	lation to demonst	rate that project will not			
• A Class A surface water or Outstanding		No No	Yes - include in	formation to demo	onstrate that project will not			
cause net increase in phosphorus a		1						
 A lake or pond not covered previously in phosphorus in the lake or pond 		j res - include li	nformation to demo	onstrate that proje	ect will not cause net increase			
Is the project a High Load area? Ye If yes, specify the type of high load I		/:						
Is the project within a Water Supply Inta	ke Protection Area	a (WSIPA)?	Yes	🖂 No				
Is the project within a Groundwater Prot	ection Area (GPA)	?	Yes	🔀 No				
Will the well setbacks identified in Er	•		🔀 Yes	🗌 No				
Note: Guidance document titled " <u>Using</u> , restrictions in these areas, read Chapter				' is available online	. For more details on the			
Is any part of the property within the 10	0-year floodplain?	Yes	🔀 No					
If yes: Cut volume: cubic								
Fill volume: cubic	feet within the 100	0-year floodplai	n					
Project IS within ¼ mile of a design	ated river	Name of River	:					
Project is NOT within ¼ mile of a de	esignated river							
Project IS within a Coastal/Great Bay Region community - include info required by Env-Wq 1503.08(I) if applicable								
Project is NOT within a Coastal/Gr	eat Bay Region co	ommunity						
8. BRIEF PROJECT DESCRIPTION (PLEA	SE DO NOT REPL	Y "SEE ATTACH	IED")					
The project proposes the construction o the three buildings as well as paved layd			-	-				
industrial building, 22,500 SF, with assoc								
9. IF APPLICABLE, DESCRIBE ANY WO	RK STARTED PRIC	OR TO RECEIVIN	NG PERMIT					
N/A								

10. ADDITIONAL REQUIRED INFORMATION								
 A. Date a copy of the application was sent to the municipality as required by Env-Wq 1503.05(e)¹: / / (Attach proof of delivery) 								
B. Date a copy of the application was sent to the local river advisory committee if required by Env-Wq 1503.05(e) ² : / /								
(Attach proof of delivery)								
C. Type of plan required: 🗌 Land Conversion 🛛 Detailed Development 🗌 Excavation, Grading & Reclamation 🗌 Steep Slope								
D. Additional plans required: 🔀 Stormwater Drainage & Hydrologic Soil Groups 🗌 Source Control 🗌 Chloride Management								
E. Total area of disturbance: <u>442250</u> square feet								
 F. Additional impervious cover as a result of the coverage). Total final impervious cover: <u>262,847</u> square f 		et(use the "-'	symbol to indicate a net reduction in impervious					
G. Total undisturbed cover: <u>179,403</u> square feet								
H. Number of lots proposed: <u>0</u>								
I. Total length of roadway: <u>0</u> linear feet								
J. Name(s) of receiving water(s): <u>h</u>								
	K. Identify all other NHDES permits required for the project, and for each indicate whether an application has been filed and is pending, or if the required approval has been issued provide the permit number, registration date, or approval letter number, as applicable.							
			Status					
Type of Approval	Application Filed?	Pendir	ng If Issued:					
1. Water Supply Approval	Yes No 🕅 N	/A 🗌	Permit number:					
2. Wetlands Permit	Yes No No	/A 🗌	Permit number:					
3. Shoreland Permit	Yes No 🛛 N	/A 🗌	Permit number:					
4. UIC Registration	Yes No No	/A 🗌	Registration date:					
5. Large/Small Community Well Approval	Yes No 🕅 N	/A 🗌	Approval letter date:					
6. Large Groundwater Withdrawal Permit	Yes No No	/A 🗌	Permit number:					
7. Other:	Yes No		Permit number:					
L. List all species identified by the Natural Heritage Bureau as threatened or endangered or of concern: <u>N/A</u>								
M. Using NHDES's Web GIS OneStop program (www the impairments identified for each receiving w N/A			the Surface Water Impairment layer turned on, list N/A."					
N. Did the applicant/applicant's agent have a pre-application meeting with AOT staff? If yes, name of staff member:								
If yes, standard blasting BMP notes must be pl								
NOTE: If greater than 5,000 cubic yards of blas submitted to NHDES. Contact AOT staff for ad	_	a groundwater	monitoring program must be developed and					

ridge.mauck@des.nh.gov or (603) 271-2147 NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095

www.des.nh.gov

¹ Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the governing body of each municipality in which the project is proposed.

² Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the Local River Advisory Committee, if the project is within ¼ mile of a designated river.

LODSE: Signed application form: des.nh.gov/organization/divisions/water/aot/index.htm (with attached proof(s) of delivery) Check for the application fee: des.nh.gov/organization/divisions/water/aot/fees.htm Color copy of a USGS map with the property boundaries outlined (1" = 2,000" scale) If Applicant is not the property owner, proof that the applicant will have a legal right to undertake the project on the property if a permit is issued to the applicant. BIND IN A REPORT IN THE FOLLOWING ORDER: Copy of the signed application form & application checklist (des.nh.gov/organization/divisions/water/aot/index.htm) Copy of the check Copy of the check Web GIS printout with the "surface Water Impairments" layer turned on - http://www.des.state.nh.us/onestopdatamapper/onestopmapper.aspx Web GIS printout with the AOT screening layers turned on - http://www.des.state.nh.us/onestopdatamapper/onestopmapper.aspx NHB letter using DataCheck Tool – www.nhdif.org/about-forests:and-lands/bureaus/natural-heritage-bureau/ The Web Soil Survey Map with project 's watershed outlined – websoilsurvey.nrcs.usda.gov Arrial photograph (1" = 2,000' scale with the site boundaries outlined ("soil water,ast.ask.ask.ask.ask.ask.ask.ask.ask.ask.ask
 Copy of the signed application form & application checklist (des.nh.gov/organization/divisions/water/aot/index.htm) Copy of the signed application form & application checklist (des.nh.gov/organization/divisions/water/aot/index.htm) Copy of the USGS map with the property boundaries outlined (1" = 2,000' scale) Marrative of the project with a summary table of the peak discharge rate for the off-site discharge points Web GIS printout with the "Surface Water Impairments" layer turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx Web GIS printouts with the AOT screening layers turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx NHB letter using DataCheck Tool – www.nhdfl.org/about-forests-and-lands/bureaus/natural-heritage-bureau/ The Web Soil Survey Map with project's watershed outlined – websoilsurvey.nrcs.usda.gov Aerial photograph (1" = 2,000' scale with the site boundaries outlined) Photographs representative of the site Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_works.xls Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Airgrap apron or other energy disipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Inflitration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organizatio
 Copy of the check Copy of the check Copy of the USGS map with the property boundaries outlined (1" = 2,000' scale) Narrative of the project with a summary table of the peak discharge rate for the off-site discharge points Web GIS printout with the "Surface Water Impairments" layer turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx Web GIS printouts with the AOT screening layers turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx NHB letter using DataCheck Tool – www.nhdfl.org/about-forests-and-lands/bureaus/natural-heritage-bureau/ The Web Soil Survey Map with project's watershed outlined – websoilsurvey.nrcs.usda.gov Aerial photograph (1" = 2,000' scale with the site boundaries outlined) Photographs representative of the site Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Riprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Inflittration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) <l< td=""></l<>
 □ Copy of the USGS map with the property boundaries outlined (1" = 2,000' scale) □ Narrative of the project with a summary table of the peak discharge rate for the off-site discharge points □ Web GIS printout with the "Surface Water Impairments" layer turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx □ Web GIS printouts with the AOT screening layers turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx □ MHB letter using DataCheck Tool - www.nhdfl.org/about-forests-and-lands/bureaus/natural-heritage-bureau/ □ The Web Soil Survey Map with project's watershed outlined – websoilsurvey.nrcs.usda.gov □ Aerial photograph (1" = 2,000' scale with the site boundaries outlined) □ Photographs representative of the site □ Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls □ BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls □ Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Riprap apron or other energy dissipation or stability calculations □ Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication</i> <i>No.</i> 3. □ Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] □ Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) □ Inspection and maintenance manual with, if
Narrative of the project with a summary table of the peak discharge rate for the off-site discharge points Web GIS printout with the "surface Water Impairments" layer turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx Web GIS printouts with the AOT screening layers turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx NHB letter using DataCheck Tool – www.nhdfl.org/about-forests-and-lands/bureaus/natural-heritage-bureau/ The Web Soil Survey Map with project's watershed outlined – websoilsurvey.nrcs.usda.gov Aerial photograph (1" = 2,000' scale with the site boundaries outlined) Photographs representative of the site Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Aigstration and Notification Form for Storm Water Infiltration note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Infil
Web GIS printout with the "Surface Water Impairments" layer turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx Web GIS printouts with the AOT screening layers turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx NHB letter using DataCheck Tool - www.nhdfl.org/about-forests-and-lands/bureaus/natural-heritage-bureau/ The Web Soil Survey Map with project's watershed outlined - websoilsurvey.nrcs.usda.gov Aerial photograph 1(" = 2,000' scale with the site boundaries outlined) Photographs representative of the site Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, i
http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx Web GIS printouts with the AOT screening layers turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx NHB letter using DataCheck Tool – www.nhdfl.org/about-forests-and-lands/bureaus/natural-heritage-bureau/ The Web Soil Survey Map with project's watershed outlined – websoilsurvey.ncs.usda.gov Aerial photograph (1" = 2,000' scale with the site boundaries outlined) Photographs representative of the site Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Riprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Rigitation and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)]
Web GIS printouts with the AOT screening layers turned on - http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx NHB letter using DataCheck Tool - www.nhdfil.org/about-forests-and-lands/bureaus/natural-heritage-bureau/ The Web Soil Survey Map with project's watershed outlined - websoilsurvey.nrcs.usda.gov Aerial photograph (1" = 2,000' scale with the site boundaries outlined) Photographs representative of the site Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls Prainage analysis, stamped by a professional engineer (see Application Checklist for details) Riprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Infiltration Fea
http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx NHB letter using DataCheck Tool - www.nhdfl.org/about-forests-and-lands/bureaus/natural-heritage-bureau/ The Web Soil Survey Map with project's watershed outlined - websoilsurvey.nrcs.usda.gov Aerial photograph (1" = 2,000' scale with the site boundaries outlined) Photographs representative of the site Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Riprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Sour
 NHB letter using DataCheck Tool - www.nhdfl.org/about-forests-and-lands/bureaus/natural-heritage-bureau/ The Web Soil Survey Map with project's watershed outlined - websoilsurvey.nrcs.usda.gov Aerial photograph (1" = 2,000' scale with the site boundaries outlined) Photographs representative of the site Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Riprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan
 ☐ The Web Soil Survey Map with project's watershed outlined – websoilsurvey.nrcs.usda.gov ☐ Aerial photograph (1" = 2,000' scale with the site boundaries outlined) ☐ Photographs representative of the site ☐ Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls ☐ BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls ☐ Drainage analysis, stamped by a professional engineer (see Application Checklist for details) ☐ Riprap apron or other energy dissipation or stability calculations ☐ Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> ☐ Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] ☐ Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) ☐ Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] ☐ Source control plan
 Aerial photograph (1" = 2,000' scale with the site boundaries outlined) Photographs representative of the site Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls Drainage analysis, stamped by a professional engineer (see Application Checklist for details) [iprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan
 Photographs representative of the site Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Riprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication</i> <i>No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan
 Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Riprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication</i> <i>No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan PLANS: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Riprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan PLANS: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 ☑ BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls ☑ Drainage analysis, stamped by a professional engineer (see Application Checklist for details) ☑ Riprap apron or other energy dissipation or stability calculations ☑ Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> ☑ Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] ☑ Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) ☑ Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] ☑ Source control plan PLANS: ☑ One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) ☑ Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls △ Drainage analysis, stamped by a professional engineer (see Application Checklist for details) △ Riprap apron or other energy dissipation or stability calculations ◇ Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> ◇ Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] ○ Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) ◇ Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] ◇ Source control plan PLANS: ◇ One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) ◇ Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Riprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan PLANS: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 Riprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan PLANS: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, <i>Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.</i> Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan PLANS: Mone set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 accordance with the Site Specific Soil Mapping standards, Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3. ☑ Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] ☑ Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) ☑ Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] ☑ Source control plan PLANS: ☑ One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) ☑ Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan PLANS: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan PLANS: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan PLANS: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) ☑ Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] ☑ Source control plan PLANS: ☑ One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) ☑ Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)] Source control plan PLANS: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
 Source control plan PLANS: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
☑ One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) ☑ Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
🔀 Pre & post-development drainage area plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for
details)
100-YEAR FLOODPLAIN REPORT:
All information required in Env-Wq 1503.09, submitted as a separate report.
ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE

REVIEW APPLICATION FOR COMPLETENESS & CONFIRM INFORMATION LISTED ON THE APPLICATION IS INCLUDED WITH SUBMITTAL.

12. REQUIRED SIGNATURES	
By initialing here, I acknowledge that I am required by Env-W in PDF format on a CD within one week after permit approv	/q 1503.20(e) to submit a copy of all approved documents to the department al.
By signing below, I certify that:	
 The information contained in or otherwise submitted with this knowledge and belief; 	application is true, complete, and not misleading to the best of my
 I understand that the submission of false, incomplete, or misles application, revoke any permit that is granted based on the info established by RSA 310-A:3 if I am a professional engineer; and 	ading information constitutes grounds for the department to deny the ormation, and/or refer the matter to the board of professional engineers
I understand that I am subject to the penalties specified in New	Hampshire law for falsification in official matters, currently RSA 641.
	NT'S AGENT:
Signature:	Date: 6/7/22
Name (print or type):	Title:
	Y OWNER'S AGENT:
Signature: htyphin L. Chinese	Date: <u>(0-</u> 7- 2022
Name (print or type): STEPHEN L. CHASSE	Title: Hpurs.
vame (print or type): STEPHEN L. CHASSE	Title:

3. AOT APPLICATION CHECKLIST

ATTACHMENT A:

ALTERATION OF TERRAIN PERMIT APPLICATION CHECKLIST

Check the box to indicate the item has been provided or provide an explanation why the item does not apply.

DESIGN PLANS

- Plans printed on 34 36" by 22 24" white paper
- 🛛 PE stamp
- Wetland delineation
- Temporary erosion control measures
- Treatment for all stormwater runoff from impervious surfaces such as roadways (including gravel roadways), parking areas, and nonresidential roof runoff. Guidance on treatment BMPs can be found in Volume 2, Chapter 4 of the NH Stormwater Management Manual.
- Pre-existing 2-foot contours
- Proposed 2-foot contours
- ☑ Drainage easements protecting the drainage/treatment structures
- Compliance with the Wetlands Bureau, RSA 482- A <u>http://des.nh.gov/organization/divisions/water/wetlands/index.htm</u>. Note that artificial detention in wetlands is not allowed.
- Compliance with the Comprehensive Shoreland Protection Act, RSA 483-B. <u>http://des.nh.gov/organization/divisions/water/wetlands/cspa</u>
- Benches. Benching is needed if you have more than 20 feet change in elevation on a 2:1 slope, 30 feet change in elevation on a 3:1 slope, 40 feet change in elevation on a 4:1 slope.
- Check to see if any proposed ponds need state Dam permits. <u>http://des.nh.gov/organization/divisions/water/dam/documents/damdef.pdf</u>

DETAILS

- Typical roadway x-section
- Detention basin with inverts noted on the outlet structure
- Stone berm level spreader
- Outlet protection riprap aprons
- A general installation detail for an erosion control blanket
- Silt fences or mulch berm
- Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement.
- Hay bale barriers
- Stone check dams
- Gravel construction exit
- Temporary sediment trap
- The treatment BMP's proposed
- Any innovative BMP's proposed

CONSTRUCTION SEQUENCE/EROSION CONTROL

Note that the project is to be managed in a manner that meets the requirements and intent of RSA 430:53 and Chapter Agr 3800 relative to invasive species.

Note that perimeter controls shall be installed prior to earth moving operations.

🔀 Note that temporary water diversion (swales, basins, etc) must be used as necessary until areas are stabilized.

- oxed N Note that ponds and swales shall be installed early on in the construction sequence (before rough grading the site).
- Note that all ditches and swales shall be stabilized prior to directing runoff to them.
- Note that all roadways and parking lots shall be stabilized within 72 hours of achieving finished grade.
- 🛛 Note that all cut and fill slopes shall be seeded/loamed within 72 hours of achieving finished grade
- Note that all erosion controls shall be inspected weekly AND after every half-inch of rainfall.
- oxed N Note the limits on the open area allowed, see Env-Wq 1505.02 for detailed information.

Example note: The smallest practical area shall be disturbed during construction, but in no case shall exceed 5 acres at any one time before disturbed areas are stabilized.

Note the definition of the word "stable"

Example note: An area shall be considered stable if one of the following has occurred:

- Base course gravels have been installed in areas to be paved.
- A minimum of 85 percent vegetated growth has been established.
- A minimum of 3 inches of non-erosive material such stone or riprap has been installed.
- Or, erosion control blankets have been properly installed.
- Note the limit of time an area may be exposed Example note: All areas shall be stabilized within 45 days of initial disturbance.
- Provide temporary and permanent seeding specifications. (Reed canary grass is listed in the Green Book; however, this is a problematic species according to the Wetlands Bureau and therefore should not be specified)

Provide winter construction notes that meet or exceed our standards.

Standard Winter Notes:

- All proposed vegetated areas that do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting, elsewhere. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events.
- All ditches or swales which do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions.
- After October 15, incomplete road or parking surfaces, where work has stopped for the winter season, shall be protected with a minimum of 3 inches of crushed gravel per NHDOT item 304.3.

Note at the end of the construction sequence that "Lot disturbance, other than that shown on the approved plans, shall not commence until after the roadway has the base course to design elevation and the associated drainage is complete and stable." – This note is applicable to single/duplex family subdivisions, when lot development is not part of the permit.

DRAINAGE ANALYSES

Please double-side 8 $\frac{1}{2}$ × 11" sheets where possible but, **do not** reduce the text such that more than one page fits on one side.

PE stamp

Rainfall amount obtained from the Northeast Regional Climate Center- <u>http://precip.eas.cornell.edu/</u>. Include extreme precipitation table as obtained from the above referenced website.

Drainage analyses, in the following order:

- Pre-development analysis: Drainage diagram.
- Pre-development analysis: Area Listing and Soil Listing.
- Pre-development analysis: Node listing 1-year (if applicable), 2-year, 10-year and 50-year.
- Pre-development analysis: Full summary of the 10-year storm.
- Post-development analysis: Drainage diagram.
- Post-development analysis: Area Listing and Soil Listing.
- Post-development analysis: Node listing for the 2-year, 10-year and 50-year.
- Post-development analysis: Full summary of the 10-year storm.

Review the Area Listing and Soil Listing reports

- Hydrologic soil groups (HSG) match the HSGs on the soil maps provided.
- There is the same or less HSG A soil area after development (check for each HSG).
- There is the same or less "woods" cover in the post-development.
- Undeveloped land was assumed to be in "good" condition.
- The amount of impervious cover in the analyses is correct.

Note: A good check is to subtract the total impervious area used in the pre analysis from the total impervious area used in the post-analysis. For residential projects without demolition occurring, a good check is to take this change in impervious area, subtract out the roadway and divide the remaining by the number of houses/units proposed. Do these numbers make sense?

 \square Check the storage input used to model the ponds.

Check to see if the artificial berms pass the 50-year storm, i.e., make sure the constructed berms on ponds are not overtopped.

- Check the outlet structure proposed and make sure it matches that modeled.
- \boxtimes Check to see if the total areas in the pre and post analyses are same.

Confirm the correct NRCS storm type was modeled (Coos, Carroll & Grafton counties are Type II, all others Type III).

PRE- AND POST-DEVELOPMENT DRAINAGE AREA PLANS

 \square Plans printed on 34 - 36" by 22 - 24" on white paper.

- \boxtimes Submit these plans separate from the soil plans.
- \square A north arrow.
- 🛛 A scale.
- \square Labeled subcatchments, reaches and ponds.
- Tc lines.
- \boxtimes A clear delineation of the subcatchment boundaries.
- Roadway station numbers.
- \square Culverts and other conveyance structures.

PRE AND POST-DEVELOPMENT COLOR-CODED SOIL PLANS

 \boxtimes 11" × 17" sheets suitable, as long as it is readable.

Submit these plans separate from the drainage area plans.

 \square A north arrow.

A scale.

Name of the soil scientist who performed the survey and date the soil survey took place.

2-foot contours (5-foot contours if application is for a gravel pit) as well as other surveyed features.

Delineation of the soil boundaries and wetland boundaries.

Delineation of the subcatchment boundaries.

 \boxtimes Soil series symbols (e.g., 26).

A key or legend which identifies each soil series symbol and its associated soil series name (e.g., 26 = Windsor).

The hydrologic soil group color coding (A = Green, B = yellow, C= orange, D=red, Water=blue, & Impervious = gray).

Please note that excavation projects (e.g., gravel pits) have similar requirements to that above, however the following are common exceptions/additions:

Drainage report is not needed if site does not have off-site flow.

 \boxtimes 5 foot contours allowed rather than 2 foot.

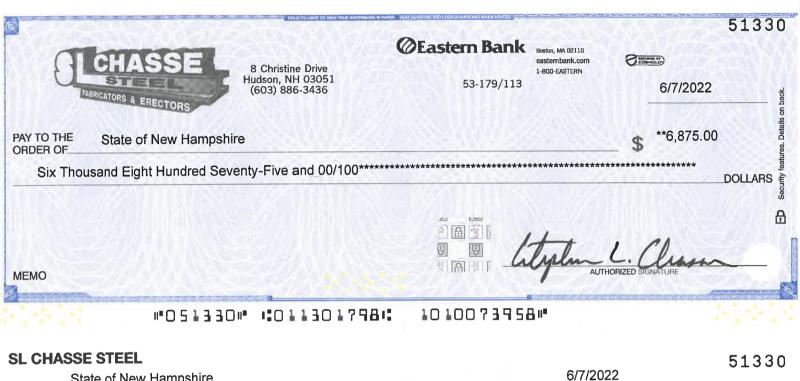
 \boxtimes No PE stamp needed on the plans.

Add a note to the plans that the applicant must submit to the Department of Environmental Services a written update of the project and revised plans documenting the project status every five years from the date of the Alteration of Terrain permit.

Add reclamation notes.

See NRCS publication titled: *Vegetating New Hampshire Sand and Gravel Pits* for a good resource, it is posted online at: http://des.nh.gov/organization/divisions/water/aot/categories/publications.

ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE


If project will discharge stormwater to a surface water impaired for phosphorus and/or nitrogen, include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen.

If project will discharge stormwater to a Class A surface water or Outstanding Resource Water, include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen.

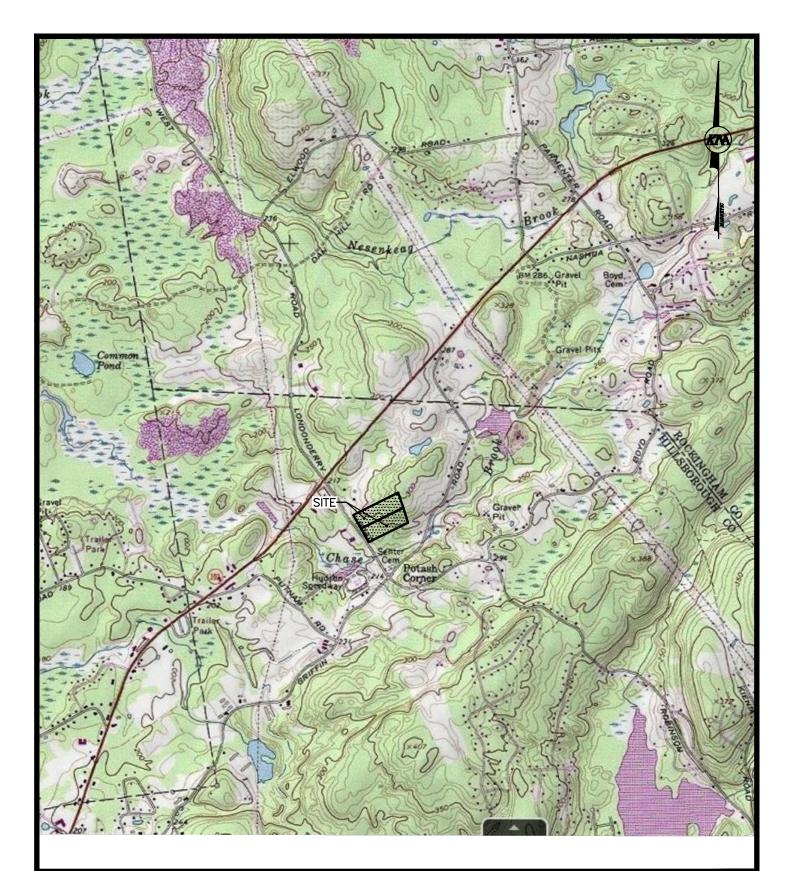
If project will discharge stormwater to a lake or pond not covered previously, include information to demonstrate that project will not cause net increase in phosphorus in the lake or pond.

If project is within a Coastal/Great Bay Region community, include info required by Env-Wq 1503.08(I) if applicable.

4. COPY OF AOT APPLICATION CHECK

State of New Hampshire Permits & Licenses

AOT permit


6,875.00

Business Ckg Eastern

6,875.00

5. MUNICIPAL SUBMISSION: TOWN OF HUDSON

6. USGS MAP

KEACH-NORDSTROM ASSOCIATES, INC.		NT PREPARED FOR: ASSE STEEL IN ROAD - HUDSON, NEW HAMPSHIRE
Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627–2881	DATE: 6/7/2022	JOB. NO.20-0921-2
	SCALE: I" = 2,000'	SHEET I OF I

7. PROJECT NARRATIVE

I. INTRODUCTION

A. **Project Description**

The subject project proposes multiple industrial buildings on two abutting properties. The lots in questions are located along Robinson Road in Hudson NH, tax map 105 lots 17-2 and 17-3. Lot 17-2 proposes one 22,500 SF industrial building with associated parking and drives. Lot 17-3 proposes three industrial buildings totaling 50,400 SF with associated parking for each building. Construction will include access drives, parking, buildings, and stormwater management systems.

B. Existing Site Conditions

The proposed parcels are located along Robinson Road, Hudson, NH. Lot 17-2 is approximately 7.11 acres and contains one existing residential home, with the remainder of the lot is woodland. Lot 17-3 is approximately 7 acres and is entirely woodland. These parcels do not contain any wetlands. Both parcels generally slope from north to south towards Chase Brook on the abutting property.

According to the Site-specific Soil Survey Report, performed on September 22 & 30, 2020 by certified soil scientist, Cynthia Balcius, the area of development consists of Canton, Charlton, Charlton-Chatfield, and Newfields soils of varying slopes ranging from 0-25%+. According to the National Resources Conservation Service (NRCS) soil mapping the sites consist of, Borohemists, Chatfield-Hollis-Canton complex, Deerfield Loamy Fine Sand, Hinkley Loamy Sand, and Pipestone Loamy Sand soil types of slopes ranging from 0-15%.

II. Storm Drainage Analysis & Design

A. Methodology

In accordance with the Hudson Stormwater Regulations, NHDES AoT requirements and generally accepted engineering practice, the 2-year, 10-year, 25-year, and 50year frequency storms have each been used in the various aspects of analysis and design of stormwater management considerations for the subject site. Stormwater treatment provisions and all drainage facilities have been designed to be fully functional during a 50-year return frequency storm.

KNA utilizes HydroCAD version 10.00-22 to analyze both pre and post-development watershed characteristics. This computer software system is based largely on hydrology techniques (TR-20) developed by the Soil Conservation Service (now the Natural Resources Conservation Service). In addition, the software derives Time of Concentration values using the methodology contained within USDA-S.C.S. publication Urban Hydrology for Small Watersheds Technical Release No. 55 (TR 55).

All proposed stormwater inlet structures were designed to remain under inlet control throughout a design storm of the return frequency noted. Outlet protection for each discharging culvert was designed in accordance with the methodology for the "best management practice", in accordance with a publication entitled <u>New Hampshire</u> <u>Stormwater Manual Volume 2: Post-Construction Best Management Practices</u> <u>Selection and Design</u>. In addition, this publication served as the primary reference for the numerous temporary and permanent erosion control methods incorporated into the design of this project.

All design and analysis calculations performed using the referenced methodologies are attached to this report. The minimum time of concentrations used for the analysis is 6 minutes. These calculations document each catchment area, a breakdown of surface type, time of concentration, rainfall intensity, peak discharge volume, Manning's "n" value, peak velocity, and other descriptive design data for each watershed and pipe segment evaluated. In addition, the "Pre/Post Development Drainage Area Plans" graphically define and illustrate the extent of each watershed or catchment area investigated.

B. Pre-Development Drainage Conditions

The pre-development drainage model recognizes one (1) point of analysis (POA) as the appropriate points to compare pre vs. post-development peak rates of stormwater discharge.

The pre-development drainage model's POA are further described as follows:

> A Chase Brook

For a more visual description of the information presented in this section, please refer to the attached "Pre-Development Drainage Areas Plan" attached in the appendix of this report.

C. Post-Development Drainage Conditions:

The same POA that was identified in the pre-development scenario has been analyzed in the post-development scenario.

Overall, the design has maintained the drainage patterns to mimic the predevelopment conditions. Stormwater will discharge to the same eight points of analysis identified in the pre-development scenario. The improvements, however, also provide stormwater treatment and groundwater recharge for the new impervious areas created for the proposed development.

Subcatchment areas, times of concentration and analysis points have been provided showing how the pre-development and post-development areas best match to have a proper comparison.

Two detention ponds are being proposed on both parcels. The system has been designed to maintain the required permanent pool while providing treatment and has been sized to withstand a 50-year storm event.

Two Infiltration Basins are being proposed on both parcels. The ponds will collect runoff from the paved surfaces. The systems were sized to capture and infiltrate the required groundwater recharge volume and to not exceed capacity during the 50-year frequency storm.

One bioretention ponds is proposed on lot 17-2. The bioretention treats a portion of the paved area to the north of the proposed building. The system was sized to not exceed capacity during the 50-year storm.

One pocket pond is proposed on lot 17-3. The pocket pond treats paved area to the east and proposed roof runoff from buildings 2 and 3.

Swales are located along the northern and eastern sides of the parcels to direct offsite run-off around the proposed project and to Chase Brook.

The detailed hydrologic and hydraulic relationship of each sub-catchment is described within the HydroCAD stormwater modeling, also contained in the appendix of this report.

The peak stormwater runoff rate and total storm volume for the specific storm frequencies are presented and analyzed in the subsequent summary section of this report, for the point of analysis (Table 1 & 2).

D. Summary:

The subject site complies with the Town of Hudson Stormwater Management and Erosion Control Regulations and NHDES Regulations Env-Wq 1500 in regard to stormwater treatment and groundwater recharge volume. Proposed stormwater best management practices (BMP) are designed in accordance with the <u>New Hampshire Stormwater Manual Volume 2: Post-Construction Best Management Practices Selection and Design</u> and BMP worksheets provided by the New Hampshire Department of Environmental Services. In addition, stormwater discharges, in terms of peak rate of runoff and total volume, are consistent with the Town of Hudson Stormwater Regulations and NHDES Regulations Env-Wq 1500. The results are reported below in Table 1 and 2.

Table 1: Peak Runoff (Env-Wq 1507.06)

Site Pre-Development vs. Post Development (Peak Discharge Rate in cfs)									
Description	2-Y	ear	10-Year		25-Year		50-Year		
24-hr Rainfall	2.93	in/hr	4.44 in/hr		5.61 in/hr		6.72 in/hr		
	Pre	Post	Pre	Post	Pre	Post	Pre	Post	
Α	1.40	1.33	10.36	8.99	21.29	20.47	33.46	33.13	

Table 2: Peak Runoff (2-Year Frozen Conditions)

Site Pre-Development vs. Post Development – Frozen (Peak Discharge Rate in cfs)						
Description	Description 2-Year - Frozen					
24-hr Rainfall	2.93 in/hr					
	Pre	Post				
Α	43.28	24.25				

III. EROSION & SEDIMENTATION CONTROL PROVISIONS

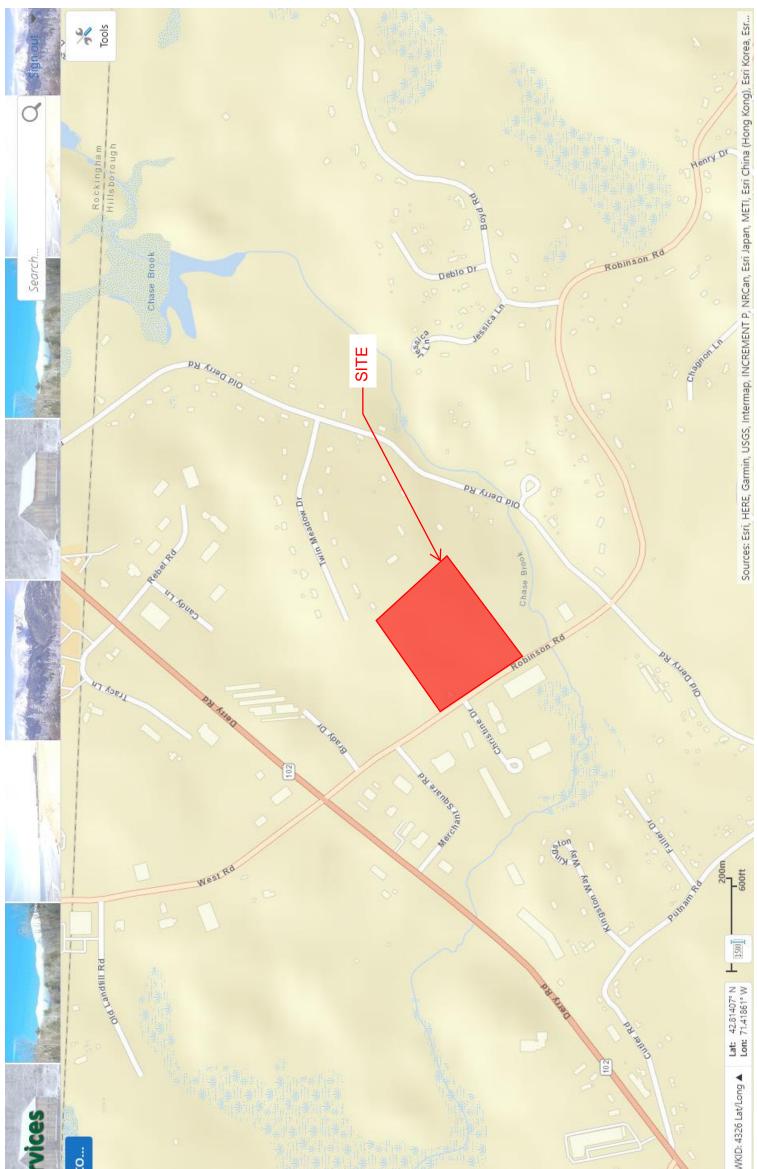
A. Temporary Erosion Control Measures

As an integral part of the engineering design of this site, an erosion and sedimentation control plan has been developed with the intent of limiting the potential for soil loss and associated receiving water quality degradation, both during and after the construction period. As the project plans indicate, traditional temporary erosion and sedimentation control devices and practices, such as siltation fencing, block and gravel sediment filters, and seeding have been specified for use during the construction period. In preparation of these provisions, reference was made to the <u>New Hampshire Stormwater Manual; Volume 3: Erosion and Sediment Temporary Controls During Construction</u>. Construction details for each temporary erosion control measure and practice specified have been added to the project plans.

B. Construction Sequence

A site-specific construction sequence sensitive to limiting soil loss due to erosion and associated water quality degradation was prepared specifically for this project and is shown on the project plans. As pointed out in the erosion control notes, it is important

for the contractor to recognize that proper judgment in the implementation of work will be essential if erosion is to be limited and protection of completed work is to be realized. Moreover, any specific changes in sequence and/or field conditions affecting the ability of specific erosion control measures to adequately serve their intended purpose should be reported to this office by the contractor. Furthermore, the contractor is encouraged to supplement specified erosion control measures during the construction period where and when in his/ her best judgment, additional protection is warranted.


C. Permanent Erosion Control Measures

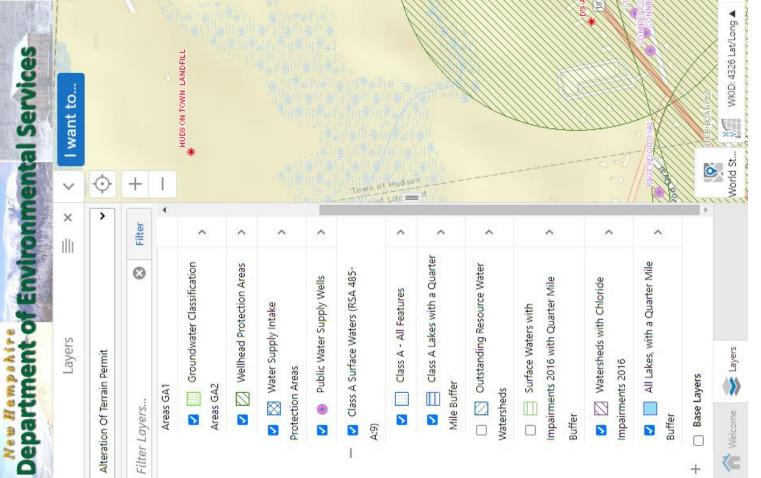
In the design of this site, consideration was given to limiting the potential for long-term erosion of completed improvements. As a result, several permanent erosion control measures were incorporated into the site design. These provisions include:

- **1)** Specification of a turf establishment schedule and seed mixture, utilizing materials and workmanship recognized as appropriate for the site conditions at hand;
- **2)** The design has provided catch basins with sumps to capture runoff and reduce the overland flow, thereby reducing erosion;
- 3) Construction of rip-rap at the outlet of the stormwater management areas;
- **4)** An Infiltration Basins, detention ponds, bioretention pond, and swales were designed to reduce runoff and volume.

8. SURFACE WATER IMPAIRMENTS

Surface Water Impairments

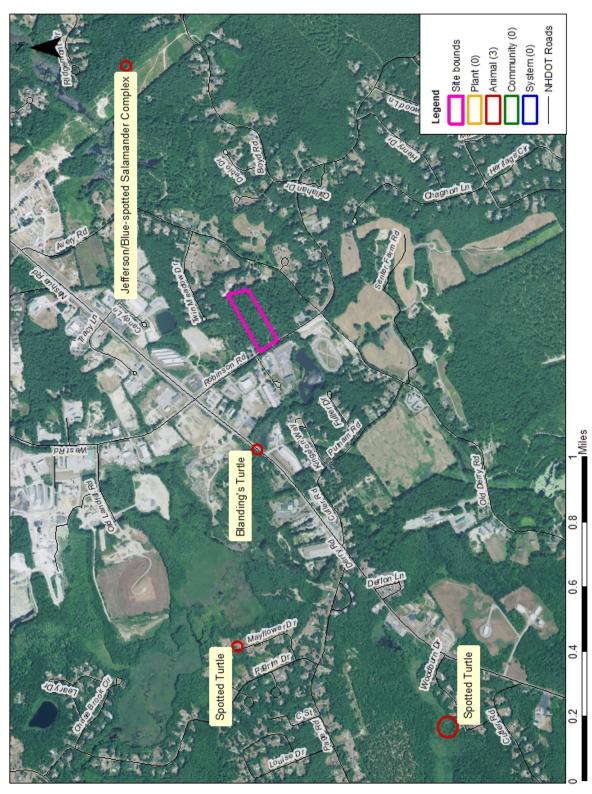
× < I want	∲ >	+	1					Town of	Hud so	n 11 			- and • a	levo por	
	74	Filter		^	^	^		^	^		^	^	^	^	
Layers	Alteration Of Terrain Permit	Filter Layers	Screening Layers	 Remediation Sites 	Communities Communities	 Designated Rivers Quartermile Buffer 	Groundwater Protection Areas	 Water Supply Intake Protection Areas 	 Public Water Supply Wells 	 Class A Surface Waters (RSA 485- A:9) 	Vatersheds	Surface Waters with Impairments 2016 with Quarter Mile Buffer	□ ☑ Watersheds with Chloride Impairments 2016	 All Lakes, with a Quarter Mile Buffer 	Base Layers


9. SCREENING LAYERS

Yools d m eu Bi ro ugh DI Boyd Rd Rd Robinson BURKE RESIDENCE Search. Brook Deblo Dr Chase * Sess, SITE Old Derry Rd CH. a Deiny Rd Twin Meadow Dr INC FMR. HUDS ON G Reiler LER. Christine Dr EASTERN PROPANE & OIL HUDSON IRVING HUDSON IRVING *HAMM EQUIPMENT SALES AND SERV organi Sula Protection SAND & GRAVEL * ALL WOOD RECYCLING Star He H # DUCHARME'S West Rd Rungistion Wa INENTAL PAVING Old Landfill Rd Lat: 42.82030° N

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esr...

1:500


AOT Screening Layers

10. NEW HAMPSHIRE NATURAL HERITAGE INVENTORY LETTER

	CONFIDENTIAL – NH Dept. of Environmental Services review
Memo	NH Natural Heritage Bureau
To:	Peter Madsen, Keach & Nordstrom Associates 10 Commerce Park North Suite 3 Bedford, NH 03110
From: Date: Re: cc:	Amy Lamb, NH Natural Heritage Bureau10/26/2020 (valid for one year from this date)Review by NH Natural Heritage BureauNHB File ID:NHB20-3096The project proposes the construction of three industrial buildings and accompanying parking lots and paved areas.Kim Tuttle
As requeste	As requested, I have searched our database for records of rare species and exemplary natural communities, with the following results.
Comments	Comments: Contact the NH Fish & Game Department to address wildlife concerns.
Vertebrate species Blanding's Turtle (<i>Ei</i> Jefferson/Blue-spott (<i>Ambystoma pop. 3</i>) Spotted Turtle (<i>Clem</i>	Vertebrate speciesState ¹ FederalNotesBlanding's Turtle (Emydoidea blandingit)EContact the NH Fish & Game Dept (see below).Jefferson/Blue-spotted Salamander ComplexContact the NH Fish & Game Dept (see below).(Ambystoma pop. 3)TContact the NH Fish & Game Dept (see below).
¹ Codes: "E" been added t <i>Contact for</i>	¹ Codes: "E" = Endangered, "T" = Threatened, "SC" = Special Concern, "" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list. An asterisk (*) indicates that the most recent report for that occurrence was more than 20 years ago. <i>Contact for all animal reviews: Kim Tuttle, NH F & G, (603) 271-6544.</i>
A negative informatior species. At	A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.
Departmen Division of (603) 271-2	Department of Natural and Cultural Resources Division of Forests and Lands (603) 271-2214 fax: 271-6488 Concord, NH 03301

NHB20-3096

New Hampshire Natural Heritage Bureau - Animal Record

Blanding's Turtle (Emydoidea blandingii)

Legal Status		Conservat	ion Status						
Federal: Not listed			pparently secure but with cause for concern						
State: Listed Enda	ngered	State: C	ritically imperiled due to rarity or vulnerability						
Description at this Location									
Conservation Rank:	Not ranked								
Comments on Rank:									
Detailed Description:	2018: Area 14520: 1 adult ob								
General Area: General Comments:	2018: Area 14520: Road cros	ssing betwee	n forested wetland and shrub wetland.						
Management									
Comments:									
Location									
	Nesenkeag Brook								
Managed By:									
County: Hillsborou	ah								
Town(s): Hudson	gn								
Size: .4 acres		Elevation:							
Precision: Within (but not necessarily restricted to) the area indicated on the map.									
Directions: 2018: Area 14520: Derry Road, Hudson, at the crossing of Chase Brook.									
Dates documented		_							
First reported: 2	2018-05-08	Last report	ed: 2018-05-08						

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

New Hampshire Natural Heritage Bureau - Animal Record

Jefferson/Blue-spotted Salamander Complex (Ambystoma pop. 3)

Legal Status	Conservation Status				
Federal: Not listed		Global: Not ranked (need more information)			
State: Not listed	S	State: Imperiled due to rarity or vulnerability			
Description at this L	ocation				
Conservation Rank:	Not ranked				
Comments on Rank:					
Detailed Description: General Area: General Comments: Management Comments:	2015: WA 88: Approximately 5 2015: WA 88:Vernal pool adjac	50 egg masses observed. cent to power line right-of-way.			
Location Survey Site Name: O Managed By:	Chase Brook				
County: Hillsborou	gh				
Town(s): Hudson	г	Elevation:			
Size: .4 acres	E	sievation:			
Precision: Within (but not necessarily restricted to) the area indicated on the map.					
Directions:					
Dates documented					
First reported: 2	2015-04-28 I	Last reported: 2015-04-28			

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

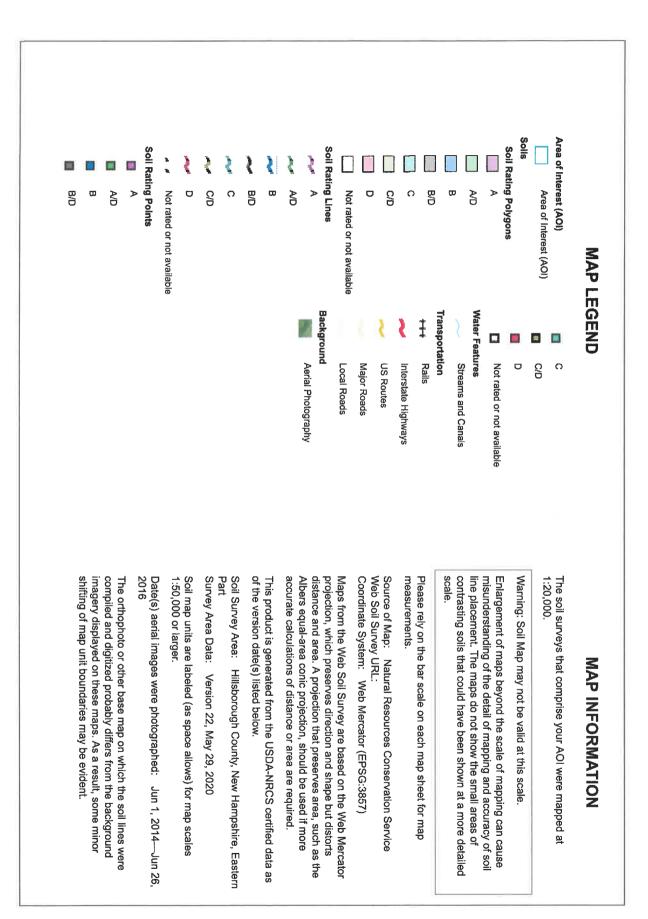
New Hampshire Natural Heritage Bureau - Animal Record

Spotted Turtle (Clemmys guttata)

Legal Status	Conservation Status					
Federal: Not listed	Global: Demonstrably widespread, abundant, and secure					
State: Listed Threa	atened State: Imperiled due to rarity or vulnerability					
Description at this Location						
Conservation Rank:						
Comments on Rank:						
Detailed Description:	2015: Area 14083: 1 adult observed, sex unknown.2005: Area 9306: 1 adult male turtle observed.1992: Four adult turtles observed: one 12-14 year old with carapace 114 cm and plastron 92 cm, sex undetermined; one ca. 12 year old very active female with carapace 125 cm and plastron 100 cm; one 11 or 12 year old very inactive female with carapace 127 cm and plastron 100 cm; and one 14-15 year old female with carapace 115 cm and plastron 92 cm.					
General Area:	2015: Area 14083: Residential yard [property backs up to wetlands associated with Chase Brook].2005: Area 9306: Residential lot surrounded by some agriculture.1992: Adjacent to a large wetland.					
General Comments:	1992: Drawings of each turtle's most distinctive spots and other markings included.					
Management						
Comments:						
T (*						
Location Survey Site Name: C Managed By: County: Hillsborou Town(s): Litchfield	Cutler Road, north of gh					
Size: 2.6 acres	Elevation:					
Precision: Within (but not necessarily restricted to) the area indicated on the map.						
north o	ns: 2015: Area 14083: In yard at 21 Mayflower Drive, Litchfield.2005: Area 9306: [Rte 3A ca. 2.8 miles north of the junction with Rte. 111 in Nashua.]1992: Adjacent to a large wetland at 19 Woodburn Drive, near Cutler Road, [west of Rte. 102, in the southeast corner of Litchfield.]					
Dates documented						
First reported: 1	992-06-08 Last reported: 2015-06-15					

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

CONFIDENTIAL – NH Dept. of Environmental Services review


11. WEB SOIL SURVEY

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
ВоА	Borohemists, nearly level	A/D	0.9	2.0%
СрВ	Chatfield-Hollis-Canton complex, 3 to 8 percent slopes	В	7.5	16.8%
СрС	Chatfield-Hollis-Canton complex, 8 to 15 percent slopes	В	28.2	63.5%
DeA	Deerfield loamy fine sand, 0 to 3 percent slopes	A	0.2	0.5%
HsB	Hinckley loamy sand, 3 to 8 percent slopes	A	6.7	15.1%
HsC	Hinckley loamy sand, 8 to 15 percent slopes	A	0.0	0.1%
PiA	Pipestone loamy sand, 0 to 3 percent slopes	A/D	0.9	2.0%
Totals for Area of Interest			44.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

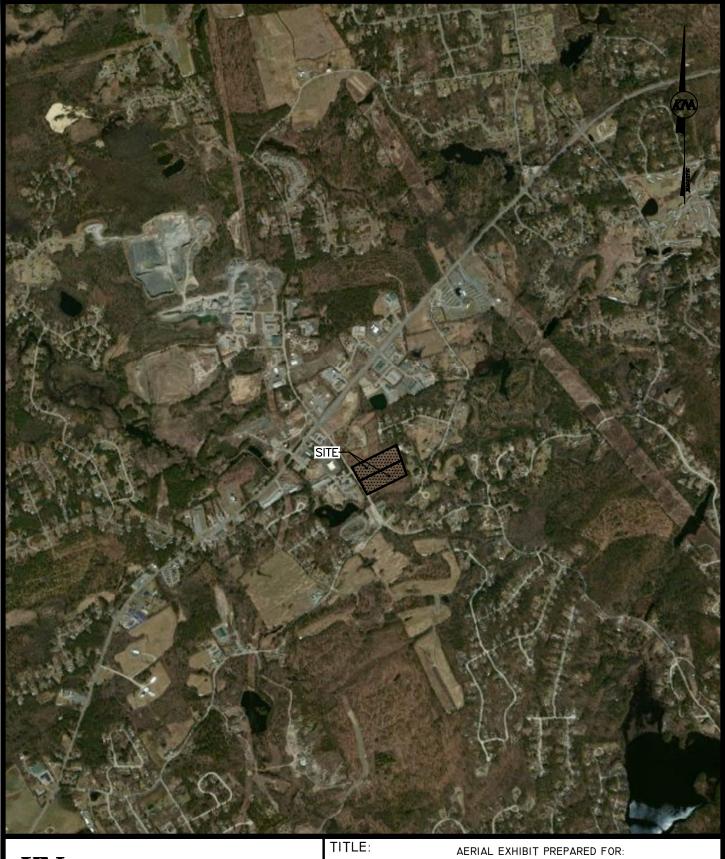
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

12. AERIAL PHOTOGRAPH

VAX.	KEACH-NORDSTROM ASSOCIATES,	
	KEACH-NORDSTROM ASSOCIATES,	INC.

Civil Engineering Land Surveying Landscape Architecture	MA
10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881	

TITLE: AERIAL EXHIBIT PREPARED FOR:					
S.L. CHASSE STEEL					
MAP 105; LOTS 17-2 & 17-3 - ROBINSON ROAD - HUDSON, NEW HAMPSHIRE					
DATE: 6/7/2022 JOB. NO. 20-0921-2					
SCALE: I" = 2,000'	SHEET I OF I				

13. SITE PHOTOGRAPHS

Photo No. 1: Looking northeast onto lot 17-3

Photo No. 2: Looking northwest along Robinson Road

Civil Engineering

Land Surveying

Landscape Architecture

Photo No. 3: Looking north northwest at the existing house on lot 17-2

<u>Photo No. 4:</u> Looking northwest onto lot 17-2

Civil Engineering	Land Surveying	Landse	Landscape Architecture		
10 Commerce Park North, Suite 3B	Bedford, NH 03110	Phone (603) 627-2881	Fax (603) 627-2915		

14. GRV CALCULATION

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

	ас	Area of HSG A soil that was replaced by impervious cover	0.40"
5.93	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.25	inches	Rd = Weighted groundwater recharge depth	
1.4825	ac-in	GRV = AI * Rd	
5,381	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

Total area for Lots 17-2 & 17-3 replaced by impervious cover is 5.93 acres.
Infiltration Basin 1 = 7,205 cf
Infiltration Basin 2 = 14,273 cf
Total = 21,478 cf - exceeds the required 5,381 cf.

15. BMP WORKSHEETS

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Infiltration Pond 1

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

Yes	_	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	← yes
2.61		A = Area draining to the practice	
1.98		A ₁ = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.73	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)	
1.91	ac-in	WQV= 1" x Rv x A	
6,942	-	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
1,736		25% x WQV (check calc for sediment forebay volume)	
-	ebay	Method of pretreatment? (not required for clean or roof runoff)	
1,798	_	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
7,205		V = Volume ¹ (attach a stage-storage table)	<u>></u> WQV
2,279	sf	A _{SA} = Surface area of the bottom of the pond	
1.00	iph	Ksat _{design} = Design infiltration rate ²	
36.6	hours	$I_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
214.75		E _{BTM} = Elevation of the bottom of the basin	
211.70		E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	-
211.70	feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
3.05	feet	D _{SHWT} = Separation from SHWT	<u>></u> * ³
3.1	feet		<u>></u> * ³
	ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	> 24"
	ft	D _T = Depth of trench, if trench proposed	
	Yes/No	If a trench or underground system is proposed, has observation well been provid	ed? ←yes
	-	If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements. ⁴	← yes
Yes	Yes/No	If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
3.0	:1	If a basin is proposed, pond side slopes.	<u>></u> 3:1
217.59	ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
217.92	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
218.00	ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES		10 peak elevation Elevation of the top of the trench? ⁵	← yes
YES		If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

ElevationSurfaceStorage $(feet)$ $(sq.ft)$ $(cubic-feet)$ 214.76 2.279 0 214.80 2.368 116 217.45 7.182 11.791 214.80 2.368 116 217.45 7.520 12.526 214.90 2.545 362 217.45 7.520 12.526 214.95 2.634 491 217.55 7.690 12.2066 215.05 2.812 764 217.55 7.859 13.295 215.05 2.812 764 217.55 8.197 14.097 215.10 2.906 217.70 8.366 14.934 215.25 3.078 1.265 215.25 3.167 1.262 217.55 8.574 15.365 215.25 3.345 1.687 217.95 9.213 16.709 215.45 3.256 1.522 217.55 3.700 2.392 215.65 3.700 2.392 215.65 3.700 2.392 215.65 3.700 2.392 215.65 3.700 2.392 215.65 3.700 2.392 215.65 3.700 2.392 215.65 3.781 2.209 215.65 3.789 2.579 215.65 3.781 2.209 215.65 4.414 3.372 216.60 4.594 4.694 216.25						
	Elevation	Surface	Storage	Elevation	Surface	Storage
	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
215.052.812764217.658.19714.097215.102.901906217.708.36614.511215.152.9891.054217.758.53614.934215.203.0781.205217.808.70515.365215.253.1671.362217.858.87415.805215.303.2561.522217.909.04416.252215.353.3451.687217.959.21316,709215.403.4331.857218.00 9.38217.174 215.553.7002.392215.663.8772.770215.563.7002.392215.653.7002.392215.653.7002.392215.854.2333.581215.804.1443.372215.854.2333.581215.954.4104.014216.004.4994.236216.054.5744.463372216.66216.75216.555.0235.903216.66216.754.673216.605.3987.205216.665.4737.477216.755.6238.032216.805.6978.315216.855.7728.602216.865.4737.477216.755.6238.032216.865.6778.315216.655.8478.892216.955.9229.186217.005.9979.484217.056.1669.788216.855.692<						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					8,197	
215.20 3,078 1,205 217.80 8,704 15,865 215.25 3,167 1,362 217.90 9,044 16,252 215.30 3,256 1,522 217.90 9,044 16,252 215.30 3,256 1,857 217.95 9,213 16,709 215.40 3,433 1,857 218.00 9,382 17,174 215.50 3,611 2,090 218.00 9,382 17,174 215.65 3,700 2,392 215.65 3,700 2,392 215.66 3,789 2,579 215.75 4,055 3,167 215.75 4,055 3,167 215.85 4,233 3,581 215.80 4,231 3,725 215.85 4,233 3,581 215.90 4,321 3,795 215.95 4,410 4,014 216.00 4,499 4,236 216.15 4,724 4,928 216.15 4,724 4,928 216.30 4,948 5,653 216.30 4,948 5,653 216.45 5,173	215.10	2,901	906	217.70	8,366	14,511
215.20 3,078 1,205 217.80 8,704 15,865 215.25 3,167 1,362 217.90 9,044 16,252 215.30 3,256 1,522 217.90 9,044 16,252 215.30 3,256 1,857 217.95 9,213 16,709 215.40 3,433 1,857 218.00 9,382 17,174 215.50 3,611 2,090 218.00 9,382 17,174 215.65 3,700 2,392 215.65 3,700 2,392 215.66 3,789 2,579 215.75 4,055 3,167 215.75 4,055 3,167 215.85 4,233 3,581 215.80 4,231 3,725 215.85 4,233 3,581 215.90 4,321 3,795 215.95 4,410 4,014 216.00 4,499 4,236 216.15 4,724 4,928 216.15 4,724 4,928 216.30 4,948 5,653 216.30 4,948 5,653 216.45 5,173	215.15	2,989	1,054	217.75		14,934
215.25 $3,167$ $1,362$ 217.85 $8,874$ $15,805$ 215.30 $3,256$ $1,522$ 217.90 $9,044$ $16,252$ 215.35 $3,345$ $1,687$ 217.95 $9,213$ $16,709$ 215.40 $3,433$ $1,857$ 218.00 $9,382$ $17,174$ 215.50 $3,611$ $2,209$ 215.55 $3,700$ $2,392$ 215.55 $3,700$ $2,392$ 215.65 $3,877$ $2,770$ 215.65 $3,877$ $2,770$ 215.80 $4,144$ $3,372$ 215.80 $4,144$ $3,372$ 215.80 $4,144$ $3,372$ 215.80 $4,144$ $3,372$ 215.95 $4,410$ $4,014$ 216.00 $4,499$ $4,236$ $4,248$ $4,248$ 216.15 $4,724$ $4,928$ $4,216$ $4,744$ 216.25 $4,874$ $5,408$ $4,643$ $4,643$ 216.25 $4,874$ $5,408$ $4,643$ $4,643$ 216.25 $4,874$ $5,408$ $4,643$ 216.25 $4,874$ $5,408$ $4,643$ 216.35 $5,023$ $5,903$ $5,633$ 216.45 $5,173$ $6,412$ $4,612$ 216.55 $5,323$ $6,937$ 216.66 $5,473$ $7,477$ 216.65 $5,772$ $8,602$ 216.86 $5,772$ $8,602$ 216.86 $5,772$ $8,602$ 216.85 $5,997$ $9,484$ 217.05 $6,166$ $9,788$	215.20			217.80		
215.30 3.256 1.522 217.90 9.044 16.252 215.35 3.345 1.687 217.95 9.213 16.709 215.40 3.433 1.857 218.00 9.382 17.174 215.50 3.611 2.209 215.55 3.700 2.392 215.60 3.789 2.579 215.65 3.777 2.770 215.75 4.055 3.167 $2.18.00$ 9.382 17.174 215.75 4.055 3.167 $2.18.00$ 9.382 17.174 215.80 4.144 3.372 215.85 4.233 3.561 215.80 4.144 3.372 215.85 4.233 3.561 215.95 4.410 4.014 4.014 4.014 216.00 4.499 4.236 4.694 216.05 4.574 4.463 4.694 216.10 4.649 4.694 216.20 4.799 5.166 216.20 4.799 5.166 216.35 5.023 5.903 216.65 5.248 6.673 216.65 5.248 6.673 216.65 5.473 7.477 216.66 5.623 8.032 216.86 5.697 8.315 216.85 5.772 8.602 216.85 5.922 9.186 217.00 5.997 9.484 217.05 6.643 10.751 217.25 6.843 10.751 217.25						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
215.40 3,433 1,857 218.00 9,382 17,174 215.50 3,611 2,209 215.55 3,700 2,392 215.55 3,700 2,392 215.65 3,877 2,770 215.50 3,966 2,966 215.75 4,055 3,167 215.80 4,144 3,372 215.80 4,144 3,372 215.85 4,233 3,581 215.90 4,321 3,795 215.95 4,410 4,014 216.00 4,499 4,236 216.00 4,499 4,236 216.00 4,694 4,694 216.10 4,649 4,694 216.15 4,724 4,928 216.20 4,799 5,166 216.45 5,173 6,412 216.30 4,948 5,653 216.35 5,023 5,903 216.40 5,098 6,156 216.45 5,173 6,412 216.50 5,248 6,673 216.65 5,473 7,477 216.65 5,473 7,477 216.60 5,847						
215.45 $3,522$ $2,030$ 215.55 $3,700$ $2,392$ 215.55 $3,700$ $2,392$ 215.65 $3,877$ $2,770$ 215.70 $3,966$ $2,966$ 215.75 $4,055$ $3,167$ 215.80 $4,144$ $3,372$ 215.85 $4,233$ $3,581$ 215.90 $4,321$ $3,795$ 215.95 $4,410$ $4,014$ 216.05 $4,574$ $4,463$ 216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.26 $4,874$ $5,408$ 216.30 $4,948$ $5,653$ 216.40 $5,093$ $5,903$ 216.55 $5,323$ $6,937$ 216.65 $5,473$ $7,477$ 216.60 $5,398$ $7,205$ 216.65 $5,772$ $8,602$ 216.85 $5,772$ $8,602$ 216.85 $5,922$ $9,186$ 217.00 $5,847$ $8,892$ 216.85 $5,922$ $9,186$ 217.10 $6,335$ $10,101$ 217.20 $6,674$ $10,751$ 217.25 $6,843$ $11,089$						
215.50 $3,611$ $2,209$ 215.55 $3,700$ $2,392$ 215.60 $3,789$ $2,579$ 215.65 $3,877$ $2,770$ 215.70 3.966 $2,966$ 215.75 $4,055$ $3,167$ 215.80 $4,144$ $3,372$ 215.80 $4,144$ $3,372$ 215.80 $4,233$ $3,581$ 215.95 $4,410$ $4,014$ 216.00 $4,499$ $4,236$ 216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.25 $4,874$ $5,408$ 216.30 $4,948$ $5,653$ 216.35 $5,023$ $5,903$ 216.40 $5,098$ $6,156$ 216.45 $5,173$ $6,412$ 216.65 $5,473$ $7,477$ 216.65 $5,677$ $8,315$ 216.65 $5,697$ $8,315$ 216.86 $5,697$ $8,315$ 216.86 $5,697$ $8,315$ 216.86 $5,697$ $8,315$ 216.86 $5,697$ $8,315$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.95 $5,922$ $9,186$ 217.10 $6,335$ $10,101$ 217.20 $6,674$ $10,751$ 217.20 $6,674$ $10,751$ 217.20 $6,674$ $10,751$				210.00	9,302	17,174
215.55 $3,700$ $2,392$ 215.60 $3,789$ $2,579$ 215.65 $3,877$ $2,770$ 215.70 $3,966$ $2,966$ 215.75 $4,055$ $3,167$ 215.80 $4,144$ $3,372$ 215.85 $4,233$ $3,581$ 215.90 $4,321$ $3,795$ 215.95 $4,410$ $4,014$ 216.05 $4,574$ $4,463$ 216.05 $4,574$ $4,463$ 216.15 $4,724$ $4,928$ 216.20 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.35 $5,023$ $5,903$ 216.40 $5,098$ $6,156$ 216.45 $5,173$ $6,412$ 216.65 $5,323$ $6,937$ 216.65 $5,323$ $6,937$ 216.65 $5,623$ $8,032$ 216.75 $5,623$ $8,032$ 216.85 $5,772$ $8,602$ 216.85 $5,772$ $8,602$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.90 $6,674$ $0,751$ 217.10 $6,335$ $10,101$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
215.60 $3,789$ $2,579$ 215.65 $3,877$ $2,770$ 215.75 $4,055$ $3,167$ 215.75 $4,055$ $3,167$ 215.80 $4,144$ $3,372$ 215.85 $4,233$ $3,581$ 215.90 $4,321$ $3,795$ 215.95 $4,410$ $4,014$ 216.00 $4,499$ $4,236$ 216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.25 $4,874$ $5,408$ 216.25 $4,874$ $5,408$ 216.30 $4,948$ $5,653$ 216.45 $5,173$ $6,412$ 216.50 $5,248$ $6,673$ 216.65 $5,473$ $7,477$ 216.65 $5,473$ $7,477$ 216.65 $5,623$ $8,032$ 216.65 $5,677$ $8,315$ 216.65 $5,697$ $8,315$ 216.85 $5,922$ $9,186$ 217.00 $5,997$ $9,484$ 217.10 $6,335$ $10,101$ 217.10 $6,335$ $10,101$ 217.20 $6,674$ $10,751$ 217.20 $6,674$ $10,751$ 217.25 $6,843$ $11,089$						
215.65 $3,877$ $2,770$ 215.70 $3,966$ $2,966$ 215.75 $4,055$ $3,167$ 215.80 $4,144$ $3,372$ 215.85 $4,233$ $3,581$ 215.90 $4,321$ $3,795$ 215.95 $4,410$ $4,014$ 216.00 $4,499$ $4,236$ 216.10 $4,649$ $4,694$ 216.15 $4,774$ $4,928$ 216.20 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.35 $5,023$ $5,903$ 216.40 $5,098$ $6,156$ 216.55 $5,323$ $6,937$ 216.65 $5,173$ $6,412$ 216.55 $5,323$ $6,937$ 216.65 $5,473$ $7,477$ 216.70 $5,548$ $7,753$ 216.75 $5,623$ $8,032$ 216.85 $5,972$ $9,186$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.95 $5,922$ $9,186$ 217.00 $5,997$ $9,484$ 217.05 $6,166$ $9,788$ 217.10 $6,335$ $10,101$ 217.25 $6,843$ $11,089$						
215.70 $3,966$ $2,966$ 215.75 $4,055$ $3,167$ 215.80 $4,144$ $3,372$ 215.85 $4,233$ $3,581$ 215.90 $4,321$ $3,795$ 215.95 $4,410$ $4,014$ 216.00 $4,999$ $4,236$ 216.05 $4,574$ $4,463$ 216.10 $4,649$ $4,694$ 216.25 $4,874$ $5,408$ 216.26 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.30 $4,948$ $5,653$ 216.30 $4,948$ $5,653$ 216.45 $5,173$ $6,412$ 216.55 $5,248$ $6,673$ 216.55 $5,248$ $6,673$ 216.65 $5,473$ $7,477$ 216.65 $5,473$ $7,477$ 216.65 $5,623$ $8,032$ 216.85 $5,772$ $8,602$ 216.85 $5,922$ $9,186$ 217.00 $5,947$ $8,892$ 216.95 $5,922$ $9,186$ 217.00 $5,943$ $10,011$ 217.15 $6,505$ $10,422$ 217.26 $6,674$ $10,751$ 217.25 $6,843$ $11,089$	215.60	3,789	2,579			
215.75 $4,055$ $3,167$ 215.80 $4,144$ $3,372$ 215.85 $4,233$ $3,581$ 215.95 $4,410$ $4,014$ 216.00 $4,499$ $4,236$ 216.05 $4,574$ $4,463$ 216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.20 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.35 $5,023$ $5,903$ 216.40 $5,098$ $6,156$ 216.45 $5,173$ $6,412$ 216.55 $5,248$ $6,673$ 216.65 $5,473$ $7,477$ 216.60 $5,398$ $7,205$ 216.80 $5,697$ $8,315$ 216.80 $5,697$ $8,315$ 216.85 $5,772$ $8,602$ 216.80 $5,697$ $8,315$ 216.85 $5,772$ $8,602$ 216.90 $5,847$ $8,892$ 216.95 $5,922$ $9,186$ 217.00 $5,947$ $0,788$ 217.10 $6,335$ $10,101$ 217.15 $6,505$ $10,422$ 217.26 $6,674$ $10,751$ 217.25 $6,843$ $11,089$	215.65	3,877	2,770			
215.75 $4,055$ $3,167$ 215.80 $4,144$ $3,372$ 215.85 $4,233$ $3,581$ 215.95 $4,410$ $4,014$ 216.00 $4,499$ $4,236$ 216.05 $4,574$ $4,463$ 216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.20 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.35 $5,023$ $5,903$ 216.40 $5,098$ $6,156$ 216.45 $5,173$ $6,412$ 216.55 $5,248$ $6,673$ 216.65 $5,473$ $7,477$ 216.60 $5,398$ $7,205$ 216.80 $5,697$ $8,315$ 216.80 $5,697$ $8,315$ 216.85 $5,772$ $8,602$ 216.80 $5,697$ $8,315$ 216.85 $5,772$ $8,602$ 216.90 $5,847$ $8,892$ 216.95 $5,922$ $9,186$ 217.00 $5,947$ $0,788$ 217.10 $6,335$ $10,101$ 217.15 $6,505$ $10,422$ 217.26 $6,674$ $10,751$ 217.25 $6,843$ $11,089$	215.70	3,966	2,966			
215.80 $4,144$ $3,372$ 215.85 $4,233$ $3,581$ 215.90 $4,321$ $3,795$ 215.95 $4,410$ $4,014$ 216.00 $4,499$ $4,236$ 216.05 $4,574$ $4,463$ 216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.20 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.30 $4,948$ $5,653$ 216.35 $5,023$ $5,903$ 216.40 $5,098$ $6,156$ 216.45 $5,173$ $6,412$ 216.50 $5,248$ $6,673$ 216.55 $5,323$ $6,937$ 216.60 $5,398$ $7,205$ 216.65 $5,473$ $7,477$ 216.75 $5,623$ $8,032$ 216.80 $5,697$ $8,315$ 216.80 $5,697$ $8,315$ 216.80 $5,697$ $8,315$ 216.95 $5,922$ $9,186$ 217.00 $5,847$ $8,892$ 216.95 $5,922$ $9,186$ 217.05 $6,166$ $9,788$ 217.10 $6,335$ $10,101$ 217.25 $6,843$ $1,089$						
215.85 $4,233$ $3,581$ 215.90 $4,321$ $3,795$ 215.95 $4,410$ $4,014$ 216.00 $4,499$ $4,236$ 216.05 $4,574$ $4,463$ 216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.20 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.30 $4,948$ $5,653$ 216.35 $5,023$ $5,903$ 216.40 $5,098$ $6,156$ 216.45 $5,173$ $6,412$ 216.55 $5,323$ $6,937$ 216.65 $5,473$ $7,477$ 216.65 $5,473$ $7,477$ 216.75 $5,623$ $8,032$ 216.80 $5,697$ $8,315$ 216.80 $5,697$ $8,315$ 216.85 $5,772$ $8,602$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.95 $5,922$ $9,186$ 217.00 $5,997$ $9,484$ 217.10 $6,335$ $10,101$ 217.15 $6,605$ $10,422$ 217.25 $6,843$ $11,089$						
215.90 $4,321$ $3,795$ 215.95 $4,410$ $4,014$ 216.00 $4,499$ $4,236$ 216.05 $4,574$ $4,463$ 216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.20 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.30 $4,948$ $5,653$ 216.30 $4,948$ $5,653$ 216.40 $5,098$ $6,156$ 216.55 $5,228$ $6,673$ 216.55 $5,323$ $6,937$ 216.60 $5,398$ $7,205$ 216.65 $5,473$ $7,477$ 216.65 $5,623$ $8,032$ 216.80 $5,697$ $8,315$ 216.80 $5,697$ $8,315$ 216.80 $5,697$ $8,315$ 216.95 $5,922$ $9,186$ 217.00 $5,997$ $9,484$ 217.05 $6,166$ $9,788$ 217.15 $6,505$ $10,422$ 217.25 $6,843$ $11,089$						
215.95 $4,410$ $4,014$ 216.00 $4,499$ $4,236$ 216.05 $4,574$ $4,463$ 216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.20 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.30 $4,948$ $5,653$ 216.35 $5,023$ $5,903$ 216.40 $5,098$ $6,156$ 216.55 $5,248$ $6,673$ 216.55 $5,323$ $6,937$ 216.65 $5,473$ $7,477$ 216.65 $5,473$ $7,477$ 216.75 $5,623$ $8,032$ 216.85 $5,697$ $8,315$ 216.85 $5,772$ $8,602$ 216.90 $5,847$ $8,892$ 216.95 $5,922$ $9,186$ 217.00 $5,997$ $9,484$ 217.10 $6,335$ $10,101$ 217.25 $6,843$ $11,089$						
216.00 $4,499$ $4,236$ 216.05 $4,574$ $4,463$ 216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.20 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.30 $4,948$ $5,653$ 216.35 $5,023$ $5,903$ 216.40 $5,098$ $6,156$ 216.45 $5,173$ $6,412$ 216.55 $5,323$ $6,937$ 216.65 $5,248$ $6,673$ 216.65 $5,473$ $7,477$ 216.65 $5,473$ $7,477$ 216.75 $5,623$ $8,032$ 216.85 $5,772$ $8,602$ 216.90 $5,847$ $8,892$ 216.90 $5,847$ $8,892$ 216.95 $5,922$ $9,186$ 217.00 $5,997$ $9,484$ 217.10 $6,335$ $10,101$ 217.20 $6,674$ $10,751$ 217.25 $6,843$ $11,089$,			
216.05 $4,574$ $4,463$ 216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.20 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.30 $4,948$ $5,653$ 216.35 $5,023$ $5,903$ 216.40 $5,098$ $6,156$ 216.45 $5,173$ $6,412$ 216.55 $5,323$ $6,937$ 216.60 $5,398$ $7,205$ 216.65 $5,473$ $7,477$ 216.65 $5,623$ $8,032$ 216.80 $5,697$ $8,315$ 216.85 $5,772$ $8,602$ 216.80 $5,997$ $9,484$ 217.00 $5,997$ $9,484$ 217.10 $6,335$ $10,101$ 217.25 $6,843$ $11,089$						
216.10 $4,649$ $4,694$ 216.15 $4,724$ $4,928$ 216.20 $4,799$ $5,166$ 216.25 $4,874$ $5,408$ 216.30 $4,948$ $5,653$ 216.35 $5,023$ $5,903$ 216.40 $5,098$ $6,156$ 216.45 $5,173$ $6,412$ 216.50 $5,248$ $6,673$ 216.65 $5,323$ $6,937$ 216.65 $5,398$ $7,205$ 216.65 $5,473$ $7,477$ 216.75 $5,623$ $8,032$ 216.80 $5,697$ $8,315$ 216.85 $5,772$ $8,602$ 216.90 $5,847$ $8,892$ 216.95 $5,922$ $9,186$ 217.00 $5,997$ $9,484$ 217.15 $6,505$ $10,422$ 217.20 $6,674$ $10,751$ 217.25 $6,843$ $11,089$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	216.15		4,928			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	216.20	4,799	5,166			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	216.25	4,874	5,408			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	216.30	4.948				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
216.905,8478,892216.955,9229,186217.005,9979,484217.056,1669,788217.106,33510,101217.156,50510,422217.206,67410,751217.256,84311,089	216.80					
216.955,9229,186217.005,9979,484217.056,1669,788217.106,33510,101217.156,50510,422217.206,67410,751217.256,84311,089	216.85	5,772	8,602			
217.005,9979,484217.056,1669,788217.106,33510,101217.156,50510,422217.206,67410,751217.256,84311,089	216.90	5,847	8,892			
217.005,9979,484217.056,1669,788217.106,33510,101217.156,50510,422217.206,67410,751217.256,84311,089	216.95	5,922	9,186			
217.056,1669,788217.106,33510,101217.156,50510,422217.206,67410,751217.256,84311,089						
217.106,33510,101217.156,50510,422217.206,67410,751217.256,84311,089						
217.156,50510,422217.206,67410,751217.256,84311,089						
217.20 6,674 10,751 217.25 6,843 11,089						
217.25 6,843 11,089						
			,			
217.30 7,013 11,430						
I	217.30	7,013	11,436			
				I		

Stage-Area-Storage for Pond B1: INFILTRATION POND 1

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Infiltration Pond 1

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

Yes		Have you reviewed Env-Wg 1508.06(a) to ensure that infiltration is allowed?	← yes
4.69	-	A = Area draining to the practice $A = Area draining to the practice Area draining to the pract$	- yes
1.86		$A_1 =$ Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
	ac-in	$WQV=1" \times Rv \times A$	
6,928	-	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
1,732	-	25% x WQV (check calc for sediment forebay volume)	
	ebay	Method of pretreatment? (not required for clean or roof runoff)	
1,800	•	V _{SED} = Sediment forebay volume, if used for pretreatment	> 25%WQV
14,273	cf	V = Volume ¹ (attach a stage-storage table)	<u>></u> WQV
2,693	_	A _{sA} = Surface area of the bottom of the pond	
1.00	iph	Ksat _{DESIGN} = Design infiltration rate ²	
	hours	$I_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	< 72-hrs
217.00	feet	E _{BTM} = Elevation of the bottom of the basin	
212.66	feet	E _{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	oit)
212.66	feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	: pit)
4.34	feet	D _{SHWT} = Separation from SHWT	<u>></u> * ³
4.3	feet	D _{ROCK} = Separation from bedrock	<u>></u> * ³
	ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	_ > 24"
	ft	D_T = Depth of trench, if trench proposed	4 - 10 ft
	Yes/No	If a trench or underground system is proposed, has observation well been provid	ed? ←yes
	-	If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements.	← yes
Yes	Yes/No	If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
3.0	:1	If a basin is proposed, pond side slopes.	<u>></u> 3:1
220.42	ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
221.36	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
222.00	ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES		10 peak elevation \leq Elevation of the top of the trench? ⁵	← yes
YES		If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

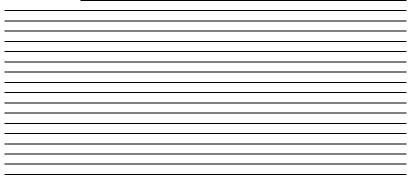
Designer's Notes:

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B4: INFILTRATION POND 2

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	Surface (sq-ft)	Storage (cubic-feet)	(feet)	Surface (sq-ft)	Storage (cubic-feet)
217.00	2,693	0	219.60	6,094	11,743
217.05	2,000	137	219.65	6,152	12,049
217.10	2,848	277	219.70	6,210	12,358
217.15	2,926	421	219.75	6,267	12,670
217.20	3,004	570	219.80	6,325	12,985
217.25	3,082	722	219.85	6,383	13,303
217.30	3,159	878	219.90	6,441	13,623
217.35	3,237	1,038	219.95	6,498	13,947
217.40	3,315	1,202	220.00	6,556	14,273
217.45	3,392	1,369	220.05	6,631	14,603
217.50	3,470	1,541	220.10	6,705	14,936
217.55	3,548	1,716	220.15	6,780	15,273
217.60	3,625	1,896	220.20	6,854	15,614
217.65	3,703	2,079	220.25	6,929	15,959
217.70	3,781	2,266	220.30	7,003	16,307
217.75	3,859	2,457	220.35	7,077	16,659
217.80	3,936	2,652	220.40	7,152	17,015
217.85	4,014	2,850	220.45	7,226	17,374
217.90	4,092	3,053	220.50	7,301	17,737
217.95 218.00	4,169 4,247	3,260 3,470	220.55 220.60	7,376 7,450	18,104 18,475
218.00	4,305	3,684	220.65	7,525	18,849
218.10	4,362	3,900	220.00	7,599	19,227
218.15	4,420	4,120	220.75	7,674	19,609
218.20	4,478	4,342	220.80	7,748	19,995
218.25	4,536	4,568	220.85	7,822	20,384
218.30	4,593	4,796	220.90	7,897	20,777
218.35	4,651	5,027	220.95	7,971	21,174
218.40	4,709	5,261	221.00	8,046	21,574
218.45	4,767	5,498	221.05	8,121	21,978
218.50	4,824	5,738	221.10	8,195	22,386
218.55	4,882	5,980	221.15	8,270	22,798
218.60	4,940	6,226	221.20	8,344	23,213
218.65	4,997	6,474	221.25	8,419	23,632
218.70	5,055	6,726	221.30	8,493	24,055
218.75	5,113	6,980	221.35	8,567	24,481
218.80	5,171	7,237	221.40	8,642	24,912
218.85	5,228	7,497	221.45	8,716	25,346
218.90 218.95	5,286 5,344	7,760 8,026	221.50 221.55	8,791 8,866	25,783 26,225
219.00	5,402	8,294	221.60	8,940	26,670
219.05	5,459	8,566	221.65	9,015	27,119
219.10	5,517	8,840	221.70	9,089	27,571
219.15	5,575	9,117	221.75	9,164	28,028
219.20	5,632	9,398	221.80	9,238	28,488
219.25	5,690	9,681	221.85	9,312	28,951
219.30	5,748	9,967	221.90	9,387	29,419
219.35	5,806	10,255	221.95	9,461	29,890
219.40	5,863	10,547	222.00	9,536	30,365
219.45	5,921	10,842			
219.50	5,979	11,139			
219.55	6,036	11,440			
			l		

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)


Type/Node	Namo	Bioretention Pond 2	
		f filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if	applicable.
Yes		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.07(a)
0.71	ac	A = Area draining to the practice	<i>aµ</i> .
0.43	-	A ₁ = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
	ac-in	WQV= 1" x Rv x A	
1,534	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
383	cf	25% x WQV (check calc for sediment forebay volume)	
1,150		75% x WQV (check calc for surface sand filter volume)	
Fore	ebay	Method of Pretreatment? (not required for clean or roof runoff)	
385		V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti		n if system IS NOT underdrained:	
	sf	A _{SA} = Surface area of the practice	
	iph	Ksat _{DESIGN} = Design infiltration rate ¹	
		If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
Calculate ti	me to drair	n if system IS underdrained:	
222.90	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
0.28	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
3.04	hours	T _{DRAIN} = Drain time = 2WQV/Q _{WQV}	<u><</u> 72-hrs
219.50	feet	E _{FC} = Elevation of the bottom of the filter course material ²	
218.84	feet	E_{UD} = Invert elevation of the underdrain (UD), if applicable	
216.67	feet	E _{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
216.67	feet	EROCK = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
0.66	feet	D _{FC to UD} = Depth to UD from the bottom of the filter course	<u>></u> 1'
2.83	feet	D _{FC to ROCK} = Depth to bedrock from the bottom of the filter course	> 1'
2.83	-	$D_{FC \text{ to SHWT}} = Depth to SHWT from the bottom of the filter course$	_ ≥1'
223.16		Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
224.00		Elevation of the top of the practice	
YES	-	50 peak elevation < Elevation of the top of the practice	← yes
If a surface	sand filter	or underground sand filter is proposed:	•
YES	ас	Drainage Area check.	< 10 ac
	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> 75%WQV
	inches	D _{FC} = Filter course thickness	18", or 24" if
	inches	D _{FC} = Thtel course thekness	within GPA
Sheet		Note what sheet in the plan set contains the filter course specification.	
	Yes/No	Access grate provided?	← yes
		is proposed:	
YES	ас	Drainage Area no larger than 5 ac?	← yes
1,659	ct	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
18.0	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	- 12	Note what sheet in the plan set contains the filter course specification	
3.0		Pond side slopes	> 3:1
Sheet	-	Note what sheet in the plan set contains the planting plans and surface cover	
If porous pa	avement is	proposed:	
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres	A _{SA} = Surface area of the pervious pavement	
	:1	Ratio of the contributing area to the pervious surface area	≤5:1
	inches	D _{FC} = Filter course thickness	12", or 18" if
	-		within GPA
		Marke such as also as in the subscription of the City	mod. 304.1 (see
Sheet		Note what sheet in the plan set contains the filter course spec.	spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

 Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes: The system will be lined and underdrained

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
221.00	424	0	223.60	1,552	2,507
221.05	443	22	223.65	1,576	2,585
221.10 221.15	463 482	44 68	223.70 223.75	1,599 1,622	2,664 2,745
221.13	501	93	223.80	1,645	2,743
221.25	521	118	223.85	1,668	2,910
221.30	540	145	223.90	1,692	2,994
221.35	559	172	223.95	1,715	3,079
221.40 221.45	578 598	200 230	224.00	1,738	3,165
221.50	617	260			
221.55	636	292			
221.60	656	324			
221.65	675	357			
221.70 221.75	694 714	391 427			
221.80	733	463			
221.85	752	500			
221.90	771	538			
221.95 222.00	791 810	577 617			
222.00	833	658			
222.10	856	700			
222.15	880	744			
222.20 222.25	903 926	788 834			
222.23	949	881			
222.35	972	929			
222.40	996	978			
222.45	1,019	1,028			
222.50 222.55	1,042 1,065	1,080 1,133			
222.60	1,088	1,187			
222.65	1,112	1,242			
222.70	1,135	1,298			
222.75 222.80	1,158 1,181	1,355 1,413			
222.85	1,204	1,473			
222.90	1,228	1,534			
222.95	1,251	1,596			
223.00 223.05	1,274 1,297	1,659 1,723			
223.10	1,320	1,789			
223.15	1,344	1,855			
223.20	1,367	1,923			
223.25 223.30	1,390 1,413	1,992 2,062			
223.35	1,436	2,002			
223.40	1,460	2,206			
223.45	1,483	2,279			
223.50 223.55	1,506 1,529	2,354 2,430			
220.00	1,020	2,700			

Stage-Area-Storage for Pond B5: BIORETENTION POND 1

STORMWATER POND DESIGN CRITERIA

Env-Wq 1508.03

Type/Node Name:	Pocket Pond 1	
	Enter the type of stormwater pond (e.g., Wet Pond) and the node name in the dr	rainage analysis, if applicable.
2.24 ac	A = Area draining to the practice	
1.58 ac	A ₁ = Impervious area draining to the practice	
0.71 decimal	I = Percent impervious area draining to the practice, in decimal form	
0.68 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
1.53 ac-in	WQV= 1" x Rv x A	
5,568 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
557 cf	10% x WQV (check calc for sediment forebay and micropool volume)	
2,784 cf	50% x WQV (check calc for extended detention volume)	
600 cf	V _{SED} = Sediment forebay volume	<u>></u> 10%WQV
6,096 cf	V _{PP} = Permanent pool volume (volume below the lowest invert of the ou stage-storage table.	utlet structure) Attach
no cf	Extended Detention? ¹	<u><</u> 50% WQV
-	V _{ED} = Volume of extended detention (if "yes" is given in box above)	
	E _{ED} = Elevation of WQV if "yes" is given in box above ²	
- cfs	$2Q_{avg}$ = 2* V _{ED} / 24 hrs * (1hr / 3600 sec) (used to check against Q_{EDmax} b	
cfs	Q _{EDmax} = Discharge at the E _{ED} (attach stage-discharge table)	< 2Q _{avg}
- hours	T_{ED} = Drawdown time of extended detention = $2V_{ED}/Q_{EDmax}$	<u>></u> 24-hrs
3.00 :1	Pond side slopes	<u>></u> 3:1
231.50 ft	Elevation of seasonal high water table	
232.50 ft	Elevation of lowest pond outlet	
226.50 ft	Max floor = Maximum elevation of pond bottom (ft)	
223.50 ft	Minimum floor (to maintain depth at less than 8')	<u><</u> 8 ft
229.00 ft	Elevation of pond floor ³	<u><</u> Max floor and > Min floor
211.00 ft	Length of the flow path between the inlet and outlet at mid-depth	
34.00 ft	Average width ([average of the top width + average bottom width]/2)	
6.21 :1	Length to average width ratio	<u>></u> 3:1
Yes Yes/No	Is the perimeter curvilinear.	← Yes
Yes Yes/No	Are the inlet and outlet located as far apart as possible.	← Yes
No Yes/No	Is there a manually-controlled drain to dewater the pond over a 24hr pe	eriod?
If no state wh	y: Pond will be pumped if maintainence is required	
	What mechanism is proposed to prevent the outlet structure from clogg	ging (applicable for
Trash Rack	orifices/weirs with a dimension of <6")?	
236.13 ft	Peak elevation of the 50-year storm event	
237.00 ft	Berm elevation of the pond	,
YES	50 peak elevation \leq the berm elevation?	←yes

1. If the entire WQV is stored in the perm. pool, there is no extended det., and the following five lines do not apply.

2. This is the elevation of WQV if the hydrologic analysis is set up to include the permanent pool storage in the node description.

3. If the pond floor elevation is above the max floor elev., a hydrologic budget must be submitted to demonstrate that a minimum depth of 3 feet can be maintained. (First check whether a revised "lowest pond outlet" elev. will resolve the issue.)

Designer's Notes:

Pocket Pond is lined and no seasonal high water found.

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
229.00	550		234.20	6,789	15,747
229.10	600	57	234.30	6,929	16,433
229.20	650	120	234.40		17,133
				7,068	
229.30	700	188	234.50	7,208	17,847
229.40	750	260	234.60	7,347	18,575
229.50	800	338	234.70	7,486	19,316
229.60	850	420	234.80	7,626	20,072
229.70	900	507	234.90	7,766	20,841
229.80	950	600	235.00	7,905	21,625
229.90	1,000	698	235.10	8,044	22,422
230.00	1,050	800	235.20	8,184	23,234
230.10	1,121	909	235.30	8,324	24,059
230.20	1,193	1,024	235.40	8,463	24,899
230.30	1,265	1,147	235.50	8,603	25,752
230.40	1,336	1,277	235.60	8,742	26,619
230.50	1,408	1,414	235.70	8,881	27,500
230.60	1,400	1,559	235.80	9,021	28,395
	1,550	1,539		9,161	
230.70			235.90		29,304
230.80	1,622	1,869	236.00	9,300	30,228
230.90	1,694	2,035	236.10	9,456	31,165
231.00	1,765	2,208	236.20	9,613	32,119
231.10	1,836	2,388	236.30	9,770	33,088
231.20	1,908	2,575	236.40	9,926	34,073
231.30	1,980	2,769	236.50	10,083	35,073
231.40	2,051	2,971	236.60	10,239	36,089
231.50	2,123	3,179	236.70	10,395	37,121
231.60	2,194	3,395	236.80	10,552	38,168
231.70	2,265	3,618	236.90	10,709	39,231
231.80	2,337	3,848	237.00	10,865	40,310
231.90	2,409	4,086			
232.00	2,480	4,330			
232.10	2,901	4,599			
232.20	3,322	4,910			
232.30	3,743	5,263			
232.40	4,164	5,659			
232.50	4,585	6,096			
232.60	4,713	6,561			
232.70	4,842	7,039			
232.80	4,970	7,530			
232.90					
	5,098	8,033			
233.00	5,227	8,549			
233.10	5,355	9,078			
233.20	5,483	9,620			
233.30	5,612	10,175			
233.40	5,740	10,743			
233.50	5,868	11,323			
233.60	5,997	11,916			
233.70	6,125	12,522			
233.80	6,253	13,141			
233.90	6,382	13,773			
234.00	6,510	14,418			
234.10	6,649	15,075			

Stage-Area-Storage for Pond B2: POCKET POND 1

16. EXTREME PRECIPITATION TABLES

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

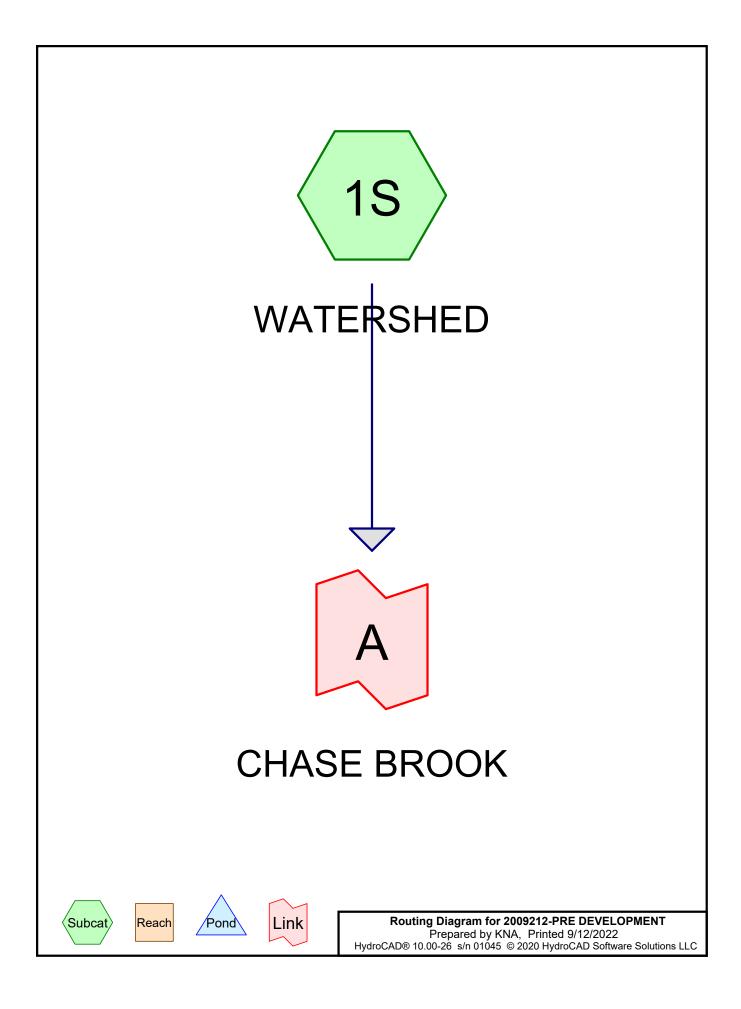
Smoothing	Yes
State	New Hampshire
Location	
Longitude	71.409 degrees West
Latitude	42.816 degrees North
Elevation	0 feet
Date/Time	Mon, 05 Oct 2020 10:08:16 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.42	0.52	0.68	0.85	1.06	1yr	0.73	1.01	1.23	1.55	1.95	2.46	2.69	1yr	2.18	2.59	3.01	3.69	4.30	1yr
2yr	0.33	0.51	0.63	0.83	1.05	1.31	2yr	0.90	1.21	1.52	1.89	2.36	2.93	3.26	2yr	2.60	3.13	3.64	4.35	4.94	2yr
5yr	0.39	0.61	0.76	1.02	1.31	1.66	5yr	1.13	1.51	1.92	2.40	2.99	3.71	4.15	5yr	3.28	3.99	4.61	5.46	6.17	5yr
10yr	0.44	0.69	0.87	1.19	1.54	1.98	10yr	1.33	1.78	2.30	2.88	3.58	4.44	4.98	10yr	3.93	4.79	5.52	6.49	7.31	10yr
25yr	0.52	0.83	1.05	1.45	1.93	2.49	25yr	1.66	2.23	2.91	3.66	4.55	5.61	6.35	25yr	4.97	6.11	7.02	8.15	9.14	25yr
50yr	0.58	0.94	1.21	1.69	2.29	2.99	50yr	1.97	2.65	3.50	4.40	5.46	6.72	7.64	50yr	5.94	7.35	8.41	9.69	10.83	50yr
100yr	0.67	1.09	1.41	1.99	2.71	3.56	100yr	2.34	3.14	4.18	5.27	6.54	8.04	9.19	100yr	7.11	8.84	10.09	11.53	12.84	100yr
200yr	0.77	1.25	1.62	2.33	3.22	4.25	200yr	2.78	3.72	5.01	6.32	7.85	9.62	11.06	200yr	8.52	10.64	12.11	13.72	15.22	200yr
500yr	0.92	1.52	1.98	2.88	4.04	5.38	500yr	3.48	4.67	6.35	8.03	9.97	12.21	14.15	500yr	10.81	13.60	15.42	17.28	19.07	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.35	0.42	0.57	0.70	0.81	1yr	0.61	0.79	1.07	1.30	1.66	2.27	2.54	1yr	2.01	2.44	2.74	3.27	3.94	1yr
2yr	0.31	0.48	0.59	0.81	0.99	1.19	2yr	0.86	1.17	1.36	1.78	2.29	2.83	3.16	2yr	2.51	3.04	3.53	4.21	4.80	2yr
5yr	0.36	0.55	0.68	0.94	1.19	1.41	5yr	1.03	1.38	1.61	2.09	2.67	3.47	3.82	5yr	3.07	3.67	4.27	5.06	5.72	5yr
10yr	0.39	0.60	0.74	1.04	1.34	1.60	10yr	1.16	1.57	1.82	2.37	3.02	4.00	4.39	10yr	3.54	4.22	4.92	5.82	6.51	10yr
25yr	0.44	0.68	0.84	1.20	1.58	1.88	25yr	1.36	1.83	2.15	2.78	3.50	4.83	5.25	25yr	4.28	5.05	5.97	7.01	7.63	25yr
50yr	0.48	0.73	0.92	1.32	1.77	2.13	50yr	1.53	2.09	2.44	3.16	3.94	5.58	6.02	50yr	4.94	5.79	6.92	8.07	8.61	50yr
100yr	0.53	0.80	1.00	1.45	1.99	2.41	100yr	1.71	2.36	2.77	3.58	4.43	5.97	6.91	100yr	5.28	6.64	8.04	9.30	9.70	100yr
200yr	0.58	0.88	1.11	1.61	2.25	2.74	200yr	1.94	2.68	3.12	4.08	5.01	6.78	7.92	200yr	6.00	7.62	9.36	10.75	10.91	200yr
500yr	0.66	0.99	1.27	1.85	2.63	3.26	500yr	2.27	3.18	3.70	4.86	5.92	8.00	9.54	500yr	7.08	9.17	11.46	13.05	12.72	500yr


Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.31	0.47	0.58	0.78	0.95	1.11	1yr	0.82	1.09	1.26	1.64	2.08	2.66	2.85	1yr	2.36	2.74	3.30	4.05	4.67	1yr
2yr	0.35	0.54	0.66	0.90	1.11	1.30	2yr	0.96	1.27	1.48	1.91	2.45	3.06	3.41	2yr	2.71	3.28	3.77	4.49	5.17	2yr
5yr	0.43	0.67	0.83	1.14	1.45	1.65	5yr	1.25	1.61	1.88	2.41	3.02	4.01	4.50	5yr	3.55	4.33	4.96	5.85	6.60	5yr
10yr	0.53	0.81	1.00	1.40	1.81	2.01	10yr	1.56	1.97	2.26	2.88	3.59	4.97	5.59	10yr	4.40	5.38	6.13	7.17	8.03	10yr
25yr	0.68	1.03	1.29	1.84	2.42	2.60	25yr	2.09	2.54	2.91	3.64	4.46	6.61	7.45	25yr	5.85	7.17	8.10	9.36	10.44	25yr
50yr	0.83	1.26	1.56	2.25	3.03	3.17	50yr	2.61	3.10	3.53	4.35	5.27	8.21	9.28	50yr	7.27	8.93	9.99	11.43	12.76	50yr
100yr	1.01	1.53	1.91	2.76	3.79	3.86	100yr	3.27	3.77	4.28	5.22	6.23	10.53	11.55	100yr	9.32	11.11	12.31	13.97	15.59	100yr
200yr	1.23	1.85	2.35	3.40	4.74	4.69	200yr	4.09	4.59	5.17	6.24	7.37	13.16	14.37	200yr	11.65	13.82	15.17	17.08	19.08	200yr
500yr	1.61	2.40	3.09	4.49	6.39	6.08	500yr	5.51	5.94	6.67	7. 9 0	9.19	17.69	19.20	500yr	15.65	18.46	19.99	22.27	24.93	500yr

Powered by ACIS

Northeast Regional Climate Center

17. HYDROCAD DRAINAGE ANALYSIS

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
41,780	61.0	>75% Grass cover, Good, HSG B (1S)
15,690	98.0	Paved parking, HSG B (1S)
5,258	98.0	Roofs, HSG B (1S)
1,134,136	55.0	Woods, Good, HSG B (1S)

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
1,196,864	HSG B	1S
0	HSG C	
0	HSG D	
0	Other	

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

 Type III 24-hr
 2-YEAR Rainfall=2.93"

 Printed
 9/12/2022

 s LLC
 Page 4

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: WATERSHED

Runoff Area=1,196,864 sf 1.75% Impervious Runoff Depth>0.20" Flow Length=1,822' Tc=32.1 min CN=56.0 Runoff=1.40 cfs 19,540 cf

Link A: CHASE BROOK

Inflow=1.40 cfs 19,540 cf Primary=1.40 cfs 19,540 cf

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: WATERSHED

Runoff = 1.40 cfs @ 12.74 hrs, Volume= 19,540 cf, Depth> 0.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

_	A	rea (sf)	CN	Descriptio	n	
		5,258	98.0	Roofs, HS	SG B	
		15,690	98.0	Paved pa	rking, HSG	В
		41,780	61.0	>75% Gra	ass cover, (Good, HSG B
	1,1	34,136	55.0	Woods, G	lood, HSG	В
	1,1	96,864	56.0	Weighted	Average	
	1,1	75,916	55.2	98.25% P	ervious Are	ea
		20,948	98.0	1.75% lm	pervious A	rea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.1	50	0.0500	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.84"
	16.8	1,340	0.0710	1.33		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	6.3	432	0.0270	1.15		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	20.4	1 0 0 0	Tatal			

32.1 1,822 Total

Summary for Link A: CHASE BROOK

Inflow Are	a =	1,196,864 sf,	1.75% Impervious,	Inflow Depth >	0.20"	for 2-YEAR event
Inflow	=	1.40 cfs @ 1	12.74 hrs, Volume=	19,540 c	f	
Primary	=	1.40 cfs @ 1	12.74 hrs, Volume=	19,540 c	f, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

 Type III 24-hr
 10-YEAR Rainfall=4.44"

 Printed
 9/12/2022

 ns LLC
 Page 6

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: WATERSHED

Runoff Area=1,196,864 sf 1.75% Impervious Runoff Depth>0.76" Flow Length=1,822' Tc=32.1 min CN=56.0 Runoff=10.36 cfs 75,434 cf

Link A: CHASE BROOK

Inflow=10.36 cfs 75,434 cf Primary=10.36 cfs 75,434 cf

Summary for Subcatchment 1S: WATERSHED

Runoff = 10.36 cfs @ 12.56 hrs, Volume= 75,434 cf, Depth> 0.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

	A	rea (sf)	CN	Descriptio	n	
		5,258	98.0	Roofs, HS	SG B	
		15,690	98.0	Paved pa	rking, HSG	В
		41,780	61.0	>75% Ġra	ass cover, (Good, HSG B
	1,1	34,136	55.0	Woods, G	Good, HSG	В
	1,1	96,864	56.0	Weighted	Average	
	1,1	75,916	55.2	98.25% P	ervious Are	ea
		20,948	98.0	1.75% lm	pervious A	rea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.1	50	0.0500	0.09		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.84"
	16.8	1,340	0.0710	1.33		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	6.3	432	0.0270	1.15		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
_						

32.1 1,822 Total

Summary for Link A: CHASE BROOK

Inflow Are	a =	1,196,864 sf, 1	.75% Impervious,	Inflow Depth > 0.76"	for 10-YEAR event
Inflow	=	10.36 cfs @ 12.9	56 hrs, Volume=	75,434 cf	
Primary	=	10.36 cfs @ 12.	56 hrs, Volume=	75,434 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

2009212-PRE DEVELOPMENTType III 24-hr2Prepared by KNAHydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

 Type III 24-hr
 25-YEAR Rainfall=5.61"

 Printed
 9/12/2022

 ns LLC
 Page 8

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: WATERSHED Runoff Area=1,196,864 sf 1.75% Impervious Runoff Depth>1.35" Flow Length=1,822' Tc=32.1 min CN=56.0 Runoff=21.29 cfs 135,110 cf

Link A: CHASE BROOK

Inflow=21.29 cfs 135,110 cf Primary=21.29 cfs 135,110 cf

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: WATERSHED

Runoff = 21.29 cfs @ 12.52 hrs, Volume= 135,110 cf, Depth> 1.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

_	A	rea (sf)	CN	Descriptio	n		
	5,258 98.0 Roofs, HSG B			Roofs, HS	SG B		
	15,690 98.0			Paved pa	Paved parking, HSG B		
	41,780 61.0		>75% Grass cover, Good, HSG B				
_	1,134,136 55.0		Woods, G	Woods, Good, HSG B			
	1,1	96,864	56.0	Weighted	Average		
	1,1	75,916	55.2	98.25% P	ervious Are	ea	
	20,948 98.0		98.0	1.75% lm	pervious A	rea	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
			(,)				
	9.1	50	0.0500	0.09		Sheet Flow,	
	9.1	50				Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.84"	
	9.1 16.8	50 1,340					
			0.0500	0.09		Woods: Light underbrush n= 0.400 P2= 2.84"	
			0.0500	0.09		Woods: Light underbrush n= 0.400 P2= 2.84" Shallow Concentrated Flow,	
	16.8	1,340	0.0500 0.0710	0.09 1.33		Woods: Light underbrush n= 0.400 P2= 2.84" Shallow Concentrated Flow, Woodland Kv= 5.0 fps	

32.1 1,822 Total

Summary for Link A: CHASE BROOK

Inflow Are	a =	1,196,864 sf,	1.75% Impervious,	Inflow Depth > 1.38	5" for 25-YEAR event
Inflow	=	21.29 cfs @	12.52 hrs, Volume=	135,110 cf	
Primary	=	21.29 cfs @	12.52 hrs, Volume=	135,110 cf, At	ten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

2009212-PRE DEVELOPMENT Type III 24 Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

 Type III 24-hr
 50-YEAR Rainfall=6.72"

 Printed
 9/12/2022

 ns LLC
 Page 10

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: WATERSHED Runoff Area=1,196,864 sf 1.75% Impervious Runoff Depth>2.02" Flow Length=1,822' Tc=32.1 min CN=56.0 Runoff=33.46 cfs 201,098 cf

Link A: CHASE BROOK

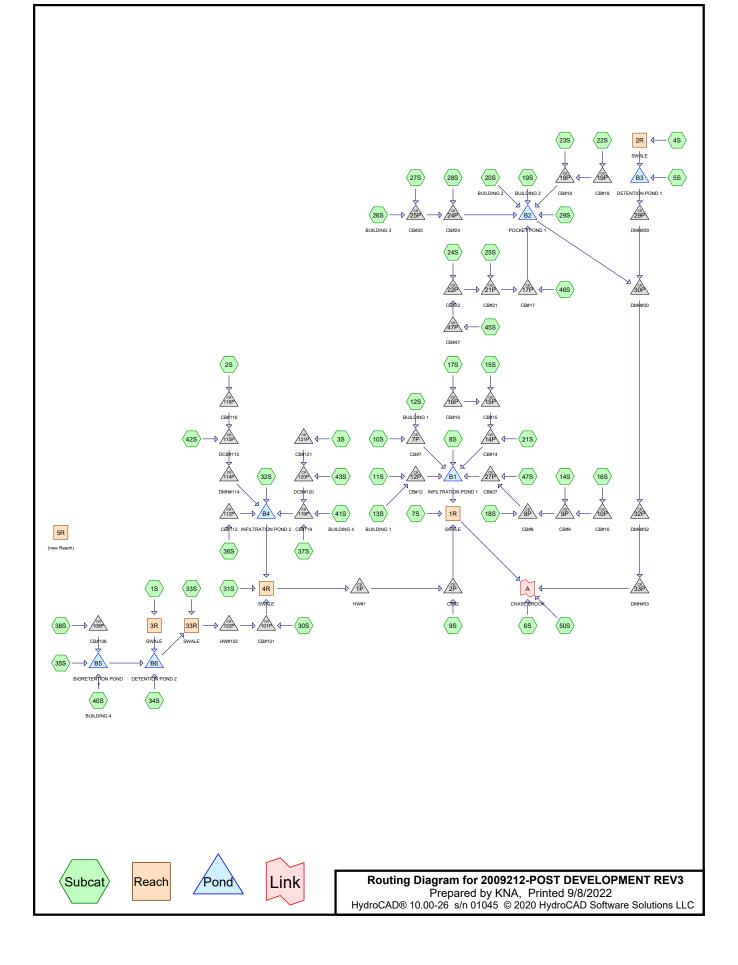
Inflow=33.46 cfs 201,098 cf Primary=33.46 cfs 201,098 cf

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: WATERSHED

Runoff = 33.46 cfs @ 12.49 hrs, Volume= 201,098 cf, Depth> 2.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 50-YEAR Rainfall=6.72"


_	A	rea (sf)	CN	Descriptio	n	
	5,258 98.0 Roofs, HSG B			Roofs, HS	SG B	
15,690 98.0 P			Paved pa	Paved parking, HSG B		
	41,780 61.0		>75% Grass cover, Good, HSG B			
_	1,1	34,136	55.0	Woods, G	ood, HSG	В
	1,196,864 56.0 V		Weighted	Average		
	1,175,916 55.2		55.2	98.25% P	ervious Are	ea
	20,948 98.0 1.75% Impervious Ar		pervious Ai	rea		
	_				- ··	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(foot)		(ff/000)	(ofc)	
-	(11111)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
_	9.1	<u>(leet)</u> 50	0.0500	0.09	(015)	Sheet Flow,
_		50	0.0500	0.09	(CIS)	Woods: Light underbrush n= 0.400 P2= 2.84"
_		· /		()	(015)	Woods: Light underbrush n= 0.400 P2= 2.84" Shallow Concentrated Flow,
_	9.1 16.8	50 1,340	0.0500 0.0710	0.09 1.33	(015)	Woods: Light underbrush n= 0.400 P2= 2.84" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
_	9.1	50	0.0500	0.09	(015)	Woods: Light underbrush n= 0.400 P2= 2.84" Shallow Concentrated Flow, Woodland Kv= 5.0 fps Shallow Concentrated Flow,
_	9.1 16.8	50 1,340	0.0500 0.0710	0.09 1.33	(015)	Woods: Light underbrush n= 0.400 P2= 2.84" Shallow Concentrated Flow, Woodland Kv= 5.0 fps

32.1 1,822 Total

Summary for Link A: CHASE BROOK

Inflow Are	a =	1,196,864 sf,	1.75% Impervious,	Inflow Depth > 2.02"	for 50-YEAR event
Inflow	=	33.46 cfs @ 1	12.49 hrs, Volume=	201,098 cf	
Primary	=	33.46 cfs @ 1	12.49 hrs, Volume=	201,098 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area (sq-ft)	CN	Description (subcatchment-numbers)
195,643	61.0	>75% Grass cover, Good, HSG B (1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 14S, 15S, 18S, 22S, 23S, 27S, 28S, 29S, 30S, 31S, 32S, 33S, 34S, 35S, 36S, 37S, 38S, 42S, 43S, 47S, 50S)
203,061	98.0	Paved parking, HSG B (1S, 2S, 3S, 6S, 7S, 9S, 10S, 11S, 14S, 15S, 16S, 17S, 18S, 21S, 22S, 23S, 24S, 25S, 27S, 28S, 30S, 36S, 37S, 38S, 42S, 43S, 45S, 46S, 47S)
76,160	98.0	Roofs, HSG B (4S, 12S, 13S, 19S, 20S, 26S, 40S, 41S)
3,677	60.0	Woods, Fair, HSG B (43S)
718,323	55.0	Woods, Good, HSG B (1S, 2S, 3S, 4S, 5S, 6S, 33S, 42S, 50S)

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
1,196,864	HSG B	1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 16S, 17S, 18S, 19S, 20S, 21S, 22S, 23S, 24S, 25S, 26S, 27S, 28S, 29S, 30S, 31S, 32S, 33S, 34S, 35S, 36S, 37S, 38S, 40S, 41S, 42S, 43S, 45S, 46S, 47S, 50S
0	HSG C	
0	HSG D	
0	Other	

Type III 24-hr 2-YEAR Rainfall=2.93"Printed 9/8/2022s LLCPage 4

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

> Time span=0.00-24.00 hrs, dt=0.010 hrs, 2401 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S:	Runoff Area=194,527 sf 0.14% Impervious Runoff Depth>0.18" Flow Length=716' Tc=16.8 min CN=55.4 Runoff=0.25 cfs 2,998 cf
Subcatchment2S:	Runoff Area=60,922 sf 4.24% Impervious Runoff Depth>0.24" Flow Length=809' Tc=13.6 min CN=57.6 Runoff=0.13 cfs 1,214 cf
Subcatchment3S:	Runoff Area=36,429 sf 14.50% Impervious Runoff Depth>0.41" Flow Length=674' Tc=14.5 min CN=63.2 Runoff=0.19 cfs 1,235 cf
Subcatchment4S:	Runoff Area=48,409 sf 6.73% Impervious Runoff Depth>0.27" Flow Length=779' Tc=17.6 min CN=58.6 Runoff=0.12 cfs 1,073 cf
Subcatchment5S:	Runoff Area=136,374 sf 0.00% Impervious Runoff Depth>0.18" Flow Length=903' Tc=18.3 min CN=55.4 Runoff=0.17 cfs 2,087 cf
Subcatchment6S:	Runoff Area=299,000 sf 0.73% Impervious Runoff Depth>0.19" Flow Length=520' Tc=13.3 min CN=55.4 Runoff=0.41 cfs 4,628 cf
Subcatchment7S:	Runoff Area=14,561 sf 25.68% Impervious Runoff Depth>0.70" Tc=6.0 min CN=70.5 Runoff=0.24 cfs 845 cf
Subcatchment8S:	Runoff Area=13,429 sf 0.00% Impervious Runoff Depth>0.34" Tc=6.0 min CN=61.0 Runoff=0.06 cfs 378 cf
Subcatchment9S:	Runoff Area=5,750 sf 82.97% Impervious Runoff Depth>2.07" Tc=6.0 min CN=91.7 Runoff=0.31 cfs 990 cf
Subcatchment10S:	Runoff Area=8,237 sf 91.84% Impervious Runoff Depth>2.38" Tc=6.0 min CN=95.0 Runoff=0.50 cfs 1,632 cf
Subcatchment11S:	Runoff Area=14,549 sf 92.08% Impervious Runoff Depth>2.39" Tc=6.0 min CN=95.1 Runoff=0.89 cfs 2,893 cf
Subcatchment12S: BUILDING1	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.60 cfs 2,067 cf
Subcatchment13S: BUILDING1	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.60 cfs 2,067 cf
Subcatchment14S:	Runoff Area=8,778 sf 73.24% Impervious Runoff Depth>1.76" Tc=6.0 min CN=88.1 Runoff=0.42 cfs 1,289 cf
Subcatchment15S:	Runoff Area=8,055 sf 70.37% Impervious Runoff Depth>1.68" Tc=6.0 min CN=87.0 Runoff=0.36 cfs 1,127 cf
Subcatchment16S:	Runoff Area=5,381 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.35 cfs 1,209 cf

2009212-POST DEVELOPMENT REV3Type III 24-hr 2-YEAR Rainfall=2.93"

Printed 9/8/2022

Prepared by KNA	YEV3 Type III 24-III 2-YEAR Raillian-2.93 Printed 9/8/2022
HydroCAD® 10.00-26 s/n 01045 © 2020 Hy	
Subcatchment17S:	Runoff Area=5,381 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.35 cfs 1,209 cf
Subcatchment18S:	Runoff Area=12,630 sf 75.22% Impervious Runoff Depth>1.82" Tc=6.0 min CN=88.8 Runoff=0.62 cfs 1,916 cf
Subcatchment19S: BUILDING 2	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.60 cfs 2,067 cf
Subcatchment20S: BUILDING2	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.60 cfs 2,067 cf
Subcatchment21S:	Runoff Area=8,126 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.53 cfs 1,826 cf
Subcatchment22S:	Runoff Area=9,491 sf 64.25% Impervious Runoff Depth>1.51" Tc=6.0 min CN=84.8 Runoff=0.39 cfs 1,195 cf
Subcatchment23S:	Runoff Area=9,913 sf 73.27% Impervious Runoff Depth>1.76" Tc=6.0 min CN=88.1 Runoff=0.47 cfs 1,456 cf
Subcatchment24S:	Runoff Area=4,358 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.28 cfs 979 cf
Subcatchment25S:	Runoff Area=3,949 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.26 cfs 887 cf
Subcatchment26S: BUILDING 3	Runoff Area=13,600 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.89 cfs 3,056 cf
Subcatchment27S:	Runoff Area=6,195 sf 85.04% Impervious Runoff Depth>2.14" Tc=6.0 min CN=92.5 Runoff=0.35 cfs 1,102 cf
Subcatchment28S:	Runoff Area=6,476 sf 82.72% Impervious Runoff Depth>2.06" Tc=6.0 min CN=91.6 Runoff=0.35 cfs 1,110 cf
Subcatchment29S:	Runoff Area=20,450 sf 0.00% Impervious Runoff Depth>0.34" Tc=6.0 min CN=61.0 Runoff=0.10 cfs 576 cf
Subcatchment30S:	Runoff Area=12,852 sf 79.69% Impervious Runoff Depth>1.96" Tc=6.0 min CN=90.5 Runoff=0.67 cfs 2,099 cf
Subcatchment31S:	Runoff Area=8,139 sf 0.00% Impervious Runoff Depth>0.34" Tc=6.0 min CN=61.0 Runoff=0.04 cfs 229 cf
Subcatchment32S:	Runoff Area=15,017 sf 0.00% Impervious Runoff Depth>0.34" Tc=6.0 min CN=61.0 Runoff=0.07 cfs 423 cf
Subcatchment33S:	Runoff Area=11,297 sf 0.00% Impervious Runoff Depth>0.26"

Runoff Area=11,297 sf 0.00% Impervious Runoff Depth>0.26" Tc=6.0 min CN=58.4 Runoff=0.03 cfs 248 cf

Prepared by KNA

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022 s LLC Page 6

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020	HydroCAD Software Solutions LLC Page 6
Subcatchment34S:	Runoff Area=7,007 sf 0.00% Impervious Runoff Depth>0.34" Tc=6.0 min CN=61.0 Runoff=0.03 cfs 197 cf
Subcatchment35S:	Runoff Area=4,258 sf 0.00% Impervious Runoff Depth>0.34" Tc=6.0 min CN=61.0 Runoff=0.02 cfs 120 cf
Subcatchment36S:	Runoff Area=7,976 sf 90.47% Impervious Runoff Depth>2.33" Tc=6.0 min CN=94.5 Runoff=0.48 cfs 1,546 cf
Subcatchment37S:	Runoff Area=11,004 sf 97.16% Impervious Runoff Depth>2.58" Tc=6.0 min CN=97.0 Runoff=0.70 cfs 2,367 cf
Subcatchment38S:	Runoff Area=15,217 sf 47.87% Impervious Runoff Depth>1.12" Tc=6.0 min CN=78.7 Runoff=0.45 cfs 1,419 cf
Subcatchment40S: BUILDING4	Runoff Area=11,250 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.73 cfs 2,528 cf
Subcatchment41S: BUILDING4	Runoff Area=11,250 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.73 cfs 2,528 cf
Subcatchment42S:	Runoff Area=31,496 sf 67.44% Impervious Runoff Depth>1.58" Flow Length=469' Tc=7.4 min CN=85.7 Runoff=1.28 cfs 4,146 cf
Subcatchment43S:	Runoff Area=30,367 sf 75.63% Impervious Runoff Depth>1.82" Flow Length=454' Tc=7.3 min CN=88.9 Runoff=1.42 cfs 4,613 cf
Subcatchment45S:	Runoff Area=2,272 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.15 cfs 511 cf
Subcatchment46S:	Runoff Area=2,255 sf 100.00% Impervious Runoff Depth>2.70" Tc=6.0 min CN=98.0 Runoff=0.15 cfs 507 cf
Subcatchment47S:	Runoff Area=10,949 sf 57.68% Impervious Runoff Depth>1.34" Tc=6.0 min CN=82.3 Runoff=0.39 cfs 1,227 cf
Subcatchment50S:	Runoff Area=12,488 sf 0.00% Impervious Runoff Depth>0.30" Tc=6.0 min CN=59.7 Runoff=0.04 cfs 311 cf
	Avg. Flow Depth=0.41' Max Vel=0.86 fps Inflow=1.13 cfs 9,396 cf L=255.0' S=0.0078 '/' Capacity=24.34 cfs Outflow=1.00 cfs 9,374 cf
	Avg. Flow Depth=0.05' Max Vel=1.02 fps Inflow=0.12 cfs 1,073 cf L=126.0' S=0.0159 '/' Capacity=26.66 cfs Outflow=0.12 cfs 1,070 cf
	Avg. Flow Depth=0.06' Max Vel=1.97 fps Inflow=0.25 cfs 2,998 cf L=550.0' S=0.0527 '/' Capacity=174.16 cfs Outflow=0.24 cfs 2,981 cf
Reach 4R: SWALE n=0.069	Avg. Flow Depth=0.36' Max Vel=0.63 fps Inflow=0.71 cfs 2,575 cf L=177.0' S=0.0050 '/' Capacity=19.38 cfs Outflow=0.62 cfs 2,563 cf

Prepared by KNA

Type III 24-hr 2-YEAR Rainfall=2.93"

Printed 9/8/2022

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Page 7 Avg. Flow Depth=0.00' Max Vel=0.00 fps Reach 5R: (new Reach) 24.0" Round Pipe n=0.013 L=37.9' S=0.0150 '/' Capacity=27.74 cfs Outflow=0.00 cfs 0 cf Avg. Flow Depth=0.02' Max Vel=0.77 fps Inflow=0.03 cfs 248 cf Reach 33R: SWALE n=0.025 L=182.0' S=0.0330 '/' Capacity=31.32 cfs Outflow=0.03 cfs 247 cf Pond 1P: HW#1 Peak Elev=211.16' Inflow=0.62 cfs 2,563 cf 12.0" Round Culvert n=0.013 L=42.0' S=0.0100 '/' Outflow=0.62 cfs 2.563 cf Peak Elev=210.74' Inflow=0.90 cfs 3,552 cf Pond 2P: CB#2 15.0" Round Culvert n=0.013 L=42.0' S=0.0050 '/' Outflow=0.90 cfs 3,552 cf Pond 7P: CB#7 Peak Elev=217.12' Inflow=1.10 cfs 3,699 cf 12.0" Round Culvert n=0.013 L=12.7' S=0.0102 '/' Outflow=1.10 cfs 3.699 cf Pond 8P: CB#8 Peak Elev=217.73' Inflow=1.38 cfs 4,414 cf 15.0" Round Culvert n=0.013 L=204.0' S=0.0050 '/' Outflow=1.38 cfs 4,414 cf Peak Elev=218.12' Inflow=0.77 cfs 2.498 cf Pond 9P: CB#9 15.0" Round Culvert n=0.013 L=90.0' S=0.0050 '/' Outflow=0.77 cfs 2,498 cf Peak Elev=219.88' Inflow=0.35 cfs 1,209 cf Pond 10P: CB#10 12.0" Round Culvert n=0.013 L=27.0' S=0.0700 '/' Outflow=0.35 cfs 1,209 cf Pond 12P: CB#12 Peak Elev=217.26' Inflow=1.49 cfs 4,960 cf 12.0" Round Culvert n=0.013 L=10.0' S=0.0100 '/' Outflow=1.49 cfs 4.960 cf Peak Elev=217.68' Inflow=1.24 cfs 4,162 cf Pond 14P: CB#14 18.0" Round Culvert n=0.013 L=152.5' S=0.0050 '/' Outflow=1.24 cfs 4,162 cf Peak Elev=218.09' Inflow=0.71 cfs 2.336 cf Pond 15P: CB#15 15.0" Round Culvert n=0.013 L=78.0' S=0.0050 '/' Outflow=0.71 cfs 2,336 cf Peak Elev=220.01' Inflow=0.35 cfs 1,209 cf Pond 16P: CB#16 12.0" Round Culvert n=0.013 L=28.8' S=0.0701 '/' Outflow=0.35 cfs 1,209 cf Peak Elev=234.66' Inflow=0.84 cfs 2,884 cf Pond 17P: CB#17 15.0" Round Culvert n=0.013 L=28.0' S=0.0054 '/' Outflow=0.84 cfs 2.884 cf Pond 18P: CB#18 Peak Elev=234.51' Inflow=0.86 cfs 2,651 cf 18.0" Round Culvert n=0.013 L=96.0' S=0.0050 '/' Outflow=0.86 cfs 2,651 cf Pond 19P: CB#19 Peak Elev=234.51' Inflow=0.39 cfs 1,195 cf 15.0" Round Culvert n=0.013 L=123.0' S=0.0050 '/' Outflow=0.39 cfs 1,195 cf Pond 21P: CB#21 Peak Elev=235.23' Inflow=0.69 cfs 2,377 cf 15.0" Round Culvert n=0.013 L=74.0' S=0.0074 '/' Outflow=0.69 cfs 2.377 cf Pond 22P: CB#22 Peak Elev=235.57' Inflow=0.43 cfs 1,490 cf 15.0" Round Culvert n=0.013 L=60.0' S=0.0050 '/' Outflow=0.43 cfs 1,490 cf

Type III 24-hr 2-YEAR Rainfall=2.93"

2009212-POST DEVEL	OPMENT REV3	Type III 24-hr 2-YEAR Rainfall=2.93
Prepared by KNA HvdroCAD® 10.00-26 s/n 010	45 © 2020 HydroCAD Software Soluti	ons LLC Printed 9/8/2022
<u></u>		<u>1 490 0</u>
Pond 24P: CB#24		Peak Elev=241.18' Inflow=1.59 cfs 5,269 cf
	12.0" Round Culvert n=0.013 L=1	04.0' S=0.0625 '/' Outflow=1.59 cfs 5,269 cf
Pond 25P: CB#25		Peak Elev=244.08' Inflow=1.23 cfs 4,158 cf
F 0110 23F. CD#23	12.0" Round Culvert n=0.013 L=1	28.0' S=0.0227 '/' Outflow=1.23 cfs 4,158 cf
Pond 27P: CB#27		Peak Elev=217.06' Inflow=1.78 cfs 5,641 cf
	15.0" Round Culvert n=0.013 L=	10.0' S=0.0050 '/' Outflow=1.78 cfs 5,641 cf
Pond 29P: DMH#29		Peak Elev=238.08' Inflow=0.16 cfs 2,997 cf
	15.0" Round Culvert n=0.013 L=1	56.0' S=0.0365 '/' Outflow=0.16 cfs 2,997 cf
Pond 30P: DMH#30		Peak Elev=232.32' Inflow=0.24 cfs 6,971 cf
	15.0" Round Culvert h=0.013 L=2	73.0' S=0.0411 '/' Outflow=0.24 cfs 6,971 cf
Pond 32P: DMH#32		Peak Elev=221.00' Inflow=0.24 cfs 6,971 cf
	15.0" Round Culvert n=0.013 L=2	53.0' S=0.0334 '/' Outflow=0.24 cfs 6,971 cf
Pond 33P: DMH#33	15.0" Round Culvert n=0.013.1=	Peak Elev=212.45' Inflow=0.24 cfs 6,971 cf 17.0' S=0.0129 '/' Outflow=0.24 cfs 6,971 cf
		17.0 3-0.01297 Outliow-0.24 cis 0,971 ci
Pond 47P: CB#47		Peak Elev=236.67' Inflow=0.15 cfs 511 cf
	15.0" Round Culvert n=0.013 L	=99.0' S=0.0111 '/' Outflow=0.15 cfs 511 cf
Pond 101P: CB#101		Peak Elev=212.70' Inflow=0.68 cfs 2,345 cf
	12.0" Round Culvert n=0.013 L=	23.0' S=0.0052 '/' Outflow=0.68 cfs 2,345 cf
Pond 102P: HW#102		Peak Elev=213.20' Inflow=0.03 cfs 247 cf
	12.0" Round Culvert n=0.013 L	=41.0' S=0.0200 '/' Outflow=0.03 cfs 247 cf
Pond 108P: CB#108		Peak Elev=222.55' Inflow=0.45 cfs 1,419 cf
	15.0" Round Culvert n=0.013 L=	30.5' S=0.0449 '/' Outflow=0.45 cfs 1,419 cf
Pond 112P: CB#112	12.0" Round Culvert n=0.013.1=	Peak Elev=219.61' Inflow=0.48 cfs 1,546 cf 20.0' S=0.0100 '/' Outflow=0.48 cfs 1,545 cf
Pond 114P: DMH#114		Peak Elev=219.65' Inflow=1.29 cfs 5,360 cf
	24.0" Round Culvert n=0.013 L=	79.0' S=0.0151 '/' Outflow=1.29 cfs 5,360 cf
Pond 115P: DCB#115		Peak Elev=223.32' Inflow=1.29 cfs 5,360 cf
	18.0" Round Culvert n=0.013 L=23	35.0' S=0.0150 '/' Outflow=1.29 cfs 5,360 cf
Pond 116P: CB#116		Peak Elev=228.11' Inflow=0.13 cfs 1,214 cf
	15.0 Round Culvert n=0.013 L=1	25.7' S=0.0400 '/' Outflow=0.13 cfs 1,214 cf
Pond 119P: CB#119	I	Peak Elev=219.61' Inflow=2.90 cfs 10,743 cf
		7.9' S=0.0150 '/' Outflow=2.90 cfs 10,743 cf
Dand 400D, DOD#400		Deels Flow=202 261 Inflow=4 50 of 5 040 of
Pond 120P: DCB#120	18.0" Round Culvert n=0.013 I =20	Peak Elev=223.26' Inflow=1.50 cfs 5,848 cf 69.0' S=0.0150 '/' Outflow=1.50 cfs 5,848 cf

2009212-POST DEVELOPMENT R Prepared by KNA	EV3 Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022
HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD	
Pond 121P: CB#121	Peak Elev=226.26' Inflow=0.19 cfs 1,235 cf nd Culvert n=0.013 L=54.2' S=0.0600 '/' Outflow=0.19 cfs 1,235 cf
Pond B1: INFILTRATIONPOND 1 Discarded=0.14 of	Peak Elev=217.06' Storage=9,829 cf Inflow=5.66 cfs 18,841 cf cfs 7,166 cf Primary=0.41 cfs 4,999 cf Outflow=0.56 cfs 12,164 cf
Pond B2: POCKET POND 1	Peak Elev=234.52' Storage=17,997 cf Inflow=4.55 cfs 15,515 cf Outflow=0.08 cfs 3,974 cf
Pond B3: DETENTION POND 1 12.0" Roun	Peak Elev=244.19' Storage=376 cf Inflow=0.29 cfs 3,158 cf d Culvert n=0.013 L=103.0' S=0.0583 '/' Outflow=0.16 cfs 2,997 cf
Pond B4: INFILTRATIONPOND 2 Discarded=	Peak Elev=219.61' Storage=11,775 cf Inflow=4.71 cfs 18,070 cf 0.14 cfs 7,174 cf Primary=0.00 cfs 0 cf Outflow=0.14 cfs 7,174 cf
Pond B5: BIORETENTIONPOND 1	Peak Elev=222.55' Storage=1,128 cf Inflow=1.19 cfs 4,067 cf Outflow=0.25 cfs 4,067 cf
Pond B6: DETENTION POND 2	Peak Elev=218.00' Storage=7,245 cf Inflow=0.50 cfs 7,245 cf Outflow=0.00 cfs 0 cf
Link A: CHASE BROOK	Inflow=1.33 cfs 21,284 cf

Inflow=1.33 cfs 21,284 cf Primary=1.33 cfs 21,284 cf

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S:

Runoff 0.25 cfs @ 12.53 hrs, Volume= 2,998 cf, Depth> 0.18" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Descriptio	n	
	270	98.0	Paved pa	rking, HSG	В
	12,010	61.0	>75% Ġra	ass cover, (Good, HSG B
1	82,247	55.0	Woods, G	bood, HSG	В
1	94,527	55.4	Weighted	Average	
	94,257	55.4	0	ervious Are	ea
	270	98.0	0.14% Im	pervious A	rea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
8.7	50	0.0550	0.10		Sheet Flow,
_					Woods: Light underbrush n= 0.400 P2= 2.84"
4.0	325	0.0750	1.37		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.1	60	0.0330	0.91		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
3.0	281	0.1000	1.58		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
16.8	716	Total			·

Summary for Subcatchment 2S:

Runoff =	0.13 cfs @	12.44 hrs,	Volume=	1,214 cf,	Depth>	0.24"
----------	------------	------------	---------	-----------	--------	-------

Area (sf)	CN	Description				
2,582	98.0	Paved parking, HSG B				
7,802 6	61.0	>75% Grass cover, Good, HSG B				
50,538 5	55.0	Woods, Good, HSG B				
60,922 5	57.6	Weighted Average				
58,340 5	55.8	95.76% Pervious Area				
2,582	98.0	4.24% Impervious Area				

2009212-POST DEVELOPMENT REV3 Prepared by KNA

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022 s LLC Page 11

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.9	50	0.1000	0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.84"
	5.5	470	0.0800	1.41		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.3	84	0.3300	4.02		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.8	205	0.0400	4.06		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps

13.6 809 Total

Summary for Subcatchment 3S:

Runoff	=	0.19 cfs @	12.28 hrs,	Volume=	1,235 cf, Depth> 0.41"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

Α	rea (sf)	CN	Descriptio	n					
	5,283	98.0	Paved pa	Paved parking, HSG B					
	11,639	61.0	>75% Gra	ass cover, (Good, HSG B				
	19,507	55.0	Woods, G	lood, HSG	В				
	36,429	63.2	Weighted	Weighted Average					
	31,146	57.2	85.50% P	ervious Are	ea				
	5,283	98.0	14.50% Ir	npervious <i>i</i>	Area				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.9	50	0.1000	0.12		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.84"				
7.6	600	0.0700	1.32		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.1	24	0.4000	4.43		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
14.5	674	Total							

Summary for Subcatchment 4S:

Runoff = 0.12 cfs @ 12.47 hrs, Volume= 1,073 cf, Depth> 0.27"

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022 s LLC Page 12

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

<i>F</i>	Area (sf)	CN	Descriptio	n	
	3,260	98.0	Roofs, HS	SG B	
	5,695	61.0	>75% Gra	ass cover, (Good, HSG B
	39,454	55.0	Woods, G	Good, HSG	В
	48,409	58.6	Weighted	Average	
	45,149	55.8	93.27% P	ervious Are	ea
	3,260	98.0	6.73% lm	pervious Ai	rea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.4	50	0.0600	0.10		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.84"
9.2	729	0.0700	1.32		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
17.6	779	Total			
			Su	mmarv fo	or Subcatchment 5S:
			•••		

Runoff = 0.17 cfs @ 12.56 hrs, Volume= 2,087 cf, Depth> 0.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

	A	rea (sf)	CN	Descriptio	on	
		8,709	61.0			Good, HSG B
	1	27,665	55.0	Woods, G	iood, HSG	В
	1	36,374	55.4	Weighted	Average	
	1	36,374	55.4	100.00%	Pervious A	rea
	_					
	Тс	Length	Slope	Velocity	Capacity	Description
(m	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.6	50	0.1100	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.84"
	7.8	567	0.0580	1.20		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.8	286	0.0630	1.25		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
1	8.3	903	Total			

Summary for Subcatchment 6S:

Runoff = 0.41 cfs @ 12.48 hrs, Volume= 4,628 cf, Depth> 0.19"

 Type III 24-hr
 2-YEAR Rainfall=2.93"

 Printed
 9/8/2022

 s LLC
 Page 13

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Descriptio	n					
	2,193	98.0	Paved pa	Paved parking, HSG B					
	6,633	61.0	>75% Ġra	ass cover, (Good, HSG B				
2	90,174	55.0	Woods, G	ood, HSG	В				
	99,000	55.4	Weighted	Average					
2	96,807	55.1	•••••	ervious Are					
	2,193	98.0	0.73% lm	pervious A	rea				
Та	l a sa aith	Clana	Valacity	Conseitu	Description				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
<u>(min)</u>			/	(015)					
6.0	50	0.1400	0.14		Sheet Flow,				
2.0	210	0.1200	1.73		Woods: Light underbrush n= 0.400 P2= 2.84" Shallow Concentrated Flow,				
2.0	210	0.1200	1.73		Woodland Kv= 5.0 fps				
4.9	210	0.0200	0.71		Shallow Concentrated Flow,				
7.0	210	0.0200	0.71		Woodland Kv= 5.0 fps				
0.3	50	0.2400	2.45		Shallow Concentrated Flow,				
			•		Woodland Kv= 5.0 fps				
13.3	520	Total							

Summary for Subcatchment 7S:

Runoff = 0.24 cfs @ 12.10 hrs, Volume=

845 cf, Depth> 0.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Description						
	3,739	98.0	Paved par	rking, HSG	G B				
	10,822	61.0	>75% Ġra	>75% Grass cover, Good, HSG B					
	14,561	70.5	Weighted Average						
	10,822	61.0	74.32% Pervious Area						
	3,739	98.0	25.68% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0			, , , , , , , , , , , , , , , , , , ,		Direct Entry,				

Summary for Subcatchment 8S:

Runoff = 0.06 cfs @ 12.14 hrs, Volume= 378 cf, Depth> 0.34"

 Area (sf)	CN	Description				
13,429	61.0	>75% Grass cover, Good, HSG B				
13,429	61.0	100.00% Pervious Area				

2009212-POST DEVELOPMENT REV3 Type III 24-hr 2-YEAR Rainfall=2.93" Prepared by KNA Printed 9/8/2022 HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Page 14 Velocity Capacity Tc Length Slope Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 9S: 0.31 cfs @ 12.09 hrs, Volume= 990 cf, Depth> 2.07" Runoff = Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93" Area (sf) CN Description 4,771 98.0 Paved parking, HSG B 979 61.0 >75% Grass cover, Good, HSG B 5,750 91.7 Weighted Average 979 61.0 17.03% Pervious Area 82.97% Impervious Area 4,771 98.0 Length Slope Velocity Capacity Description Tc (feet) (ft/ft) (ft/sec) (cfs) (min) 6.0 Direct Entry, Summary for Subcatchment 10S: Runoff 0.50 cfs @ 12.08 hrs, Volume= 1,632 cf, Depth> 2.38" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Description							
	7,565	98.0	Paved parking, HSG B							
	672	61.0	>75% Ġra	ass cover, (Good, HSG B					
	8,237	95.0	Weighted	Weighted Average						
	672	61.0	8.16% Pervious Area							
	7,565	98.0	91.84% Ir	npervious <i>I</i>	Area					
То	Longth	Slope	Volocity	Capacity	Description					
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry,					

Summary for Subcatchment 11S:

Runoff = 0.89 cfs @ 12.08 hrs, Volume= 2,893 cf, Depth> 2.39"	Runoff	= 0.89 cfs) 12.08 hrs, Vo	olume= 2,893	cf, Depth> 2.39"
---	--------	------------	-----------------	--------------	------------------

 Type III 24-hr
 2-YEAR Rainfall=2.93"

 Printed
 9/8/2022

 s LLC
 Page 15

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Ar	rea (sf)	CN	Description						
	13,397	98.0	Paved parking, HSG B						
	1,152	61.0	>75% Gra	iss cover, (Good, HSG B				
	14,549	95.1	Weighted Average						
	1,152	61.0	7.92% Pervious Area						
	13,397	98.0	92.08% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 12S: BUILDING 1

Runoff = 0.60 cfs @ 12.08 hrs, Volume= 2,067 cf, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Description							
	9,200	98.0	Roofs, HS	Roofs, HSG B						
	9,200	98.0	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Summary for Subcatchment 13S: BUILDING 1

Runoff = 0.60 cfs @ 12.08 hrs, Volume= 2,067 cf, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Descriptio	n					
	9,200	98.0	Roofs, HSG B						
	9,200	98.0	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 14S:

Runoff = 0.42 cfs @ 12.09 hrs, Volume= 1,289 cf, Depth> 1.76"

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022 s LLC Page 16

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description							
	6,429	98.0	Paved pa	Paved parking, HSG B						
	2,349	61.0	>75% Ġra	>75% Grass cover, Good, HSG B						
	8,778	88.1	Weighted	Weighted Average						
	2,349	61.0	26.76% Pervious Area							
	6,429	98.0	73.24% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Summary for Subcatchment 15S:

Runoff = 0.36 cfs @ 12.09 hrs, Volume= 1,127 cf, Depth> 1.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Description						
	5,668	98.0	Paved pa	rking, HSG	B B				
	2,387	61.0	>75% Ġra	ass cover, (Good, HSG B				
	8,055	87.0	Weighted	Weighted Average					
	2,387	61.0	29.63% P	29.63% Pervious Area					
	5,668	98.0	70.37% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 16S:

Runoff = 0.35 cfs @ 12.08 hrs, Volume= 1,209 cf, Depth> 2.70"

Α	rea (sf)	CN	Descriptio	n					
	5,381	98.0	Paved parking, HSG B						
	5,381	98.0	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 17S:

Runoff = 0.35 cfs @ 12.08 hrs, Volume= 1,209 cf, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Description						
	5,381	98.0	Paved parking, HSG B						
	5,381	98.0	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 18S:

Runoff = 0.62 cfs @ 12.09 hrs, Volume= 1,916 cf, Depth> 1.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

Are	ea (sf)	CN	Description						
	9,500	98.0	Paved par	rking, HSG	€B				
	3,130	61.0	>75% Gra	iss cover, (Good, HSG B				
1	2,630	88.8	Weighted	Weighted Average					
	3,130	61.0	24.78% Pervious Area						
	9,500	98.0	75.22% Impervious Area						
Tc I (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 19S: BUILDING 2

Runoff = 0.60 cfs @ 12.08 hrs, Volume= 2,067 cf, Depth> 2.70"

A	rea (sf)	CN	Descriptio	n						
	9,200	98.0	Roofs, HS	Roofs, HSG B						
	9,200	98.0	100.00%	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 20S: BUILDING 2

Runoff = 0.60 cfs @ 12.08 hrs, Volume= 2,067 cf, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

Α	rea (sf)	CN	Descriptio	n	
	9,200	98.0	Roofs, HS	SG B	
	9,200	98.0	100.00%	Impervious	s Area
Tc _(min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 21S:

Runoff = 0.53 cfs @ 12.08 hrs, Volume= 1,826 cf, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

Area (sf)	CN	Descriptio	n					
8,126	98.0	Paved pa	aved parking, HSG B					
8,126	98.0	100.00%	0.00% Impervious Area					
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0				Direct Entry,				

Summary for Subcatchment 22S:

Runoff = 0.39 cfs @ 12.09 hrs, Volume= 1,195 cf, Depth> 1.51"

A	rea (sf)	CN	Descriptio	n						
	6,098	98.0	Paved pa	Paved parking, HSG B						
	3,393	61.0	>75% Ġra	5% Grass cover, Good, HSG B						
	9,491	84.8	Weighted	/eighted Average						
	3,393	61.0	35.75% P	35.75% Pervious Area						
	6,098	98.0	64.25% Ir	4.25% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	•					
6.0					Direct Entry,					

Summary for Subcatchment 23S:

Runoff = 0.47 cfs @ 12.09 hrs, Volume= 1,456 cf, Depth> 1.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

Α	rea (sf)	CN	Descriptio	n			
	7,263	98.0	Paved pa	rking, HSG	В		
	2,650	61.0	>75% Ġra	ass cover, (Good, HSG B		
	9,913	88.1	Weighted	Average			
	2,650	61.0	26.73% P	ervious Are	a		
	7,263	98.0	73.27% Ir	73.27% Impervious Area			
-		<u>.</u>		• ••	D 1.41		
Тс	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.0					Direct Entry,		

Summary for Subcatchment 24S:

Runoff = 0.28 cfs @ 12.08 hrs, Volume= 979 cf, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Descriptio	n	
	4,358	98.0	Paved pa	rking, HSG	G B
	4,358	98.0	100.00%	Impervious	s Area
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 25S:

Runoff = 0.26 cfs @ 12.08 hrs, Volume= 887 cf, Depth> 2.70"

A	rea (sf)	CN	Descriptio	n	
	3,949	98.0	Paved pa	rking, HSG	G B
	3,949	98.0	100.00%	Impervious	s Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 26S: BUILDING 3

Runoff = 0.89 cfs @ 12.08 hrs, Volume= 3,056 cf, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Descriptio	n	
	13,600	98.0	Roofs, HS	SG B	
	13,600	98.0	100.00%	Impervious	s Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 27S:

Runoff = 0.35 cfs @ 12.09 hrs, Volume= 1,102 cf, Depth> 2.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Descriptio	n					
	5,268	98.0	Paved pa	rking, HSG	GB				
	927	61.0	>75% Ġra	75% Grass cover, Good, HSG B					
	6,195	92.5	Weighted	/eighted Average					
	927	61.0	14.96% P	14.96% Pervious Area					
	5,268	98.0	85.04% Ir	npervious /	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)					
6.0					Direct Entry,				

Summary for Subcatchment 28S:

Runoff = 0.35 cfs @ 12.09 hrs, Volume= 1,110 cf, Depth> 2.06"

Area (sf)	CN	Description
5,357	98.0	Paved parking, HSG B
1,119	61.0	>75% Grass cover, Good, HSG B
6,476	91.6	Weighted Average
1,119	61.0	17.28% Pervious Area
5,357	98.0	82.72% Impervious Area

	Prepareo						Printed	9/8/2022
(min) (ftvft) (ftvft) (ftvsc) (cfs) 6.0 Direct Entry, Summary for Subcatchment 29S: Runoff = 0.10 cfs @ 12.14 hrs, Volume= 576 cf, Depth> 0.34" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93" Area (sf) CN Description 20,450 61.0 >75% Grass cover, Good, HSG B 20,450 61.0 100.00% Pervious Area Tc Length Slope Velocity 0.10 (ftvft) (ftvsc) (cfs) 6.0 Direct Entry, Summary for Subcatchment 30S: Runoff = 0.67 cfs @ 12.09 hrs, Volume= 2,099 cf, Depth> 1.96" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93" Area (sf) CN Description 10,242 98.0 Paved parking, HSG B 2,099 cf, Depth> 1.96" 2,610 61.0 >75% Grass cover, Good, HSG B 2,610 61.0 2,31% 2,610 <td< td=""><td></td><td></td><td></td><td>045 © 202</td><td>0 HydroCA</td><td>D Software Sol</td><td>utions LLC</td><td>Page 21</td></td<>				045 © 202	0 HydroCA	D Software Sol	utions LLC	Page 21
Summary for Subcatchment 29S:Runoff=0.10 cfs @12.14 hrs, Volume=576 cf, Depth> 0.34"Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93" $Area (sf)$ CNDescription20.45061.0>75% Grass cover, Good, HSG B 20,45061.0>75% Grass cover, Good, HSG B 20,450TcLengthSlopeVelocityCapacityDescription (fright)TcLengthSlopeVelocityCapacity6.0Direct Entry,Summary for Subcatchment 30S:Runoff=0.67 cfs @12.09 hrs, Volume=2,099 cf, Depth> 1.96"Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"Area (sf)CNDescription10,24298.0Paved parking, HSG B 2.6102.61061.02.031% Pervious Area 10,24298.079.69% Impervious Area10,24298.079.69% Impervious Area10,24210,24298.079.69% Impervious Area10,24298.079.69% Impervious Area <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Description</td><td></td><td></td></t<>						Description		
$\begin{array}{rcl} \operatorname{Runoff} &=& 0.10 \ \mathrm{cfs} @ 12.14 \ \mathrm{hrs}, \ \mathrm{Volume} &=& 576 \ \mathrm{cf}, \ \mathrm{Depth} > 0.34'' \\ \operatorname{Runoff} \ \mathrm{by} \ \mathrm{SCS} \ \mathrm{TR} - 20 \ \mathrm{method}, \ \mathrm{UH} = \mathrm{SCS}, \ \mathrm{Weighted} - \mathrm{CN}, \ \mathrm{Time} \ \mathrm{Span} = \ 0.00 - 24.00 \ \mathrm{hrs}, \ \mathrm{dt} = \ 0.010 \ \mathrm{hrs} \\ \operatorname{Type} \ \mathrm{III} \ 24 - \mathrm{hr} \ 2 - \mathrm{YEAR} \ \mathrm{Rainfall} = 2.93'' \\ \hline & & & & & & & & & & & & & & & & & &$	6.0					Direct Entry	',	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93" Area (sf) CN Description 20,450 61.0 >75% Grass cover, Good, HSG B 20,450 61.0 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 30S: Runoff = 0.67 cfs @ 12.09 hrs, Volume= 2,099 cf, Depth> 1.96" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93" Area (sf) CN Description 10,242 98.0 Paved parking, HSG B 2,610 61.0 >75% Grass cover, Good, HSG B 2,852 90.5 Weighted Average 2,610 61.0				Sur	nmary fo	or Subcatch	ment 29S:	
Type III 24-hr 2-YEAR Rainfall=2.93"Area (sf)CNDescription20,45061.0>75% Grass cover, Good, HSG B20,45061.0100.00% Pervious AreaTcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)6.0Direct Entry,Summary for Subcatchment 30S:RunoffArea (sf)CNDescription10,24298.0Paved parking, HSG B2,61061.020.31% Pervious Area10,24298.079.69% Impervious Area10,24210,114(ft/ft)(fti	Runoff	=	0.10 cfs	s@ 12.14	4 hrs, Volu	ime=	576 cf, Depth> 0.34"	
20,450 61.0 >75% Grass cover, Good, HSG B 20,450 61.0 100.00% Pervious Area Tc Length (min) Slope (ft/ft) Velocity (ft/sec) Capacity (cfs) Description 6.0 Direct Entry, Summary for Subcatchment 30S: Runoff = 0.67 cfs @ 12.09 hrs, Volume= 2,099 cf, Depth> 1.96" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93" Area (sf) CN Description 10,242 98.0 Paved parking, HSG B 2,610 61.0 >75% Grass cover, Good, HSG B 12,852 90.5 Weighted Average 2,610 61.0 20.31% Pervious Area 10,242 98.0 79.69% Impervious Area						nted-CN, Time	Span= 0.00-24.00 hrs, dt= 0.010 h	hrs
20,450 61.0 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 30S: Runoff e 0.67 cfs @ 12.09 hrs, Volume= 2,099 cf, Depth> 1.96" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93" Area (sf) CN Description 10,242 98.0 Paved parking, HSG B 2,610 61.0 >75% Grass cover, Good, HSG B 12,852 90.5 Weighted Average 2,610 61.0 20.31% Pervious Area 10,242 98.0 79.69% Impervious Area 10,242 98.0 79.69% Impervious Area 10,242 98.0 79.69% Impervious Area 10,242 98.0 79.69% Impervious Area	Are	ea (sf)		Descriptio	n			
TcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)6.0Direct Entry,Summary for Subcatchment 30S:Runoff=0.67 cfs @12.09 hrs, Volume=2,099 cf, Depth> 1.96"Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span=0.00-24.00 hrs, dt= 0.010 hrsType III 24-hr2-YEAR Rainfall=2.93"Area (sf)CNDescription10,24298.0Paved parking, HSG B2,61061.0>75% Grass cover, Good, HSG B12,85290.5Weighted Average2,61061.020.31% Pervious Area10,24298.079.69% Impervious Area10,245101010(ft/ft)(ft/sec)(min)(feet)(ft/ft)	2	20,450	61.0					
(min)(feet)(ft/ft)(ft/sec)(cfs)6.0Direct Entry,Summary for Subcatchment 30S:Runoff=0.67 cfs @12.09 hrs, Volume=2,099 cf, Depth> 1.96"Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr2-YEAR Rainfall=2.93"Area (sf)CNDescription10,24298.0Paved parking, HSG B 2,61061.0>75% Grass cover, Good, HSG B12,85290.5Weighted Average 2,61061.020.31% Pervious Area 10,24298.0TcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)	2	20,450	61.0	100.00%	Pervious A	rea		
6.0 Direct Entry, Summary for Subcatchment 30S: Runoff = 0.67 cfs @ 12.09 hrs, Volume= 2,099 cf, Depth> 1.96" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93" Area (sf) CN Description 10,242 98.0 Paved parking, HSG B 2,610 61.0 2,610 61.0 12,852 90.5 Weighted Average 2,610 61.0 20,31% Pervious Area 10,242 98.0 79.69% Impervious Area Tc Length Slope Velocity Capacity Description (min) (ft/ft)						Description		
Runoff= $0.67 \text{ cfs} @ 12.09 \text{ hrs}$, Volume= $2,099 \text{ cf}$, Depth> 1.96"Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr $2-YEAR Rainfall=2.93$ "Area (sf)CNDescription10,24298.0Paved parking, HSG B $2,610$ 2,61061.0>75% Grass cover, Good, HSG B12,85290.5Weighted Average $2,610$ 2,61061.020.31% Pervious Area10,24298.079.69% Impervious AreaTcLengthSlopeVelocityCapacityDescription					Y /	Direct Entry	',	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93" Area (sf) CN Description 10,242 98.0 Paved parking, HSG B 2,610 61.0 >75% Grass cover, Good, HSG B 12,852 90.5 Weighted Average 2,610 61.0 20.31% Pervious Area 10,242 98.0 79.69% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)				Sur	nmary fo	or Subcatch	ment 30S:	
Type III 24-hr 2-YEAR Rainfall=2.93" Area (sf) CN Description 10,242 98.0 Paved parking, HSG B 2,610 61.0 >75% Grass cover, Good, HSG B 12,852 90.5 Weighted Average 2,610 61.0 20.31% Pervious Area 10,242 98.0 79.69% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	Runoff	=	0.67 cfs	s @ 12.09	9 hrs, Volu	ime=	2,099 cf, Depth> 1.96"	
10,24298.0Paved parking, HSG B2,61061.0>75% Grass cover, Good, HSG B12,85290.5Weighted Average2,61061.020.31% Pervious Area10,24298.079.69% Impervious AreaTcLengthSlopeVelocity(min)(feet)(ft/ft)(ft/sec)(cfs)						nted-CN, Time	Span= 0.00-24.00 hrs, dt= 0.010 h	nrs
10,24298.0Paved parking, HSG B2,61061.0>75% Grass cover, Good, HSG B12,85290.5Weighted Average2,61061.020.31% Pervious Area10,24298.079.69% Impervious AreaTcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/ft)(cfs)	Are	ea (sf)	CN	Descriptio	n			
12,85290.5Weighted Average2,61061.020.31% Pervious Area10,24298.079.69% Impervious AreaTcLengthSlopeVelocity(min)(feet)(ft/ft)(ft/sec)(cfs)						В		
2,610 61.0 20.31% Pervious Area 10,242 98.0 79.69% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)		2,610	61.0	>75% Ġra	ass cover, (Good, HSG B		
10,242 98.0 79.69% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	1							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)								
(min) (feet) (ft/ft) (ft/sec) (cfs)	1	10,242	98.0	79.69% lr	npervious <i>I</i>	Area		
(min) (feet) (ft/ft) (ft/sec) (cfs)	Тс	Length	Slope	Velocitv	Capacitv	Description		
6.0 Direct Entry,						. I		
	6.0					Direct Entry	',	

Type III 24-hr 2-YEAR Rainfall=2.93"

Summary for Subcatchment 31S:

Runoff = 0.04 cfs @ 12.14 hrs, Volume= 229 cf, Depth> 0.34"

 Area (sf)	CN	Description
8,139	61.0	>75% Grass cover, Good, HSG B
 8,139	61.0	100.00% Pervious Area

Prepare							ed 9/8/2022
HydroCAL	D® 10.00-2	26 s/n 01	045 © 202	20 HydroCA	D Software Solu	itions LLC	Page 22
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry	1	
			Su	mmary fo	or Subcatch	ment 32S:	
Runoff	=	0.07 cfs	s@ 12.1	4 hrs, Volu	ime=	423 cf, Depth> 0.34"	
			hod, UH=S infall=2.93		nted-CN, Time	Span= 0.00-24.00 hrs, dt= 0.010) hrs
Ar	ea (sf)	CN	Descriptio	on			
	15,017	61.0	>75% Gra	ass cover, (Good, HSG B		
	15,017	61.0	100.00%	Pervious A	rea		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry	,	
			Su	mmary fo	or Subcatch	ment 33S:	
Runoff	=	0.03 cfs	s@ 12.3	0 hrs, Volu	ime=	248 cf, Depth> 0.26"	
			hod, UH=S infall=2.93		nted-CN, Time	Span= 0.00-24.00 hrs, dt= 0.010) hrs
Ar	ea (sf)	CN	Descriptio	on			
	6,480	61.0	>75% Gra	ass cover, (Good, HSG B		
	4,817	55.0		Good, HSG	В		
	11,297 11,297	58.4 58.4	Weighted 100.00%	Average Pervious A	rea		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry	,	

Type III 24-hr 2-YEAR Rainfall=2.93"

Summary for Subcatchment 34S:

 Area (sf)	CN	Description			
7,007	61.0	>75% Grass cover, Good, HSG B			
7,007	61.0	100.00% Pervious Area			

2009212-POST DEVELOPMENT REV3Type III 24-hr2-YEAR Rainfall=2.93"Prepared by KNAPrinted9/8/2022HydroCAD® 10.00-26s/n 01045© 2020 HydroCAD Software Solutions LLCPage 23										
Tc Length Slope Velocity Capacity Descript (min) (feet) (ft/ft) (ft/sec) (cfs)	•									
6.0 Direct E	intry,									
Summary for Subca	Summary for Subcatchment 35S:									
Runoff = 0.02 cfs @ 12.14 hrs, Volume=	120 cf, Depth> 0.34"									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, ⁻ Type III 24-hr 2-YEAR Rainfall=2.93"	Гime Span= 0.00-24.00 hrs, dt= 0.010 hrs									
Area (sf) CN Description										
4,258 61.0 >75% Grass cover, Good, HS	G B									
4,258 61.0 100.00% Pervious Area										
Tc Length Slope Velocity Capacity Descript (min) (feet) (ft/ft) (ft/sec) (cfs)	ion									
6.0 Direct E	intry,									
Summary for Subca	itchment 36S:									
Runoff = 0.48 cfs @ 12.08 hrs, Volume=	1,546 cf, Depth> 2.33"									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"										
Area (sf) CN Description										
7,216 98.0 Paved parking, HSG B										
760 61.0 >75% Grass cover, Good, HS	G B									
7,976 94.5 Weighted Average										
760 61.0 9.53% Pervious Area										
7,216 98.0 90.47% Impervious Area										
Tc Length Slope Velocity Capacity Descript (min) (feet) (ft/ft) (ft/sec) (cfs)	ion									
6.0 Direct E	6.0 Direct Entry,									

Summary for Subcatchment 37S:

0.70 cfs @ 12.08 hrs, Volume= 2,367 cf, Depth> 2.58" Runoff =

Area (sf)	CN	Description	
10,692	98.0	Paved parking, HSG B	
312	61.0	>75% Grass cover, Good, HSG B	
11,004	97.0	Weighted Average	
312	61.0	2.84% Pervious Area	
10,692	98.0	97.16% Impervious Area	

2009212-POST DEVELOPMENT REV3	
Prepared by KNA	

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	•					
6.0	6.0 Direct Entry,									
	Summary for Subcatchment 38S:									
Runoff	Runoff = 0.45 cfs @ 12.09 hrs, Volume= 1,419 cf, Depth> 1.12"									
Type III :	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"									
A	rea (sf)	CN	Descriptio							
	7,285	98.0		rking, HSG						
	7,932	61.0		,	Good, HSG B					
	15,217	78.7	Weighted							
	7,932	61.0		Pervious Are						
	7,285 98.0 47.87% Impervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	•					
6.0	6.0 Direct Entry,									

Summary for Subcatchment 40S: BUILDING 4

Runoff = 0.73 cfs @ 12.08 hrs, Volume= 2,528 cf, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Descriptio	n				
	11,250	98.0	Roofs, HSG B					
	11,250	98.0	100.00%	Impervious	s Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 41S: BUILDING 4

Runoff = 0.73 cfs @ 12.08 hrs, Volume= 2,528 cf, Depth> 2.70"

 Area (sf)	CN	Description	
11,250	98.0	Roofs, HSG B	
 11,250	98.0	100.00% Impervious Area	

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					
	Summary for Subcatchment 42S:									
Runoff	Runoff = 1.28 cfs @ 12.11 hrs, Volume= 4,146 cf, Depth> 1.58"									
					nted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs					
Type III :	24-hr 2-Y	EAR Ra	infall=2.93	"						
А	rea (sf)	CN	Descriptio	on						
-	21,240	98.0		rking, HSG	B					
	9,027	61.0		ass cover, Good, HSG B						
	1,229	55.0		Good, HSG						
	31,496	85.7	Weighted	Average						
	10,256	60.3	32.56% P	Pervious Are	ea					
	21,240	98.0	67.44% Impervious Area							
т	1	0		0						
Tc	Length	Slope	Velocity		Description					
<u>(min)</u>	(feet)	<u>(ft/ft)</u>	(ft/sec)	(cfs)						
5.0	50	0.2200	0.17		Sheet Flow,					
4.4	00	0.0005	4.05		Woods: Light underbrush n= 0.400 P2= 2.84"					
1.1	80	0.0625	1.25		Shallow Concentrated Flow, Woodland Kyz 5.0 fps					
0.2	44	0.2700	3.64		Woodland Kv= 5.0 fps Shallow Concentrated Flow,					
0.2		0.2100	0.04		Short Grass Pasture Kv= 7.0 fps					
1.1	295	0.0470	4.40		Shallow Concentrated Flow,					
					Paved Kv= 20.3 fps					

7.4 469 Total

Summary for Subcatchment 43S:

Runoff 1.42 cfs @ 12.10 hrs, Volume= 4,613 cf, Depth> 1.82" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

Are	ea (sf)	CN	Description
2	2,966	98.0	Paved parking, HSG B
	3,724	61.0	>75% Grass cover, Good, HSG B
	3,677	60.0	Woods, Fair, HSG B
3	30,367	88.9	Weighted Average
	7,401	60.5	24.37% Pervious Area
2	2,966	98.0	75.63% Impervious Area

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022

Page 25

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022 s LLC Page 26

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	4.8	50	0.2400	0.17		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.84"
	1.2	80	0.0500	1.12		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.2	44	0.2700	3.64		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.1	280	0.0470	4.40		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps

7.3 454 Total

Prepared by KNA

Summary for Subcatchment 45S:

Runoff	=	0.15 cfs @	12.08 hrs,	Volume=	511 cf, Depth> 2.70"
--------	---	------------	------------	---------	----------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Descriptio	n			
	2,272	98.0	Paved parking, HSG B				
	2,272	98.0	100.00%	Impervious	Area		
Tc _(min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment 46S:

Runoff = 0.15 cfs @ 12.08 hrs, Volume= 507 cf, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	rea (sf)	CN	Description					
	2,255	98.0	Paved pa	Paved parking, HSG B				
	2,255	98.0	100.00%	Impervious	s Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 47S:

Runoff = 0.39 cfs @ 12.09 hrs, Volume= 1,227 cf, Depth> 1.34"

Type III 24-hr 2-YEAR Rainfall=2.93"Printed 9/8/2022S LLCPage 27

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Area (sf) CN	Description			
6,3	15 98.0	Paved pa	rking, HSG	G B	
4,6	34 61.0	>75% Ġra	ass cover, (Good, HSG B	
10,9	49 82.3	Weighted	Weighted Average		
4,6	34 61.0	42.32% Pervious Area			
6,3	15 98.0	57.68% Ir	npervious A	Area	
Tc Len (min) (fe	gth Slope eet) (ft/ft)		Capacity (cfs)	Description	
6.0				Direct Entry,	

Summary for Subcatchment 50S:

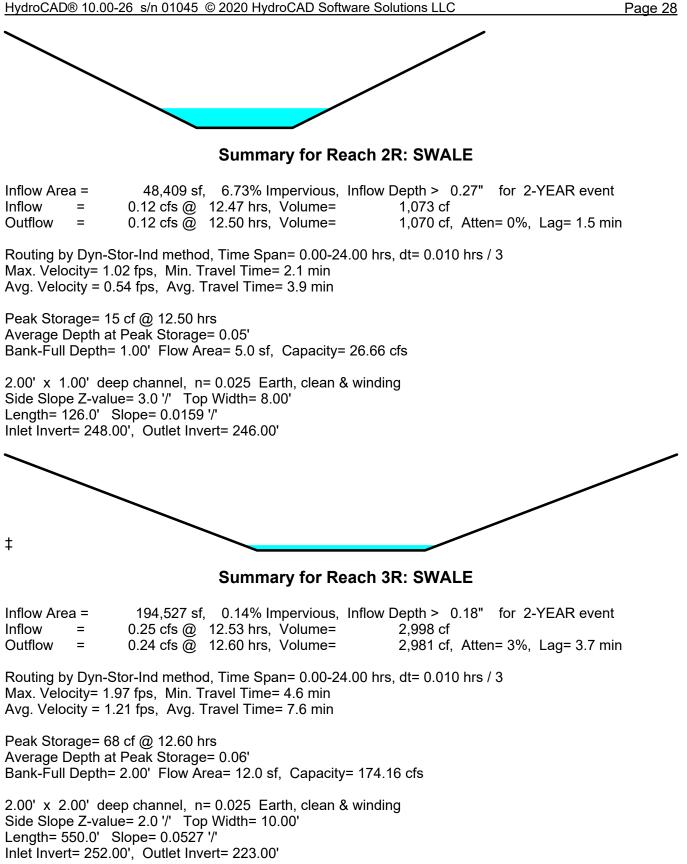
Runoff = 0.04 cfs @ 12.15 hrs, Volume= 311 cf, Depth> 0.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 2-YEAR Rainfall=2.93"

A	Area (sf)	CN	Description				
	9,796	61.0	>75% Gra	ass cover, (Good, HSG B		
	2,692	55.0	Woods, G	Woods, Good, HSG B			
	12,488	59.7	Weighted	Average			
	12,488	59.7	100.00%	Pervious A	rea		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.0					Direct Entry,		

Summary for Reach 1R: SWALE

Inflow Area	=	603,234 sf, 33.97% Impervious, Inflow Depth > 0.19" for 2-YEAF	२ event
Inflow :	=	1.13 cfs @ 12.11 hrs, Volume= 9,396 cf	
Outflow :	=	1.00 cfs @ 12.17 hrs, Volume=	j= 3.3 min

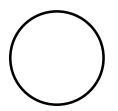

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Max. Velocity= 0.86 fps, Min. Travel Time= 4.9 min Avg. Velocity = 0.36 fps, Avg. Travel Time= 11.7 min

Peak Storage= 297 cf @ 12.17 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 24.34 cfs

2.00' x 2.00' deep channel, n= 0.069 Riprap, 6-inch Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 255.0' Slope= 0.0078 '/' Inlet Invert= 210.00', Outlet Invert= 208.00'

Prepared by KNA

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022



Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 27.74 cfs

24.0" Round Pipe n= 0.013 Length= 37.9' Slope= 0.0150 '/' Inlet Invert= 218.57', Outlet Invert= 218.00'

2009212-POST DEVELOPMENT REV3Type III 2Prepared by KNAHydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022 LLC Page 30

Summary for Reach 33R: SWALE

 Inflow Area =
 243,556 sf,
 7.72% Impervious, Inflow Depth > 0.01" for 2-YEAR event

 Inflow =
 0.03 cfs @
 12.30 hrs, Volume=
 248 cf

 Outflow =
 0.03 cfs @
 12.35 hrs, Volume=
 247 cf, Atten= 2%, Lag= 3.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Max. Velocity= 0.77 fps, Min. Travel Time= 3.9 min Avg. Velocity = 0.51 fps, Avg. Travel Time= 6.0 min

Peak Storage= 7 cf @ 12.35 hrs Average Depth at Peak Storage= 0.02' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 31.32 cfs

2.00' x 1.00' deep channel, n= 0.025 Earth, clean & winding Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 182.0' Slope= 0.0330 '/' Inlet Invert= 220.00', Outlet Invert= 214.00'

Summary for Pond 1P: HW#1

Inflow Area =	469,008 sf, 23.51% Impervious,	Inflow Depth > 0.07" for 2-YEAR event
Inflow =	0.62 cfs @ 12.14 hrs, Volume=	2,563 cf
Outflow =	0.62 cfs @ 12.14 hrs, Volume=	2,563 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.62 cfs @ 12.14 hrs, Volume=	2,563 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 211.16' @ 12.14 hrs Flood Elev= 213.90'

Device Routing Invert Outlet Devices	
#1 Primary 210.73' 12.0'' Round Culvert L= 42.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 210.73' / 210.31' S= 0.0100 '/' Cc= 0.90 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf)

Primary OutFlow Max=0.62 cfs @ 12.14 hrs HW=211.16' TW=210.74' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.62 cfs @ 2.79 fps)

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 2P: CB#2

 Inflow Area =
 474,758 sf, 24.23% Impervious, Inflow Depth > 0.09" for 2-YEAR event

 Inflow =
 0.90 cfs @ 12.12 hrs, Volume=
 3,552 cf

 Outflow =
 0.90 cfs @ 12.12 hrs, Volume=
 3,552 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.90 cfs @ 12.12 hrs, Volume=
 3,552 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 210.74' @ 12.12 hrs Flood Elev= 213.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	210.21'	15.0" Round Culvert L= 42.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 210.21' / 210.00' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.90 cfs @ 12.12 hrs HW=210.74' TW=210.39' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 0.90 cfs @ 2.69 fps)

Summary for Pond 7P: CB#7

Inflow Are	a =	17,437 sf,	96.15% Impervious,	Inflow Depth > 2	2.55" for 2-YEAR event
Inflow	=	1.10 cfs @	12.08 hrs, Volume=	3,699 cf	
Outflow	=	1.10 cfs @	12.08 hrs, Volume=	3,699 cf,	Atten= 0%, Lag= 0.0 min
Primary	=	1.10 cfs @	12.08 hrs, Volume=	3,699 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 217.12' @ 12.08 hrs Flood Elev= 220.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	216.50'	12.0" Round Culvert
	ý		L= 12.7' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 216.50' / 216.37' S= 0.0102 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.10 cfs @ 12.08 hrs HW=217.12' TW=216.32' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.10 cfs @ 3.08 fps)

Summary for Pond 8P: CB#8

Inflow Are	a =	26,789 sf, 79.55% Impervious	, Inflow Depth > 1.98" for 2-YEAR event
Inflow	=	1.38 cfs @ 12.09 hrs, Volume=	4,414 cf
Outflow	=	1.38 cfs @ 12.09 hrs, Volume=	4,414 cf, Atten= 0%, Lag= 0.0 min
Primary	=	1.38 cfs @ 12.09 hrs, Volume=	4,414 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 217.73' @ 12.09 hrs Flood Elev= 223.52'

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022 s LLC Page 32

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	217.05'	15.0" Round Culvert
			L= 204.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.05' / 216.03' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.38 cfs @ 12.09 hrs HW=217.72' TW=216.73' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 1.38 cfs @ 2.97 fps)

Summary for Pond 9P: CB#9

Inflow Area =	14,159 sf, 83.41% Impervious,	Inflow Depth > 2.12" for 2-YEAR event
Inflow =	0.77 cfs @ 12.09 hrs, Volume=	2,498 cf
Outflow =	0.77 cfs @ 12.09 hrs, Volume=	2,498 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.77 cfs @ 12.09 hrs, Volume=	2,498 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.12' @ 12.09 hrs Flood Elev= 221.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	217.60'	15.0" Round Culvert
	ý		L= 90.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.60' / 217.15' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.77 cfs @ 12.09 hrs HW=218.12' TW=217.72' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.77 cfs @ 2.31 fps)

Summary for Pond 10P: CB#10

Inflow Area	a =	5,381 sf,100.00% Impervious, Inflow Depth > 2.70" for 2-YEAR event	
Inflow	=	0.35 cfs @ 12.08 hrs, Volume= 1,209 cf	
Outflow	=	0.35 cfs @ 12.08 hrs, Volume= 1,209 cf, Atten= 0%, Lag= 0.0 mir	n
Primary	=	0.35 cfs @ 12.08 hrs, Volume= 1,209 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 219.88' @ 12.08 hrs Flood Elev= 226.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.59'	12.0" Round Culvert L= 27.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.59' / 217.70' S= 0.0700 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.35 cfs @ 12.08 hrs HW=219.88' TW=218.12' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.35 cfs @ 1.84 fps)

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 12P: CB#12

 Inflow Area =
 23,749 sf, 95.15% Impervious, Inflow Depth > 2.51" for 2-YEAR event

 Inflow =
 1.49 cfs @
 12.08 hrs, Volume=
 4,960 cf

 Outflow =
 1.49 cfs @
 12.08 hrs, Volume=
 4,960 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.49 cfs @
 12.08 hrs, Volume=
 4,960 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 217.26' @ 12.08 hrs Flood Elev= 220.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	216.50'	12.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 216.50' / 216.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.49 cfs @ 12.08 hrs HW=217.26' TW=216.32' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 1.49 cfs @ 3.23 fps)

Summary for Pond 14P: CB#14

Inflow Area	=	21,562 sf,	88.93% Impervious,	Inflow Depth > 2.3	32" for 2-YEAR event
Inflow :	=	1.24 cfs @	12.08 hrs, Volume=	4,162 cf	
Outflow :	=	1.24 cfs @	12.08 hrs, Volume=	4,162 cf, <i>1</i>	Atten= 0%, Lag= 0.0 min
Primary :	=	1.24 cfs @	12.08 hrs, Volume=	4,162 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 217.68' @ 12.08 hrs Flood Elev= 223.38'

Device	Routing	Invert	Outlet Devices
#1	Primary	217.11'	18.0" Round Culvert
			L= 152.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.11' / 216.35' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.24 cfs @ 12.08 hrs HW=217.68' TW=216.32' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.24 cfs @ 3.01 fps)

Summary for Pond 15P: CB#15

Inflow Area	=	13,436 sf,	, 82.23% Impervious,	Inflow Depth > 2	.09" for 2-YEAR event
Inflow	=	0.71 cfs @	12.09 hrs, Volume=	2,336 cf	
Outflow	=	0.71 cfs @	12.09 hrs, Volume=	2,336 cf,	Atten= 0%, Lag= 0.0 min
Primary	=	0.71 cfs @	12.09 hrs, Volume=	2,336 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.09' @ 12.09 hrs Flood Elev= 221.20'

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Soft	ware Solutions LLC
---	--------------------

Device	Routing	Invert	Outlet Devices
#1	Primary	217.60'	15.0" Round Culvert
	·		L= 78.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.60' / 217.21' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.71 cfs @ 12.09 hrs HW=218.09' TW=217.68' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.71 cfs @ 2.39 fps)

Summary for Pond 16P: CB#16

Inflow Area	a =	5,381 sf,100.00% Impervious, Inflow Depth > 2.70" for 2-YEAR event
Inflow	=	0.35 cfs @ 12.08 hrs, Volume= 1,209 cf
Outflow	=	0.35 cfs @ 12.08 hrs, Volume= 1,209 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.35 cfs @ 12.08 hrs, Volume= 1,209 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.01' @ 12.08 hrs Flood Elev= 226.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.72'	12.0" Round Culvert
			L= 28.8' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.72' / 217.70' S= 0.0701 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.35 cfs @ 12.08 hrs HW=220.01' TW=218.09' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 0.35 cfs @ 1.84 fps)

Summary for Pond 17P: CB#17

Inflow Area	ı =	12,834 sf,100.00% Impervious, Inflow Depth > 2.70" for 2-YEAR ever	nt
Inflow	=	0.84 cfs @ 12.08 hrs, Volume= 2,884 cf	
Outflow	=	0.84 cfs @ 12.08 hrs, Volume= 2,884 cf, Atten= 0%, Lag= 0.0 n	nin
Primary	=	0.84 cfs @ 12.08 hrs, Volume= 2,884 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 234.66' @ 12.08 hrs Flood Elev= 236.12'

Device	Routing	Invert	Outlet Devices
#1	Primary	234.15'	15.0" Round Culvert L= 28.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 234.15' / 234.00' S= 0.0054 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.83 cfs @ 12.08 hrs HW=234.66' TW=233.57' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.83 cfs @ 2.64 fps)

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 18P: CB#18

 Inflow Area =
 19,404 sf, 68.86% Impervious, Inflow Depth > 1.64" for 2-YEAR event

 Inflow =
 0.86 cfs @ 12.09 hrs, Volume=
 2,651 cf

 Outflow =
 0.86 cfs @ 12.09 hrs, Volume=
 2,651 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.86 cfs @ 12.09 hrs, Volume=
 2,652 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 234.51' @ 17.25 hrs Flood Elev= 237.67'

Device	Routing	Invert	Outlet Devices
#1	Primary	232.98'	18.0" Round Culvert L= 96.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 232.98' / 232.50' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
			5

Primary OutFlow Max=0.86 cfs @ 12.09 hrs HW=233.71' TW=233.59' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.86 cfs @ 1.45 fps)

Summary for Pond 19P: CB#19

Inflow Are	a =	9,491 sf,	64.25% Impervious,	Inflow Depth > 1.5	51" for 2-YEAR event
Inflow	=	0.39 cfs @	12.09 hrs, Volume=	1,195 cf	
Outflow	=	0.39 cfs @	12.09 hrs, Volume=	1,195 cf, A	Atten= 0%, Lag= 0.0 min
Primary	=	0.39 cfs @	12.09 hrs, Volume=	1,195 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 234.51' @ 17.25 hrs Flood Elev= 237.67'

Device	Routing	Invert	Outlet Devices
#1	Primary	233.70'	15.0" Round Culvert
			L= 123.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 233.70' / 233.08' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.39 cfs @ 12.09 hrs HW=234.09' TW=233.72' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.39 cfs @ 1.76 fps)

Summary for Pond 21P: CB#21

Inflow Area	a =	10,579 sf,100.00% Impervious, Inflow E	Depth > 2.70" for 2-YEAR event
Inflow	=	0.69 cfs @ 12.08 hrs, Volume=	2,377 cf
Outflow	=	0.69 cfs @ 12.08 hrs, Volume=	2,377 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.69 cfs @12.08 hrs, Volume=	2,377 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 235.23' @ 12.08 hrs Flood Elev= 239.70'

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	234.80'	15.0" Round Culvert
			L= 74.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 234.80' / 234.25' S= 0.0074 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.69 cfs @ 12.08 hrs HW=235.23' TW=234.66' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.69 cfs @ 2.74 fps)

Summary for Pond 22P: CB#22

Inflow Area	a =	6,630 sf,100.00% Impervious, Inflow Depth > 2.70" for 2-YEAR ever	nt
Inflow	=	0.43 cfs @ 12.08 hrs, Volume= 1,490 cf	
Outflow	=	0.43 cfs @ 12.08 hrs, Volume= 1,490 cf, Atten= 0%, Lag= 0.0 m	nin
Primary	=	0.43 cfs @ 12.08 hrs, Volume= 1,490 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 235.57' @ 12.08 hrs Flood Elev= 239.70'

Device	Routing	Invert	Outlet Devices
#1	Primary	235.20'	15.0" Round Culvert
			L= 60.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 235.20' / 234.90' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.43 cfs @ 12.08 hrs HW=235.57' TW=235.23' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.43 cfs @ 2.14 fps)

Summary for Pond 24P: CB#24

Inflow Area =	=	26,271 sf	, 92.21% Impervious,	Inflow Depth > 2.4	1" for 2-YEAR event
Inflow =		1.59 cfs @	12.08 hrs, Volume=	5,269 cf	
Outflow =		1.59 cfs @	12.08 hrs, Volume=	5,269 cf, A	tten= 0%, Lag= 0.0 min
Primary =		1.59 cfs @	12.08 hrs, Volume=	5,269 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 241.18' @ 12.08 hrs Flood Elev= 250.54'

Device	Routing	Invert	Outlet Devices
#1	Primary	240.50'	12.0" Round Culvert L= 104.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 240.50' / 234.00' S= 0.0625 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.58 cfs @ 12.08 hrs HW=241.18' TW=233.58' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.58 cfs @ 2.80 fps)

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 25P: CB#25

 Inflow Area =
 19,795 sf, 95.32% Impervious, Inflow Depth > 2.52" for 2-YEAR event

 Inflow =
 1.23 cfs @
 12.08 hrs, Volume=
 4,158 cf

 Outflow =
 1.23 cfs @
 12.08 hrs, Volume=
 4,158 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.23 cfs @
 12.08 hrs, Volume=
 4,158 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 244.08' @ 12.08 hrs Flood Elev= 250.54'

Device	Routing	Invert	Outlet Devices
-	Primary		12.0" Round Culvert L= 128.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 243.50' / 240.60' S= 0.0227 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.23 cfs @ 12.08 hrs HW=244.08' TW=241.18' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.23 cfs @ 2.60 fps)

Summary for Pond 27P: CB#27

Inflow Area	a =	37,738 sf, 73.20% Impervious, Inflow Depth > 1.79" for 2-YE	EAR event
Inflow	=	1.78 cfs @ 12.09 hrs, Volume= 5,641 cf	
Outflow	=	1.78 cfs @ 12.09 hrs, Volume= 5,641 cf, Atten= 0%, La	ag= 0.0 min
Primary	=	1.78 cfs @ 12.09 hrs, Volume= 5,641 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 217.06' @ 12.93 hrs Flood Elev= 218.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	215.93'	15.0" Round Culvert
			L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 215.93' / 215.88' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.78 cfs @ 12.09 hrs HW=216.73' TW=216.33' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.78 cfs @ 3.04 fps)

Summary for Pond 29P: DMH#29

Inflow Area =	184,783 sf, 1.76% Impervious,	Inflow Depth > 0.19" for 2-YEAR event
Inflow =	0.16 cfs @ 13.07 hrs, Volume=	2,997 cf
Outflow =	0.16 cfs @ 13.07 hrs, Volume=	2,997 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.16 cfs @ 13.07 hrs, Volume=	2,997 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 238.08' @ 13.07 hrs Flood Elev= 242.00'

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solution	
--	--

Device	Routing	Invert	Outlet Devices
#1	Primary	237.90'	15.0" Round Culvert L= 156.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 237.90' / 232.20' S= 0.0365 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.16 cfs @ 13.07 hrs HW=238.08' TW=232.32' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 0.16 cfs @ 1.45 fps)

Summary for Pond 30P: DMH#30

Inflow Area	=	282,142 sf, 25.55% Impervious, Inflow Depth > 0.30" for 2-YEAR event	t
Inflow	=	0.24 cfs @ 13.08 hrs, Volume= 6,971 cf	
Outflow	=	0.24 cfs @13.08 hrs, Volume=6,971 cf, Atten= 0%, Lag= 0.0 mi	in
Primary	=	0.24 cfs @ 13.08 hrs, Volume= 6,971 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 232.32' @ 13.08 hrs Flood Elev= 235.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	232.10'	15.0" Round Culvert
			L= 273.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 232.10' / 220.88' S= 0.0411 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.24 cfs @ 13.08 hrs HW=232.32' TW=221.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.24 cfs @ 1.60 fps)

Summary for Pond 32P: DMH#32

Inflow Area =	282,142 sf, 25.55% Impervious,	Inflow Depth > 0.30" for 2-YEAR event
Inflow =	0.24 cfs @ 13.08 hrs, Volume=	6,971 cf
Outflow =	0.24 cfs @ 13.08 hrs, Volume=	6,971 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.24 cfs @ 13.08 hrs, Volume=	6,971 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 221.00' @ 13.08 hrs Flood Elev= 226.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	220.78'	15.0" Round Culvert L= 253.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 220.78' / 212.32' S= 0.0334 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.24 cfs @ 13.08 hrs HW=221.00' TW=212.45' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.24 cfs @ 1.60 fps)

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 33P: DMH#33

 Inflow Area =
 282,142 sf, 25.55% Impervious, Inflow Depth > 0.30" for 2-YEAR event

 Inflow =
 0.24 cfs @ 13.08 hrs, Volume=
 6,971 cf

 Outflow =
 0.24 cfs @ 13.08 hrs, Volume=
 6,971 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.24 cfs @ 13.08 hrs, Volume=
 6,971 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 212.45' @ 13.08 hrs Flood Elev= 218.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	212.22'	15.0" Round Culvert L= 17.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 212.22' / 212.00' S= 0.0129 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
			n= 0.010 Contigued 1 E, shiour intenor, 1100 Alea - 1.20 Si

Primary OutFlow Max=0.24 cfs @ 13.08 hrs HW=212.45' TW=0.00' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 0.24 cfs @ 2.37 fps)

Summary for Pond 47P: CB#47

Inflow Are	a =	2,272 sf,100.00% Impervious, Inflow Depth > 2.70" for 2-YEAR event
Inflow	=	0.15 cfs @ 12.08 hrs, Volume= 511 cf
Outflow	=	0.15 cfs @ 12.08 hrs, Volume= 511 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.15 cfs @ 12.08 hrs, Volume= 511 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.67' @ 12.08 hrs Flood Elev= 236.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	236.50'	15.0" Round Culvert
			L= 99.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 236.50' / 235.40' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.15 cfs @ 12.08 hrs HW=236.67' TW=235.57' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.15 cfs @ 1.42 fps)

Summary for Pond 101P: CB#101

Inflow Area =	256,408 sf, 11.33% Impervious,	Inflow Depth > 0.11" for 2-YEAR event
Inflow =	0.68 cfs @ 12.09 hrs, Volume=	2,345 cf
Outflow =	0.68 cfs @ 12.09 hrs, Volume=	2,345 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.68 cfs @ 12.09 hrs, Volume=	2,345 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 212.70' @ 12.09 hrs Flood Elev= 215.80'

Prepared by KNA

HydroCAD® 10.00-26	s/n 01045	© 2020 HydroCAD	Software Solutions LLC	

Device	Routing	Invert	Outlet Devices
#1	Primary	212.20'	12.0" Round Culvert
			L= 23.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 212.20' / 212.08' S= 0.0052 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.67 cfs @ 12.09 hrs HW=212.70' TW=212.41' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 0.67 cfs @ 2.53 fps)

Summary for Pond 102P: HW#102

Inflow Area =	243,556 sf, 7.72% Impervious,	Inflow Depth > 0.01" for 2-YEAR event
Inflow =	0.03 cfs @ 12.35 hrs, Volume=	247 cf
Outflow =	0.03 cfs @ 12.35 hrs, Volume=	247 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.03 cfs @ 12.35 hrs, Volume=	247 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 213.20' @ 12.35 hrs Flood Elev= 215.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	213.12'	12.0" Round Culvert
	ŗ		L= 41.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 213.12' / 212.30' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.03 cfs @ 12.35 hrs HW=213.20' TW=212.52' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.03 cfs @ 0.98 fps)

Summary for Pond 108P: CB#108

Inflow Area :	=	15,217 sf,	, 47.87% Impervious	Inflow Depth > 1.	12" for 2-YEAR event
Inflow =	=	0.45 cfs @	12.09 hrs, Volume=	1,419 cf	
Outflow =	=	0.45 cfs @	12.09 hrs, Volume=	1,419 cf, <i>i</i>	Atten= 0%, Lag= 0.0 min
Primary =	-	0.45 cfs @	12.09 hrs, Volume=	1,419 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 222.55' @ 12.53 hrs Flood Elev= 225.98'

Device	Routing	Invert	Outlet Devices
#1	Primary	221.37'	15.0" Round Culvert L= 30.5 ' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 221.37 ' / 220.00 ' S= 0.0449 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.45 cfs @ 12.09 hrs HW=222.00' TW=221.96' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.45 cfs @ 1.05 fps) 2009212-POST DEVELOPMENT REV3
Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 112P: CB#112

 Inflow Area =
 7,976 sf, 90.47% Impervious, Inflow Depth > 2.33" for 2-YEAR event

 Inflow =
 0.48 cfs @ 12.08 hrs, Volume=
 1,546 cf

 Outflow =
 0.48 cfs @ 12.08 hrs, Volume=
 1,545 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.48 cfs @ 12.08 hrs, Volume=
 1,545 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 219.61' @ 17.78 hrs Flood Elev= 222.00'

Device F	Routing	Invert	Outlet Devices
#1 F	Primary	217.20'	12.0" Round Culvert L= 20.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.20' / 217.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.48 cfs @ 12.08 hrs HW=218.15' TW=218.13' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.48 cfs @ 0.80 fps)

Summary for Pond 114P: DMH#114

Inflow Are	a =	92,418 sf, 25.78% Impervious, I	Inflow Depth > 0.70" for 2-YEAR event
Inflow	=	1.29 cfs @ 12.11 hrs, Volume=	5,360 cf
Outflow	=	1.29 cfs @ 12.11 hrs, Volume=	5,360 cf, Atten= 0%, Lag= 0.0 min
Primary	=	1.29 cfs @ 12.11 hrs, Volume=	5,360 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 219.65' @ 12.11 hrs Flood Elev= 226.65'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.19'	24.0" Round Culvert
	·		L= 79.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.19' / 218.00' S= 0.0151 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=1.28 cfs @ 12.11 hrs HW=219.65' TW=218.22' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.28 cfs @ 2.32 fps)

Summary for Pond 115P: DCB#115

Inflow Are	a =	92,418 sf, 25.78% Impervious, Inflow Depth > 0.70" for 2-YEAR ev	/ent
Inflow	=	1.29 cfs @ 12.11 hrs, Volume= 5,360 cf	
Outflow	=	1.29 cfs @12.11 hrs, Volume=5,360 cf, Atten= 0%, Lag= 0.0) min
Primary	=	1.29 cfs @ 12.11 hrs, Volume= 5,360 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.32' @ 12.11 hrs Flood Elev= 227.54'

Prepared by KNA

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022 s LLC Page 42

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	222.81'	18.0" Round Culvert
			L= 235.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 222.81' / 219.29' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.28 cfs @ 12.11 hrs HW=223.32' TW=219.65' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 1.28 cfs @ 2.43 fps)

Summary for Pond 116P: CB#116

Inflow Area =	60,922 sf, 4.24% Impervious,	Inflow Depth > 0.24" for 2-YEAR event
Inflow =	0.13 cfs @ 12.44 hrs, Volume=	1,214 cf
Outflow =	0.13 cfs @ 12.44 hrs, Volume=	1,214 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.13 cfs @ 12.44 hrs, Volume=	1,214 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 228.11' @ 12.44 hrs Flood Elev= 233.82'

Device	Routing	Invert	Outlet Devices
#1	Primary	227.94'	15.0" Round Culvert
	ŗ		L= 125.7' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 227.94' / 222.91' S= 0.0400 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.13 cfs @ 12.44 hrs HW=228.11' TW=223.14' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.13 cfs @ 1.38 fps)

Summary for Pond 119P: CB#119

Inflow Area	=	89,050 sf,	, 56.36% Impervious	Inflow Depth > 1	.45" for 2-YEAR event
Inflow =	=	2.90 cfs @	12.10 hrs, Volume=	10,743 cf	
Outflow =	=	2.90 cfs @	12.10 hrs, Volume=	10,743 cf,	Atten= 0%, Lag= 0.0 min
Primary =	-	2.90 cfs @	12.10 hrs, Volume=	10,743 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 219.61' @ 17.79 hrs Flood Elev= 226.18'

Device	Routing	Invert	Outlet Devices
#1	Primary	218.57'	24.0" Round Culvert L= 37.9' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 218.57' / 218.00' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=2.89 cfs @ 12.10 hrs HW=219.28' TW=218.17' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.89 cfs @ 2.88 fps) 2009212-POST DEVELOPMENT REV3
Prepared by KNA

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022 s LLC Page 43

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 120P: DCB#120

 Inflow Area =
 66,796 sf, 42.29% Impervious, Inflow Depth > 1.05" for 2-YEAR event

 Inflow =
 1.50 cfs @ 12.11 hrs, Volume=
 5,848 cf

 Outflow =
 1.50 cfs @ 12.11 hrs, Volume=
 5,848 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.50 cfs @ 12.11 hrs, Volume=
 5,848 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.26' @ 12.11 hrs Flood Elev= 227.60'

Device	Routing	Invert	Outlet Devices
	Primary	222.71'	18.0" Round Culvert L= 269.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 222.71' / 218.67' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.50 cfs @ 12.11 hrs HW=223.26' TW=219.28' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 1.50 cfs @ 2.53 fps)

Summary for Pond 121P: CB#121

Inflow Area	a =	36,429 sf	, 14.50% Impervious,	Inflow Depth > 0.4°	I for 2-YEAR event
Inflow	=	0.19 cfs @	12.28 hrs, Volume=	1,235 cf	
Outflow	=	0.19 cfs @	12.28 hrs, Volume=	1,235 cf, At	ten= 0%, Lag= 0.0 min
Primary	=	0.19 cfs @	12.28 hrs, Volume=	1,235 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 226.26' @ 12.28 hrs Flood Elev= 230.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	226.06'	15.0" Round Culvert
			L= 54.2' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 226.06' / 222.81' S= 0.0600 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.19 cfs @ 12.28 hrs HW=226.26' TW=223.13' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.19 cfs @ 1.53 fps)

Summary for Pond B1: INFILTRATION POND 1

Inflow Area =	113,915 sf, 75.64% Impervious,	Inflow Depth > 1.98" for 2-YEAR event
Inflow =	5.66 cfs @ 12.09 hrs, Volume=	18,841 cf
Outflow =	0.56 cfs @ 12.94 hrs, Volume=	12,164 cf, Atten= 90%, Lag= 51.1 min
Discarded =	0.14 cfs @ 12.94 hrs, Volume=	7,166 cf
Primary =	0.41 cfs @ 12.94 hrs, Volume=	4,999 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3

Prepared by KNA

Peak Elev= 217.06' @ 12.94 hrs Surf.Area= 6,188 sf Storage= 9,829 cf Flood Elev= 218.00' Surf.Area= 9,382 sf Storage= 17,174 cf

Plug-Flow detention time= 237.1 min calculated for 12,159 cf (65% of inflow) Center-of-Mass det. time= 134.5 min (920.6 - 786.1)

Volume	Invert	Avail.Sto	rage Stora	ge Description	
#1	214.75'	17,17	74 cf Cust	om Stage Data (P	rismatic)Listed below (Recalc)
Flavesti				Ourse Otherse	
Elevatio		rf.Area	Inc.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
214.7	75	2,279	0	0	
216.0	00	4,499	4,236	4,236	
217.0)0	5,997	5,248	9,484	
218.0	00	9,382	7,690	17,174	
		,	,	,	
Device	Routing	Invert	Outlet Dev	ices	
#1	Primary	214.00'	15.0" Rou	ind Culvert	
	,		L= 26.0' C	CPP, square edge l	neadwall, Ke= 0.500
					213.75' S= 0.0096 '/' Cc= 0.900
				Flow Area= 1.23 sf	
#2	Discarded	214.75'	,		Surface area Phase-In= 0.01'
#3	Device 1	216.60'			e/Grate C= 0.600
#4	Device 1	217.90'		.0" Horiz. Orifice/	
<i>n</i> -	Device 1	211.00		weir flow at low hea	
#5	Primary	217.40'			Broad-Crested Rectangular Weir
#3	Filliary	217.40	-		•
			•	/	0.80 1.00 1.20 1.40 1.60
			Coei. (⊏ng	IISII) 2.49 2.30 2.	70 2.69 2.68 2.69 2.67 2.64

Discarded OutFlow Max=0.14 cfs @ 12.94 hrs HW=217.06' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=0.41 cfs @ 12.94 hrs HW=217.06' TW=210.31' (Dynamic Tailwater) 1=Culvert (Passes 0.41 cfs of 9.21 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.41 cfs @ 2.17 fps) -4=Orifice/Grate (Controls 0.00 cfs)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond B2: POCKET POND 1

Inflow Are	ea =	97,359 sf, 70.	.69% Impervious,	Inflow Depth > 1.91"	for 2-YEAR event
Inflow	=	4.55 cfs @ 12.0	09 hrs, Volume=	15,515 cf	
Outflow	=	0.08 cfs @ 18.5	57 hrs, Volume=	3,974 cf, Atte	n= 98%, Lag= 389.3 min
Primary	=	0.08 cfs @ 18.5	57 hrs, Volume=	3,974 cf	
Starting E	lev= 23	2.50' Surf.Area= 4	4,585 sf Storage	4.00 hrs, dt= 0.010 hrs = 6,096 cf	

Peak Elev= 234.52' @ 18.57 hrs Surf.Area= 7,236 sf Storage= 17,997 cf (11,900 cf above start) Flood Elev= 237.00' Surf.Area= 10,865 sf Storage= 40,310 cf (34,214 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Center-of-Mass det. time= 243.9 min (1,025.2 - 781.2)

Volume	Inve			Description	
#1	229.0	0' 40,3 ⁻	10 cf Custom	n Stage Data (P	r ismatic) Listed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
229.0		550	0	0	
230.0	-	1,050	800	800	
232.0	00	2,480	3,530	4,330	
232.5	50	4,585	1,766	6,096	
234.0)0	6,510	8,321	14,418	
236.0)0	9,300	15,810	30,228	
237.0)0	10,865	10,083	40,310	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	232.50'	15.0" Round	l Culvert	
			Inlet / Outlet I n= 0.013, Flo	nvert= 232.50' / w Area= 1.23 sf	
#2 #3	Device 1 Device 1	232.50' 236.00'	48.0" x 48.0"	ifice/Grate C= ' Horiz. Orifice/(ir flow at low hea	Grate C= 0.600

Primary OutFlow Max=0.08 cfs @ 18.57 hrs HW=234.52' TW=232.27' (Dynamic Tailwater)

-1=Culvert (Passes 0.08 cfs of 6.98 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.08 cfs @ 6.74 fps)

Summary for Pond B3: DETENTION POND 1

Inflow Area =	184,783 sf, 1.76% Impervious,	Inflow Depth > 0.21" for 2-YEAR event
Inflow =	0.29 cfs @ 12.54 hrs, Volume=	3,158 cf
Outflow =	0.16 cfs @ 13.07 hrs, Volume=	2,997 cf, Atten= 45%, Lag= 31.9 min
Primary =	0.16 cfs @ 13.07 hrs, Volume=	2,997 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 244.19' @ 13.07 hrs Surf.Area= 2,078 sf Storage= 376 cf Flood Elev= 248.00' Surf.Area= 8,476 sf Storage= 19,484 cf

Plug-Flow detention time= 52.8 min calculated for 2,997 cf (95% of inflow) Center-of-Mass det. time= 29.8 min (999.6 - 969.9)

Volume	Invert Av	/ail.Storage	Storage	Description	
#1	244.00'	19,484 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc) x 2
Elevation (feet)	Surf.Are (sq-fi		c.Store c-feet)	Cum.Store (cubic-feet)	
244.00	90	4	0	0	
246.00	2,30	0	3,204	3,204	
248.00	4,23	8	6,538	9,742	

Type III 24-hr 2-YEAR Rainfall=2.93" Printed 9/8/2022 SLLC Page 46

Prepared by KNA			
HydroCAD® 10.00-26	s/n 01045	© 2020 HydroCAD	Software Solutions LL

Device	Routing	Invert	Outlet Devices
#1	Primary	244.00'	12.0" Round Culvert L= 103.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 244.00' / 238.00' S= 0.0583 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf

Primary OutFlow Max=0.16 cfs @ 13.07 hrs HW=244.19' TW=238.08' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.16 cfs @ 1.50 fps)

Summary for Pond B4: INFILTRATION POND 2

Inflow Area =	204,461 sf, 39.73% Impervious,	Inflow Depth > 1.06" for 2-YEAR event
Inflow =	4.71 cfs @ 12.10 hrs, Volume=	18,070 cf
Outflow =	0.14 cfs @ 17.79 hrs, Volume=	7,174 cf, Atten= 97%, Lag= 341.4 min
Discarded =	0.14 cfs @ 17.79 hrs, Volume=	7,174 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 219.61'@ 17.79 hrs Surf.Area= 6,100 sf Storage= 11,775 cf Flood Elev= 222.00' Surf.Area= 9,536 sf Storage= 30,365 cf

Plug-Flow detention time= 314.6 min calculated for 7,174 cf (40% of inflow) Center-of-Mass det. time= 172.9 min (993.5 - 820.6)

Volume	Invert	Avail.Sto	rage Storage Description			
#1	217.00' 30,36		65 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)	
	0	5 A				
Elevatio		urf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
217.0	00	2,693	0	0		
218.0	218.00 4,247		3,470	3,470		
220.0	00	6,556	10,803	14,273		
222.0	00	9,536	16,092	30,365		
Device	Routing	Invert	Outlet Device	s		
#1	Primary	214.44'	4' 12.0" Round Culvert			
	,		L= 22.0' CM	P, square edge	headwall, Ke= 0.500	
					214.00' S= 0.0200 '/' Cc= 0.900	
			n= 0.013 Cor	rrugated PE. sm	ooth interior, Flow Area= 0.79 sf	
#2	Device 1	220.00'	10.0" Vert. Orifice X 2.00 C= 0.600			
#3	Device 1	221.50'	24.0" x 24.0" Horiz. Grate C= 0.600			
			Limited to weir flow at low heads			
#4	Discarded	217.00'		1.000 in/hr Exfiltration over Surface area Phase-In= 0.01'		

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.14 cfs @ 17.79 hrs HW=219.61' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=217.00' TW=212.08' (Dynamic Tailwater) **1=Culvert** (Passes 0.00 cfs of 5.43 cfs potential flow)

-2=Orifice (Controls 0.00 cfs)

-3=Grate (Controls 0.00 cfs)

Summary for Pond B5: BIORETENTION POND 1

Inflow Area =	30,725 sf, 60.33% Impervious,	Inflow Depth > 1.59" for 2-YEAR event
Inflow =	1.19 cfs @ 12.09 hrs, Volume=	4,067 cf
Outflow =	0.25 cfs @ 12.53 hrs, Volume=	4,067 cf, Atten= 79%, Lag= 26.5 min
Primary =	0.25 cfs @ 12.53 hrs, Volume=	4,067 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 222.55' @ 12.53 hrs Surf.Area= 1,063 sf Storage= 1,128 cf Flood Elev= 224.00' Surf.Area= 1,738 sf Storage= 3,165 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 33.9 min (829.1 - 795.2)

Volume	Inve	rt Avail.Sto	rage Storage	Description		
#1	221.0	0' 3,16	65 cf Custon	n Stage Data (Pr	ismatic) Listed below (Recalc)	
Elevatio (fee 221.0 222.0 224.0	20 20 20	Surf.Area (sq-ft) 424 810 1,738	Inc.Store (cubic-feet) 0 617 2,548	Cum.Store (cubic-feet) 0 617 3,165		
Device	Routing	Invert	Outlet Device	es		
#1	#1 Primary 217.55'		12.0" Round	d Culvert		
#2	Device 1	223.00'	L= 22.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.55' / 217.00' S= 0.0250 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 48.0" x 48.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads		217.00' S= 0.0250 '/' Cc= 0.900 both interior, Flow Area= 0.79 sf C= 0.600	
#3	Device 1	221.00'	10.000 in/hr	10.000 in/hr Exfiltration over Surface area		

Primary OutFlow Max=0.25 cfs @ 12.53 hrs HW=222.55' TW=217.21' (Dynamic Tailwater)

-1=Culvert (Passes 0.25 cfs of 8.02 cfs potential flow)

2=Grate (Controls 0.00 cfs)

3=Exfiltration (Exfiltration Controls 0.25 cfs)

2009212-POST DEVELOPMENT REV3 *Type* Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond B6: DETENTION POND 2

Inflow Area =	232,259 sf, 8.10% Impervious,	Inflow Depth > 0.37" for 2-YEAR event
Inflow =	0.50 cfs @ 12.58 hrs, Volume=	7,245 cf
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0 cf, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.00' @ 24.00 hrs Surf.Area= 7,695 sf Storage= 7,245 cf Flood Elev= 222.00' Surf.Area= 11,980 sf Storage= 46,271 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.Sto	rage Storage	e Description	
#1	217.00'	46,27	71 cf Custon	n Stage Data (Pri	ismatic)Listed below (Recalc) x 2
F 1		E A		0	
Elevatio		urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
217.0	00	3,390	0	0	
218.0)0	3,847	3,619	3,619	
220.0)0	4,840	8,687	12,306	
222.0	00	5,990	10,830	23,136	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	217.00'	12.0" Round	d Culvert	
	-		L= 20.0' CP	P, square edge h	eadwall, Ke= 0.500
					216.50' S= 0.0250 '/' Cc= 0.900
				ow Area= 0.79 sf	
		ifice C= 0.600			
#3	Device 1	220.00'			
#4	Device 1	221.50'		'Horiz. Grate C	= 0.600
				eir flow at low hea	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=217.00' TW=220.00' (Dynamic Tailwater)

-1=Culvert (Controls 0.00 cfs)

-2=Orifice (Controls 0.00 cfs)

-3=Orifice (Controls 0.00 cfs)

-4=Grate (Controls 0.00 cfs)

Summary for Link A: CHASE BROOK

Inflow Are	a =	1,196,864 sf, 23.33% Impervious, Inflow Depth > 0.21" for 2-YEAR eve	ent
Inflow	=	1.33 cfs @ 12.47 hrs, Volume= 21,284 cf	
Primary	=	1.33 cfs @ 12.47 hrs, Volume= 21,284 cf, Atten= 0%, Lag= 0.0	min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs

 Type III 24-hr
 10-YEAR Rainfall=4.44"

 Printed
 9/8/2022

 ns LLC
 Page 49

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

> Time span=0.00-24.00 hrs, dt=0.010 hrs, 2401 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S:	Runoff Area=194,527 sf 0.14% Impervious Runoff Depth>0.73" Flow Length=716' Tc=16.8 min CN=55.4 Runoff=2.02 cfs 11,885 cf
Subcatchment2S:	Runoff Area=60,922 sf 4.24% Impervious Runoff Depth>0.85" Flow Length=809' Tc=13.6 min CN=57.6 Runoff=0.85 cfs 4,307 cf
Subcatchment3S:	Runoff Area=36,429 sf 14.50% Impervious Runoff Depth>1.17" Flow Length=674' Tc=14.5 min CN=63.2 Runoff=0.79 cfs 3,556 cf
Subcatchment4S:	Runoff Area=48,409 sf 6.73% Impervious Runoff Depth>0.90" Flow Length=779' Tc=17.6 min CN=58.6 Runoff=0.68 cfs 3,642 cf
Subcatchment5S:	Runoff Area=136,374 sf 0.00% Impervious Runoff Depth>0.73" Flow Length=903' Tc=18.3 min CN=55.4 Runoff=1.37 cfs 8,300 cf
Subcatchment6S:	Runoff Area=299,000 sf 0.73% Impervious Runoff Depth>0.74" Flow Length=520' Tc=13.3 min CN=55.4 Runoff=3.36 cfs 18,315 cf
Subcatchment7S:	Runoff Area=14,561 sf 25.68% Impervious Runoff Depth>1.66" Tc=6.0 min CN=70.5 Runoff=0.64 cfs 2,020 cf
Subcatchment8S:	Runoff Area=13,429 sf 0.00% Impervious Runoff Depth>1.04" Tc=6.0 min CN=61.0 Runoff=0.33 cfs 1,168 cf
Subcatchment9S:	Runoff Area=5,750 sf 82.97% Impervious Runoff Depth>3.51" Tc=6.0 min CN=91.7 Runoff=0.52 cfs 1,682 cf
Subcatchment10S:	Runoff Area=8,237 sf 91.84% Impervious Runoff Depth>3.86" Tc=6.0 min CN=95.0 Runoff=0.79 cfs 2,650 cf
Subcatchment11S:	Runoff Area=14,549 sf 92.08% Impervious Runoff Depth>3.87" Tc=6.0 min CN=95.1 Runoff=1.40 cfs 4,692 cf
Subcatchment12S: BUILDING1	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=0.92 cfs 3,221 cf
Subcatchment13S: BUILDING1	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=0.92 cfs 3,221 cf
Subcatchment14S:	Runoff Area=8,778 sf 73.24% Impervious Runoff Depth>3.15" Tc=6.0 min CN=88.1 Runoff=0.73 cfs 2,302 cf
Subcatchment15S:	Runoff Area=8,055 sf 70.37% Impervious Runoff Depth>3.04" Tc=6.0 min CN=87.0 Runoff=0.65 cfs 2,043 cf
Subcatchment16S:	Runoff Area=5,381 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=0.54 cfs 1,884 cf

2009212-POST DEVELOPMENT REV3Type III 24-hr 10-YEAR Rainfall=4.44"

Printed 9/8/2022

Prepared by KNA	Printed 9/8/2022
HydroCAD® 10.00-26 s/n 01045 © 2020 Hy	
Subcatchment17S:	Runoff Area=5,381 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=0.54 cfs 1,884 cf
Subcatchment18S:	Runoff Area=12,630 sf 75.22% Impervious Runoff Depth>3.22" Tc=6.0 min CN=88.8 Runoff=1.07 cfs 3,387 cf
Subcatchment19S: BUILDING 2	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=0.92 cfs 3,221 cf
Subcatchment20S: BUILDING2	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=0.92 cfs 3,221 cf
Subcatchment21S:	Runoff Area=8,126 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=0.81 cfs 2,845 cf
Subcatchment22S:	Runoff Area=9,491 sf 64.25% Impervious Runoff Depth>2.83" Tc=6.0 min CN=84.8 Runoff=0.72 cfs 2,239 cf
Subcatchment23S:	Runoff Area=9,913 sf 73.27% Impervious Runoff Depth>3.15" Tc=6.0 min CN=88.1 Runoff=0.83 cfs 2,600 cf
Subcatchment24S:	Runoff Area=4,358 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=0.43 cfs 1,526 cf
Subcatchment25S:	Runoff Area=3,949 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=0.39 cfs 1,382 cf
Subcatchment26S: BUILDING 3	Runoff Area=13,600 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=1.35 cfs 4,761 cf
Subcatchment27S:	Runoff Area=6,195 sf 85.04% Impervious Runoff Depth>3.59" Tc=6.0 min CN=92.5 Runoff=0.57 cfs 1,853 cf
Subcatchment28S:	Runoff Area=6,476 sf 82.72% Impervious Runoff Depth>3.50" Tc=6.0 min CN=91.6 Runoff=0.59 cfs 1,889 cf
Subcatchment29S:	Runoff Area=20,450 sf 0.00% Impervious Runoff Depth>1.04" Tc=6.0 min CN=61.0 Runoff=0.50 cfs 1,779 cf
Subcatchment30S:	Runoff Area=12,852 sf 79.69% Impervious Runoff Depth>3.38" Tc=6.0 min CN=90.5 Runoff=1.14 cfs 3,625 cf
Subcatchment31S:	Runoff Area=8,139 sf 0.00% Impervious Runoff Depth>1.04" Tc=6.0 min CN=61.0 Runoff=0.20 cfs 708 cf
Subcatchment32S:	Runoff Area=15,017 sf 0.00% Impervious Runoff Depth>1.04" Tc=6.0 min CN=61.0 Runoff=0.37 cfs 1,307 cf
Subcatchment33S:	Runoff Area=11,297 sf 0.00% Impervious Runoff Depth>0.90"

Tc=6.0 min CN=58.4 Runoff=0.22 cfs 845 cf

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 202	0 HydroCAD Software Solutions LLC Page 51
Subcatchment34S:	Runoff Area=7,007 sf 0.00% Impervious Runoff Depth>1.04" Tc=6.0 min CN=61.0 Runoff=0.17 cfs 610 cf
Subcatchment35S:	Runoff Area=4,258 sf 0.00% Impervious Runoff Depth>1.04" Tc=6.0 min CN=61.0 Runoff=0.10 cfs 370 cf
Subcatchment36S:	Runoff Area=7,976 sf 90.47% Impervious Runoff Depth>3.80" Tc=6.0 min CN=94.5 Runoff=0.76 cfs 2,529 cf
Subcatchment37S:	Runoff Area=11,004 sf 97.16% Impervious Runoff Depth>4.08" Tc=6.0 min CN=97.0 Runoff=1.09 cfs 3,742 cf
Subcatchment38S:	Runoff Area=15,217 sf 47.87% Impervious Runoff Depth>2.30" Tc=6.0 min CN=78.7 Runoff=0.94 cfs 2,916 cf
Subcatchment40S: BUILDING4	Runoff Area=11,250 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=1.12 cfs 3,938 cf
Subcatchment41S: BUILDING 4	Runoff Area=11,250 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=1.12 cfs 3,938 cf
Subcatchment42S:	Runoff Area=31,496 sf 67.44% Impervious Runoff Depth>2.92" Flow Length=469' Tc=7.4 min CN=85.7 Runoff=2.34 cfs 7,658 cf
Subcatchment43S:	Runoff Area=30,367 sf 75.63% Impervious Runoff Depth>3.22" Flow Length=454' Tc=7.3 min CN=88.9 Runoff=2.47 cfs 8,150 cf
Subcatchment45S:	Runoff Area=2,272 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=0.23 cfs 795 cf
Subcatchment46S:	Runoff Area=2,255 sf 100.00% Impervious Runoff Depth>4.20" Tc=6.0 min CN=98.0 Runoff=0.22 cfs 789 cf
Subcatchment47S:	Runoff Area=10,949 sf 57.68% Impervious Runoff Depth>2.61" Tc=6.0 min CN=82.3 Runoff=0.77 cfs 2,382 cf
Subcatchment50S:	Runoff Area=12,488 sf 0.00% Impervious Runoff Depth>0.97" Tc=6.0 min CN=59.7 Runoff=0.27 cfs 1,008 cf
Reach 1R: SWALE n=0.069	Avg. Flow Depth=0.92' Max Vel=1.32 fps Inflow=4.79 cfs 37,150 cf L=255.0' S=0.0078 '/' Capacity=24.34 cfs Outflow=4.70 cfs 37,107 cf
Reach 2R: SWALE n=0.02	Avg. Flow Depth=0.15' Max Vel=1.86 fps Inflow=0.68 cfs 3,642 cf 5 L=126.0' S=0.0159 '/' Capacity=26.66 cfs Outflow=0.68 cfs 3,637 cf
Reach 3R: SWALE n=0.025	Avg. Flow Depth=0.20' Max Vel=4.14 fps Inflow=2.02 cfs 11,885 cf L=550.0' S=0.0527 '/' Capacity=174.16 cfs Outflow=2.00 cfs 11,852 cf
Reach 4R: SWALE n=0.069	Avg. Flow Depth=0.57' Max Vel=0.81 fps Inflow=1.52 cfs 17,300 cf L=177.0' S=0.0050 '/' Capacity=19.38 cfs Outflow=1.45 cfs 17,276 cf

Prepared by KNA

Type III 24-hr 10-YEAR Rainfall=4.44"

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Avg. Flow Depth=0.00' Max Vel=0.00 fps Reach 5R: (new Reach) 24.0" Round Pipe n=0.013 L=37.9' S=0.0150 '/' Capacity=27.74 cfs Outflow=0.00 cfs 0 cf Avg. Flow Depth=0.06' Max Vel=1.62 fps Inflow=0.22 cfs 845 cf Reach 33R: SWALE n=0.025 L=182.0' S=0.0330 '/' Capacity=31.32 cfs Outflow=0.22 cfs 843 cf Pond 1P: HW#1 Peak Elev=211.46' Inflow=1.45 cfs 17,276 cf 12.0" Round Culvert n=0.013 L=42.0' S=0.0100 '/' Outflow=1.45 cfs 17.276 cf Pond 2P: CB#2 Peak Elev=211.05' Inflow=1.84 cfs 18,957 cf 15.0" Round Culvert n=0.013 L=42.0' S=0.0050 '/' Outflow=1.84 cfs 18,957 cf Peak Elev=217.63' Inflow=1.71 cfs 5,870 cf Pond 7P: CB#7 12.0" Round Culvert n=0.013 L=12.7' S=0.0102 '/' Outflow=1.71 cfs 5.870 cf Pond 8P: CB#8 Peak Elev=218.14' Inflow=2.34 cfs 7,573 cf 15.0" Round Culvert n=0.013 L=204.0' S=0.0050 '/' Outflow=2.34 cfs 7,573 cf Peak Elev=218.39' Inflow=1.27 cfs 4,185 cf Pond 9P: CB#9 15.0" Round Culvert n=0.013 L=90.0' S=0.0050 '/' Outflow=1.27 cfs 4,185 cf Peak Elev=219.96' Inflow=0.54 cfs 1,884 cf Pond 10P: CB#10 12.0" Round Culvert n=0.013 L=27.0' S=0.0700 '/' Outflow=0.54 cfs 1,884 cf Peak Elev=217.66' Inflow=2.32 cfs 7,912 cf Pond 12P: CB#12 12.0" Round Culvert n=0.013 L=10.0' S=0.0100 '/' Outflow=2.32 cfs 7,912 cf Peak Elev=217.92' Inflow=2.00 cfs 6,771 cf Pond 14P: CB#14 18.0" Round Culvert n=0.013 L=152.5' S=0.0050 '/' Outflow=2.00 cfs 6,771 cf Peak Elev=218.28' Inflow=1.19 cfs 3,927 cf Pond 15P: CB#15 15.0" Round Culvert n=0.013 L=78.0' S=0.0050 '/' Outflow=1.19 cfs 3,927 cf Peak Elev=220.09' Inflow=0.54 cfs 1,884 cf Pond 16P: CB#16 12.0" Round Culvert n=0.013 L=28.8' S=0.0701 '/' Outflow=0.54 cfs 1,884 cf Peak Elev=235.66' Inflow=1.28 cfs 4,492 cf Pond 17P: CB#17 15.0" Round Culvert n=0.013 L=28.0' S=0.0054 '/' Outflow=1.28 cfs 4,492 cf Pond 18P: CB#18 Peak Elev=235.66' Inflow=1.55 cfs 4,838 cf 18.0" Round Culvert n=0.013 L=96.0' S=0.0050 '/' Outflow=1.55 cfs 4,839 cf Pond 19P: CB#19 Peak Elev=235.66' Inflow=0.72 cfs 2.239 cf 15.0" Round Culvert n=0.013 L=123.0' S=0.0050 '/' Outflow=0.72 cfs 2,238 cf Pond 21P: CB#21 Peak Elev=235.66' Inflow=1.05 cfs 3,703 cf 15.0" Round Culvert n=0.013 L=74.0' S=0.0074 '/' Outflow=1.05 cfs 3.703 cf Pond 22P: CB#22 Peak Elev=235.67' Inflow=0.66 cfs 2,321 cf 15.0" Round Culvert n=0.013 L=60.0' S=0.0050 '/' Outflow=0.66 cfs 2,321 cf

Page 52

Printed 9/8/2022

2009212-POST DEVELOPMENT REV3 Prepared by KNA

Type III 24-hr 10-YEAR Rainfall=4.44"

Prepared by KNA	OPMENT REV3 Type III 24-hr TO-YEAR Rainfall=4.44 Printed 9/8/2022
	045 © 2020 HydroCAD Software Solutions LLC Page 53
Pond 24P: CB#24	Peak Elev=241.43' Inflow=2.51 cfs 8,502 cf 12.0" Round Culvert n=0.013 L=104.0' S=0.0625 '/' Outflow=2.51 cfs 8,502 cf
Pond 25P: CB#25	Peak Elev=244.27' Inflow=1.92 cfs 6,614 cf 12.0" Round Culvert n=0.013 L=128.0' S=0.0227 '/' Outflow=1.92 cfs 6,614 cf
Pond 27P: CB#27	Peak Elev=217.64' Inflow=3.11 cfs 9,955 cf 15.0" Round Culvert n=0.013 L=10.0' S=0.0050 '/' Outflow=3.11 cfs 9,955 cf
Pond 29P: DMH#29	Peak Elev=238.50' Inflow=1.53 cfs 11,674 cf 15.0" Round Culvert n=0.013 L=156.0' S=0.0365 '/' Outflow=1.53 cfs 11,674 cf
Pond 30P: DMH#30	Peak Elev=232.72' Inflow=1.62 cfs 16,832 cf 15.0" Round Culvert n=0.013 L=273.0' S=0.0411 '/' Outflow=1.62 cfs 16,832 cf
Pond 32P: DMH#32	Peak Elev=221.40' Inflow=1.62 cfs 16,832 cf 15.0" Round Culvert n=0.013 L=253.0' S=0.0334 '/' Outflow=1.62 cfs 16,832 cf
Pond 33P: DMH#33	Peak Elev=212.89' Inflow=1.62 cfs 16,832 cf 15.0" Round Culvert n=0.013 L=17.0' S=0.0129 '/' Outflow=1.62 cfs 16,832 cf
Pond 47P: CB#47	Peak Elev=236.72' Inflow=0.23 cfs 795 cf 15.0" Round Culvert n=0.013 L=99.0' S=0.0111 '/' Outflow=0.23 cfs 795 cf
Pond 101P: CB#101	Peak Elev=212.93' Inflow=1.33 cfs 4,468 cf 12.0" Round Culvert n=0.013 L=23.0' S=0.0052 '/' Outflow=1.33 cfs 4,468 cf
Pond 102P: HW#102	Peak Elev=213.36' Inflow=0.22 cfs 843 cf 12.0" Round Culvert n=0.013 L=41.0' S=0.0200 '/' Outflow=0.22 cfs 843 cf
Pond 108P: CB#108	Peak Elev=223.08' Inflow=0.94 cfs 2,916 cf 15.0" Round Culvert n=0.013 L=30.5' S=0.0449 '/' Outflow=0.94 cfs 2,916 cf
Pond 112P: CB#112	Peak Elev=220.43' Inflow=0.76 cfs 2,529 cf 12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.76 cfs 2,528 cf
Pond 114P: DMH#114	Peak Elev=220.43' Inflow=2.90 cfs 11,965 cf 24.0" Round Culvert n=0.013 L=79.0' S=0.0151 '/' Outflow=2.90 cfs 11,965 cf
Pond 115P: DCB#115	Peak Elev=223.61' Inflow=2.90 cfs 11,965 cf 18.0" Round Culvert n=0.013 L=235.0' S=0.0150 '/' Outflow=2.90 cfs 11,965 cf
Pond 116P: CB#116	Peak Elev=228.38' Inflow=0.85 cfs 4,307 cf 15.0" Round Culvert n=0.013 L=125.7' S=0.0400 '/' Outflow=0.85 cfs 4,307 cf
Pond 119P: CB#119	Peak Elev=220.43' Inflow=5.12 cfs 19,386 cf 24.0" Round Culvert n=0.013 L=37.9' S=0.0150 '/' Outflow=5.12 cfs 19,385 cf
Pond 120P: DCB#120	Peak Elev=223.52' Inflow=3.00 cfs 11,706 cf 18.0" Round Culvert n=0.013 L=269.0' S=0.0150 '/' Outflow=3.00 cfs 11,706 cf

2009212-POST DEVELOPMENT RE Prepared by KNA	Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022
HydroCAD® 10.00-26 s/n 01045 © 2020 Hydr	
- Pond 121P: CB#121 15.0" Round	Peak Elev=226.48' Inflow=0.79 cfs 3,556 cf d Culvert n=0.013 L=54.2' S=0.0600 '/' Outflow=0.79 cfs 3,556 cf
Pond B1: INFILTRATIONPOND 1 Discarded=0.19 cfs	Peak Elev=217.59' Storage=13,645 cf Inflow=9.45 cfs 31,677 cf 8,162 cf Primary=3.46 cfs 16,172 cf Outflow=3.64 cfs 24,334 cf
Pond B2: POCKET POND 1	Peak Elev=235.66' Storage=27,133 cf Inflow=7.65 cfs 26,054 cf Outflow=0.10 cfs 5,157 cf
Pond B3: DETENTION POND 1 12.0" Round C	Peak Elev=244.66' Storage=1,506 cf Inflow=2.04 cfs 11,937 cf Culvert n=0.013 L=103.0' S=0.0583 '/' Outflow=1.53 cfs 11,674 cf
Pond B4: INFILTRATIONPOND 2 Discarded=0.17 cfs	Peak Elev=220.43' Storage=17,213 cf Inflow=9.07 cfs 35,185 cf 8,554 cf Primary=1.26 cfs 12,124 cf Outflow=1.42 cfs 20,678 cf
Pond B5: BIORETENTIONPOND 1	Peak Elev=223.07' Storage=1,748 cf Inflow=2.16 cfs 7,225 cf Outflow=1.25 cfs 7,225 cf
Pond B6: DETENTION POND 2	Peak Elev=219.48' Storage=19,685 cf Inflow=3.05 cfs 19,687 cf Outflow=0.00 cfs 0 cf
Link A: CHASE BROOK	Inflow=8.99 cfs 73,262 cf

Primary=8.99 cfs 73,262 cf

2009212-POST DEVELOPMENT REV3 Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S:

Runoff = 2.02 cfs @ 12.30 hrs, Volume= 11,885 cf, Depth> 0.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	n		
270 98.0 Paved p		Paved pa	rking, HSG	В		
	12,010	61.0	>75% Grass cover, Good, HSG B			
182,247 55.0		Woods, Good, HSG B				
1	94,527	55.4	Weighted Average			
1	94,257	55.4	•	ervious Are	ea	
	270	98.0	0.14% lm	pervious Ai	rea	
				•		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
8.7	50	0.0550	0.10		Sheet Flow,	
					Woods: Light underbrush n= 0.400 P2= 2.84"	
4.0	325	0.0750	1.37		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
1.1	60	0.0330	0.91		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
3.0	281	0.1000	1.58		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
16.8	716	Total				

Summary for Subcatchment 2S:

Runoff =	0.85 cfs @	12.23 hrs,	Volume=	4,307 cf,	Depth> 0.85"
----------	------------	------------	---------	-----------	--------------

Area (sf) C	Description
2,582 98) Paved parking, HSG B
7,802 61	>75% Grass cover, Good, HSG B
50,538 55) Woods, Good, HSG B
60,922 57	6 Weighted Average
58,340 55	3 95.76% Pervious Area
2,582 98) 4.24% Impervious Area

2009212-POST DEVELOPMENT REV3 Prepared by KNA

 Type III 24-hr
 10-YEAR Rainfall=4.44"

 Printed
 9/8/2022

 ns LLC
 Page 56

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.9	50	0.1000	0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.84"
	5.5	470	0.0800	1.41		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.3	84	0.3300	4.02		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.8	205	0.0400	4.06		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps

13.6 809 Total

Summary for Subcatchment 3S:

Runoff	=	0.79 cfs @	12.22 hrs,	Volume=	3,556 cf, Depth> 1.1	7"
--------	---	------------	------------	---------	----------------------	----

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

Α	rea (sf)	CN	Descriptio	n	
	5,283	98.0	Paved pa	rking, HSG	B
	11,639	61.0	>75% Gra	ass cover, (Good, HSG B
	19,507	55.0	Woods, G	iood, HSG	В
	36,429	63.2	Weighted	Average	
	31,146	57.2	85.50% P	ervious Are	ea
	5,283	98.0	14.50% Ir	npervious /	Area
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.9	50	0.1000	0.12		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.84"
7.6	600	0.0700	1.32		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.1	24	0.4000	4.43		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
14.5	674	Total			

Summary for Subcatchment 4S:

Runoff = 0.68 cfs @ 12.29 hrs, Volume= 3,642 cf, Depth> 0.90"

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 57

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Descriptio	on						
	3,260	98.0	Roofs, HS							
	5,695	61.0	>75% Gra	ass cover, (Good, HSG B					
	39,454	55.0	Woods, G	Good, HSG	B B					
	48,409	58.6	Weighted	Average						
	45,149	55.8	93.27% P	ervious Are	rea					
	3,260	98.0	6.73% Im	pervious A	Area					
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
8.4	50	0.0600	0.10		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 2.84"					
9.2	729	0.0700	1.32		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
17.6	779	Total								
	Summary for Subcatchment 5S:									
Runoff	=	1.37 cf	s@ 12.3	2 hrs, Volu	ume= 8,300 cf, Depth> 0.73"					

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	on	
	8,709	61.0	>75% Gra	ass cover, (Good, HSG B
1	27,665	55.0	Woods, G	lood, HSG	В
1	36,374	55.4	Weighted	Average	
1	36,374	55.4	100.00%	Pervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.6	50	0.1100	0.13		Sheet Flow,
7.8	567	0.0580	1.20		Woods: Light underbrush n= 0.400 P2= 2.84" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
3.8	286	0.0630	1.25		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
18.3	903	Total			

Summary for Subcatchment 6S:

Runoff = 3.36 cfs @ 12.24 hrs, Volume= 18,315 cf, Depth> 0.74"

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 58

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Descriptio	n	
	2,193	98.0	Paved par	rking, HSG	В
	6,633	61.0	>75% Ġra	iss cover, (Good, HSG B
2	90,174	55.0	Woods, G	ood, HSG	В
2	99,000	55.4	Weighted	Average	
2	96,807	55.1	99.27% P	ervious Are	ea
	2,193	98.0	0.73% Im	pervious A	rea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0	50	0.1400	0.14		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.84"
2.0	210	0.1200	1.73		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
4.9	210	0.0200	0.71		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.3	50	0.2400	2.45		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
13.3	520	Total			

Summary for Subcatchment 7S:

Runoff = 0.64 cfs @ 12.09 hrs, Volume= 2,020 cf, Depth> 1.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	n					
	3,739	98.0	Paved par	rking, HSG	€B				
	10,822	61.0	>75% Gra	>75% Grass cover, Good, HSG B					
	14,561	70.5	Weighted	Weighted Average					
	10,822	61.0	74.32% P	ervious Are	ea				
	3,739	98.0	25.68% In	25.68% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 8S:

Runoff = 0.33 cfs @ 12.10 hrs, Volume= 1,168 cf, Depth> 1.04"

 Area (sf)	CN	Description
13,429	61.0	>75% Grass cover, Good, HSG B
 13,429	61.0	100.00% Pervious Area

2009212-POST DEVELOPMENT REV3 Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Velocity Capacity Tc Length Slope Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 9S: 0.52 cfs @ 12.08 hrs, Volume= 1,682 cf, Depth> 3.51" Runoff = Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44" Area (sf) CN Description 4,771 98.0 Paved parking, HSG B 979 61.0 >75% Grass cover, Good, HSG B 5,750 91.7 Weighted Average 979 61.0 17.03% Pervious Area 82.97% Impervious Area 4,771 98.0 Length Slope Velocity Capacity Description Tc (feet) (ft/ft) (ft/sec) (cfs) (min)

6.0

Direct Entry,

Summary for Subcatchment 10S:

Runoff 0.79 cfs @ 12.08 hrs, Volume= 2,650 cf, Depth> 3.86" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	Description						
	7,565	98.0	Paved pa	rking, HSG	€B					
	672	61.0	>75% Ġra	>75% Grass cover, Good, HSG B						
	8,237	95.0	Weighted	Weighted Average						
	672	61.0	8.16% Pe	8.16% Pervious Area						
	7,565	98.0	91.84% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Summary for Subcatchment 11S:

Runoff	=	1.40 cfs @	12.08 hrs, \	Volume=	4,692 cf,	Depth>	3.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022

Page 59

 Type III 24-hr
 10-YEAR Rainfall=4.44"

 Printed
 9/8/2022

 ns LLC
 Page 60

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Descriptio	n					
	13,397	98.0	Paved pa	rking, HSG	€B				
	1,152	61.0	>75% Ġra	>75% Grass cover, Good, HSG B					
	14,549	95.1	Weighted	Weighted Average					
	1,152	61.0	7.92% Pervious Area						
	13,397	98.0	92.08% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 12S: BUILDING 1

Runoff = 0.92 cfs @ 12.08 hrs, Volume= 3,221 cf, Depth> 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	on				
	9,200	98.0	Roofs, HSG B					
	9,200	98.0	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 13S: BUILDING 1

Runoff	=	0.92 cfs @	12.08 hrs, Volume=	3,221 cf, Depth> 4.20"
i turioni			TEROO THO, VOIGHIO	0,221 0l, Bopul 1120

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	n				
	9,200	98.0	Roofs, HSG B					
	9,200	98.0	100.00%	Impervious	Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 14S:

Runoff = 0.73 cfs @ 12.09 hrs, Volume= 2,302 cf, Depth> 3.15"

 Type III 24-hr
 10-YEAR Rainfall=4.44"

 Printed
 9/8/2022

 ns LLC
 Page 61

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description							
	6,429	98.0	Paved pa	rking, HSG	€B					
	2,349	61.0	>75% Ġra	>75% Grass cover, Good, HSG B						
	8,778	88.1	Weighted	Weighted Average						
	2,349	61.0	26.76% Pervious Area							
	6,429	98.0	73.24% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Summary for Subcatchment 15S:

Runoff = 0.65 cfs @ 12.09 hrs, Volume= 2,043 cf, Depth> 3.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	n						
	5,668	98.0	Paved pa	rking, HSG	B					
	2,387	61.0	>75% Grass cover, Good, HSG B							
	8,055	87.0	Weighted	Weighted Average						
	2,387	61.0	29.63% Pervious Area							
	5,668	98.0	70.37% Impervious Area							
Тс	Length		,		Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry,					
					- -					
(min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description Direct Entry,					

Summary for Subcatchment 16S:

Runoff = 0.54 cfs @ 12.08 hrs, Volume= 1,884 cf, Depth> 4.20"

A	rea (sf)	CN	Descriptio	n						
	5,381	98.0	Paved pa	Paved parking, HSG B						
	5,381	98.0	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 17S:

Runoff = 0.54 cfs @ 12.08 hrs, Volume= 1,884 cf, Depth> 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	n				
	5,381	98.0	Paved parking, HSG B					
	5,381	98.0	100.00%	100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 18S:

Runoff = 1.07 cfs @ 12.09 hrs, Volume= 3,387 cf, Depth> 3.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

Area (sf)	CN	Description						
9,500	98.0	Paved parking, HSG B						
3,130	61.0	>75% Grass cover, Good, HSG B						
12,630	88.8	Weighted Average						
3,130	61.0	24.78% Pervious Area						
9,500	98.0	75.22% Impervious Area						
Tc Length (min) (feet)	Slope (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)						
6.0		Direct Entry,						

Summary for Subcatchment 19S: BUILDING 2

Runoff = 0.92 cfs @ 12.08 hrs, Volume= 3,221 cf, Depth> 4.20"

A	rea (sf)	CN	Descriptio	n					
	9,200	98.0	Roofs, HS	Roofs, HSG B					
	9,200	98.0	100.00%	Impervious	s Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 20S: BUILDING 2

Runoff = 0.92 cfs @ 12.08 hrs, Volume= 3,221 cf, Depth> 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	n				
	9,200	98.0	Roofs, HSG B					
	9,200	98.0	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 21S:

Runoff = 0.81 cfs @ 12.08 hrs, Volume= 2,845 cf, Depth> 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

Ar	ea (sf)	CN	Descriptio	n				
	8,126	98.0	Paved parking, HSG B					
	8,126	98.0	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 22S:

Runoff = 0.72 cfs @ 12.09 hrs, Volume= 2,239 cf, Depth> 2.83"

A	rea (sf)	CN	Descriptio	n			
	6,098	98.0	Paved pa	rking, HSG	G B		
	3,393	61.0	>75% Ġra	ass cover, (Good, HSG B		
	9,491	84.8	Weighted	Average			
	3,393	61.0	35.75% Pervious Area				
	6,098	98.0	64.25% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	1		
	(ieet)	(1011)	(10/360)	(013)			
6.0					Direct Entry,		

2009212-POST DEVELOPMENT REV3 Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 23S:

Runoff = 0.83 cfs @ 12.09 hrs, Volume= 2,600 cf, Depth> 3.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	n			
	7,263	98.0	Paved pa	rking, HSG	GB		
	2,650	61.0	>75% Gra	iss cover, (Good, HSG B		
	9,913	88.1	Weighted	Average			
	2,650	61.0	26.73% P	ervious Are	rea		
	7,263	98.0	73.27% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)			
6.0					Direct Entry,		

Summary for Subcatchment 24S:

Runoff = 0.43 cfs @ 12.08 hrs, Volume= 1,526 cf, Depth> 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	n	
	4,358	98.0	Paved pa	rking, HSG	G B
	4,358	98.0	100.00%	Impervious	s Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 25S:

Runoff = 0.39 cfs @ 12.08 hrs, Volume= 1,382 cf, Depth> 4.20"

A	rea (sf)	CN	Descriptio	n				
	3,949	98.0	Paved parking, HSG B					
	3,949	98.0	100.00%	Impervious	s Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 26S: BUILDING 3

Runoff = 1.35 cfs @ 12.08 hrs, Volume= 4,761 cf, Depth> 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	n	
	13,600	98.0	Roofs, HS	SG B	
	13,600	98.0	100.00%	Impervious	s Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 27S:

Runoff = 0.57 cfs @ 12.08 hrs, Volume= 1,853 cf, Depth> 3.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Descriptio	n			
	5,268	98.0	Paved pa	rking, HSG	G B		
	927	61.0	>75% Ġra	ass cover, (Good, HSG B		
	6,195	92.5	Weighted	Average			
	927	61.0	14.96% Pervious Area				
	5,268	98.0	85.04% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	1		
6.0					Direct Entry,		

Summary for Subcatchment 28S:

Runoff = 0.59 cfs @ 12.08 hrs, Volume= 1,889 cf, Depth> 3.50"

Area (sf)	CN	Description
5,357	98.0	Paved parking, HSG B
1,119	61.0	>75% Grass cover, Good, HSG B
6,476	91.6	Weighted Average
1,119	61.0	17.28% Pervious Area
5,357	98.0	82.72% Impervious Area

2009212-POST DEVELOPMENT REV3Type III 24-hr10-YEAR Rainfall=4.44Prepared by KNAPrinted 9/8/2022HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLCPage 66									
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
6.0 Direct Entry,									
Summary for Subcatchmen	t 29S:								
Runoff = 0.50 cfs @ 12.10 hrs, Volume= 1,779	9 cf, Depth> 1.04"								
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Spar Type III 24-hr 10-YEAR Rainfall=4.44"	= 0.00-24.00 hrs, dt= 0.010 hrs								
Area (sf) CN Description									
20,450 61.0 >75% Grass cover, Good, HSG B									
20,450 61.0 100.00% Pervious Area									
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
6.0 Direct Entry,									
Summary for Subcatchmen	t 30S:								
Runoff = 1.14 cfs @ 12.09 hrs, Volume= 3,628	5 cf, Depth> 3.38"								
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"									
Area (sf) CN Description									
10,242 98.0 Paved parking, HSG B									
2,610 61.0 >75% Grass cover, Good, HSG B									
12,852 90.5 Weighted Average									
2,610 61.0 20.31% Pervious Area									
10,242 98.0 79.69% Impervious Area									
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
6.0 Direct Entry,									

Summary for Subcatchment 31S:

0.20 cfs @ 12.10 hrs, Volume= 708 cf, Depth> 1.04" Runoff =

 Area (sf)	CN	Description
8,139	61.0	>75% Grass cover, Good, HSG B
8,139	61.0	100.00% Pervious Area

2009212-POST DEVELOPMENT REV3Type III 24-hr10-YEAR Rainfall=4.44"Prepared by KNAPrinted 9/8/2022HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLCPage 67							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,							
Summary for Subcatchment 32S:							
Runoff = 0.37 cfs @ 12.10 hrs, Volume= 1,307 cf, Depth> 1.04"							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"							
Area (sf) CN Description							
15,017 61.0 >75% Grass cover, Good, HSG B							
15,017 61.0 100.00% Pervious Area							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,							
Summary for Subcatchment 33S:							
Runoff = 0.22 cfs @ 12.11 hrs, Volume= 845 cf, Depth> 0.90"							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"							
Area (sf) CN Description							
6,480 61.0 >75% Grass cover, Good, HSG B							
4,817 55.0 Woods, Good, HSG B							
11,297 58.4 Weighted Average 11,297 58.4 100.00% Pervious Area							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							

Summary for Subcatchment 34S:

Direct Entry,

Runoff = 0.17 cfs @ 12.10 hrs, Volume= 610 cf, Depth> 1.04"

6.0

 Area (sf)	CN	Description
7,007	61.0	>75% Grass cover, Good, HSG B
 7,007	61.0	100.00% Pervious Area

Prepare	2009212-POST DEVELOPMENT REV3Type III 24-hr10-YEAR Rainfall=4.44"Prepared by KNAPrinted9/8/2022HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLCPage 68									
ITYUIOCAI	Tyurocade 10.00-20 S/ITUT045 @ 2020 Tyurocad Soliware Solutions LLC Page 68									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry	7,				
			Su	nmary fo	or Subcatch	ment 35S:				
Runoff	=	0.10 cf	s@ 12.1	0 hrs, Volu	ime=	370 cf, Depth>	1.04"			
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"									
Aı	rea (sf)	CN	Descriptio	n						
	4,258	61.0			Good, HSG B					
	4,258	61.0		Pervious A						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry	۲,				
			Su	mmary fo	or Subcatch	ment 36S:				
Runoff	=	0.76 cf	s@ 12.0	8 hrs, Volu	ime=	2,529 cf, Depth>	3.80"			
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"										
Aı	rea (sf)	CN	Descriptio	on						
	7,216	98.0		rking, HSG	В					
	760	61.0	>75% Ġra	ass cover, (Good, HSG B					
	7,976	94.5	Weighted							
	760	61.0		ervious Area						
	7,216	98.0	90.47% lı	mpervious <i>I</i>	Area					
	Length			Capacity	Description					

 Tc
 Length
 Slope
 Velocity
 Capacity
 Description

 (min)
 (feet)
 (ft/ft)
 (ft/sec)
 (cfs)

 6.0
 Direct Entry,

Summary for Subcatchment 37S:

Runoff = 1.09 cfs @ 12.08 hrs, Volume= 3,742 cf, Depth> 4.08"

CN	Description					
98.0	Paved parking, HSG B					
61.0	>75% Grass cover, Good, HSG B					
97.0	Weighted Average					
61.0	2.84% Pervious Area					
98.0	97.16% Impervious Area					
	98.0 61.0 97.0 61.0					

2009212-POST DEVELOPMENT REV3 Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				
	Summary for Subcatchment 38S:								
Runoff	= 0.94 cfs @ 12.09 hrs, Volume= 2,916 cf, Depth> 2.30"								
Type III 24	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"								
	<u>a (sf)</u> 7,285	<u>CN</u> 98.0	Description	rking, HSG	B				
	7,932	61.0		•	Good, HSG B				
-	5,217	78.7	Weighted	,					
	7,932	61.0	52.13% Pervious Area						
7	7,285	98.0							
(min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0	6.0 Direct Entry,								

Summary for Subcatchment 40S: BUILDING 4

Runoff = 1.12 cfs @ 12.08 hrs, Volume= 3,938 cf, Depth> 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Description						
	11,250	98.0	Roofs, HS	Roofs, HSG B					
	11,250	98.0	100.00%	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 41S: BUILDING 4

Runoff = 1.12 cfs @ 12.08 hrs, Volume= 3,938 cf, Depth> 4.20"

 Area (sf)	CN	Description				
11,250	98.0	Roofs, HSG B				
 11,250	98.0	100.00% Impervious Area				

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	·						
6.0					Direct Entry,						
	Summary for Subcatchment 42S:										
Runoff	=	2.34 cf	s@ 12.1	0 hrs, Volu	ume= 7,658 cf, Depth> 2.92"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"											
Α	rea (sf)	CN	Descriptic	n							
	21,240	98.0	Paved pa	rking, HSG	B						
	9,027	61.0			Good, HSG B						
	1,229	55.0	Woods, G	Good, HSG	В						
	31,496	85.7	Weighted	0							
	10,256	60.3		ervious Are							
	21,240	98.0	67.44% Ir	npervious /	Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
5.0	50	0.2200	0.17	(010)	Sheet Flow,						
0.0	00	0.2200	0.17		Woods: Light underbrush n= 0.400 P2= 2.84"						
1.1	80	0.0625	1.25		Shallow Concentrated Flow,						
		0.0020			Woodland $Kv=5.0$ fps						
0.2	44	0.2700	3.64		Shallow Concentrated Flow,						
					Short Grass Pasture Kv= 7.0 fps						
1.1	295	0.0470	4.40		Shallow Concentrated Flow,						
					Paved Kv= 20.3 fps						
7.4	469	Total									

Summary for Subcatchment 43S:

Runoff = 2.47 cfs @ 12.10 hrs, Volume= 8,150 cf, Depth> 3.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

Area (sf)	CN	Description				
22,966	98.0	Paved parking, HSG B				
3,724	61.0	>75% Grass cover, Good, HSG B				
3,677	60.0	Woods, Fair, HSG B				
30,367	88.9	Weighted Average				
7,401	60.5	24.37% Pervious Area				
22,966	98.0	75.63% Impervious Area				

 Type III 24-hr
 10-YEAR Rainfall=4.44"

 Printed
 9/8/2022

 ns LLC
 Page 70

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 71

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.8	50	0.2400	0.17		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.84"
1.2	80	0.0500	1.12		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.2	44	0.2700	3.64		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.1	280	0.0470	4.40		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps

7.3 454 Total

Summary for Subcatchment 45S:

Runoff	=	0.23 cfs @	12.08 hrs,	Volume=	795 cf, Depth> 4.20"
--------	---	------------	------------	---------	----------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Description						
	2,272	98.0	Paved pa	Paved parking, HSG B					
	2,272	98.0	100.00%	100.00% Impervious Area					
Tc _(min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 46S:

Runoff = 0.22 cfs @ 12.08 hrs, Volume= 789 cf, Depth> 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	rea (sf)	CN	Description						
	2,255	98.0	Paved pa	Paved parking, HSG B					
	2,255	98.0	100.00%	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 47S:

Runoff = 0.77 cfs @ 12.09 hrs, Volume= 2,382 cf, Depth> 2.61"

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 72

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Area	a (sf)	CN	Description					
6	,315	98.0	Paved par	king, HSG	€B			
4	,634	61.0	>75% Ġra	ss cover, C	Good, HSG B			
10	,949	82.3	Weighted Average					
4	,634	61.0	42.32% Pervious Area					
6	,315	98.0	57.68% Impervious Area					
	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 50S:

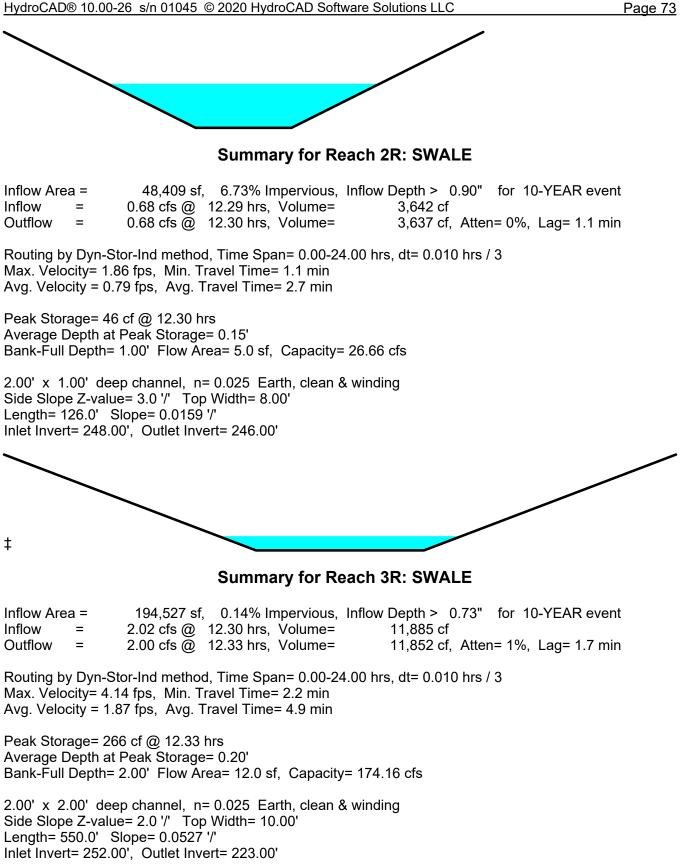
Runoff = 0.27 cfs @ 12.10 hrs, Volume= 1,008 cf, Depth> 0.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 10-YEAR Rainfall=4.44"

A	vrea (sf)	CN	Description						
	9,796	61.0	>75% Gra	ass cover, (Good, HSG B				
	2,692	55.0	Woods, G	ood, HSG	В				
	12,488	59.7	Weighted	Weighted Average					
	12,488	59.7	100.00%	100.00% Pervious Area					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Reach 1R: SWALE

Inflow Area =	603,234 sf, 33.97% Impervious,	Inflow Depth > 0.74"	for 10-YEAR event
Inflow =	4.79 cfs @ 12.28 hrs, Volume=	37,150 cf	
Outflow =	4.70 cfs @ 12.33 hrs, Volume=	37,107 cf, Atter	n= 2%, Lag= 2.8 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Max. Velocity= 1.32 fps, Min. Travel Time= 3.2 min Avg. Velocity = 0.52 fps, Avg. Travel Time= 8.2 min

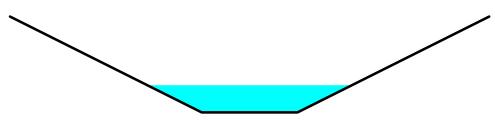
Peak Storage= 904 cf @ 12.33 hrs Average Depth at Peak Storage= 0.92' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 24.34 cfs

2.00' x 2.00' deep channel, n= 0.069 Riprap, 6-inch Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 255.0' Slope= 0.0078 '/' Inlet Invert= 210.00', Outlet Invert= 208.00'

Prepared by KNA

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022

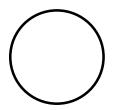
Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC


Summary for Reach 4R: SWALE

Inflow Area	a =	469,008 sf, 23.51% Impervious, Inflow Depth > 0.44" for 10-YEAR event	
Inflow	=	1.52 cfs @ 12.09 hrs, Volume= 17,300 cf	
Outflow	=	1.45 cfs @ 12.81 hrs, Volume= 17,276 cf, Atten= 4%, Lag= 42.7 min	I

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Max. Velocity= 0.81 fps, Min. Travel Time= 3.6 min Avg. Velocity = 0.37 fps, Avg. Travel Time= 8.0 min

Peak Storage= 316 cf @ 12.81 hrs Average Depth at Peak Storage= 0.57' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 19.38 cfs


2.00' x 2.00' deep channel, n= 0.069 Riprap, 6-inch Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 177.0' Slope= 0.0050 '/' Inlet Invert= 212.08', Outlet Invert= 211.20'

Summary for Reach 5R: (new Reach)

Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 27.74 cfs

24.0" Round Pipe n= 0.013 Length= 37.9' Slope= 0.0150 '/' Inlet Invert= 218.57', Outlet Invert= 218.00'

2009212-POST DEVELOPMENT REV3 *Type I* Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 75

Summary for Reach 33R: SWALE

 Inflow Area =
 243,556 sf, 7.72% Impervious, Inflow Depth > 0.04" for 10-YEAR event

 Inflow =
 0.22 cfs @ 12.11 hrs, Volume=
 845 cf

 Outflow =
 0.22 cfs @ 12.13 hrs, Volume=
 843 cf, Atten= 3%, Lag= 1.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Max. Velocity= 1.62 fps, Min. Travel Time= 1.9 min Avg. Velocity = 0.61 fps, Avg. Travel Time= 5.0 min

Peak Storage= 24 cf @ 12.13 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 31.32 cfs

2.00' x 1.00' deep channel, n= 0.025 Earth, clean & winding Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 182.0' Slope= 0.0330 '/' Inlet Invert= 220.00', Outlet Invert= 214.00'

Summary for Pond 1P: HW#1

Inflow Area =	469,008 sf, 23.51% Impervious,	Inflow Depth > 0.44" for 10-YEAR event
Inflow =	1.45 cfs @ 12.81 hrs, Volume=	17,276 cf
Outflow =	1.45 cfs @ 12.81 hrs, Volume=	17,276 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.45 cfs @ 12.81 hrs, Volume=	17,276 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 211.46' @ 12.77 hrs Flood Elev= 213.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	210.73'	12.0" Round Culvert L= 42.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 210.73' / 210.31' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.45 cfs @ 12.81 hrs HW=211.46' TW=211.00' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.45 cfs @ 3.29 fps) 2009212-POST DEVELOPMENT REV3
Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 2P: CB#2

 Inflow Area =
 474,758 sf, 24.23% Impervious, Inflow Depth > 0.48" for 10-YEAR event

 Inflow =
 1.84 cfs @ 12.12 hrs, Volume=
 18,957 cf

 Outflow =
 1.84 cfs @ 12.12 hrs, Volume=
 18,957 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.84 cfs @ 12.12 hrs, Volume=
 18,957 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 211.05' @ 12.14 hrs Flood Elev= 213.90'

#1 Primary 210.21' 15.0" Round Culvert	Device	Routing	Invert	Outlet Devices
L= 42.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 210.21' / 210.00' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf	#1	Primary	210.21'	L= 42.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 210.21' / 210.00' S= 0.0050 '/' Cc= 0.900

Primary OutFlow Max=1.84 cfs @ 12.12 hrs HW=211.04' TW=210.69' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.84 cfs @ 3.01 fps)

Summary for Pond 7P: CB#7

Inflow Area	=	17,437 sf	, 96.15% Impervious,	Inflow Depth >	4.04" for 10-YEAR event
Inflow :	=	1.71 cfs @	12.08 hrs, Volume=	5,870 cf	
Outflow :	=	1.71 cfs @	12.08 hrs, Volume=	5,870 cf,	Atten= 0%, Lag= 0.0 min
Primary :	=	1.71 cfs @	12.08 hrs, Volume=	5,870 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 217.63' @ 12.29 hrs Flood Elev= 220.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	216.50'	12.0" Round Culvert
	J		L= 12.7' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 216.50' / 216.37' S= 0.0102 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.71 cfs @ 12.08 hrs HW=217.42' TW=217.18' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.71 cfs @ 2.94 fps)

Summary for Pond 8P: CB#8

Inflow Area	a =	26,789 sf, 79.5	5% Impervious,	Inflow Depth >	3.39"	for 10-YEAR event
Inflow	=	2.34 cfs @ 12.09	hrs, Volume=	7,573 ct	f	
Outflow	=	2.34 cfs @ 12.09	hrs, Volume=	7,573 ct	f, Atter	n= 0%, Lag= 0.0 min
Primary	=	2.34 cfs @ 12.09	hrs, Volume=	7,573 ct	f	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.14' @ 12.10 hrs Flood Elev= 223.52'

Prepared by KNA

	HydroCAD® 10.00-26	s/n 01045	© 2020 HvdroCAD) Software Solutions L	LC
--	--------------------	-----------	-----------------	------------------------	----

Device	Routing	Invert	Outlet Devices
#1	Primary	217.05'	15.0" Round Culvert L= 204.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 217.05' / 216.03' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.34 cfs @ 12.09 hrs HW=218.12' TW=217.46' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 2.34 cfs @ 2.79 fps)

Summary for Pond 9P: CB#9

Inflow Area	=	14,159 sf	, 83.41% Impervious,	Inflow Depth > 3.5	5" for 10-YEAR event
Inflow :	=	1.27 cfs @	12.08 hrs, Volume=	4,185 cf	
Outflow :	=	1.27 cfs @	12.08 hrs, Volume=	4,185 cf, A	tten= 0%, Lag= 0.0 min
Primary :	=	1.27 cfs @	12.08 hrs, Volume=	4,185 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.39' @ 12.09 hrs Flood Elev= 221.20'

	ev- 221.20		
Davias	Douting	1	Outlat Davia

Device	Routing	Invert	Outlet Devices
#1	Primary	217.60'	15.0" Round Culvert
			L= 90.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 217.60' / 217.15' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.23 cfs @ 12.08 hrs HW=218.39' TW=218.12' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.23 cfs @ 2.14 fps)

Summary for Pond 10P: CB#10

Inflow Area =		5,381 sf,100.00% Impervious, Inflow Depth > 4.20" for 10-YEAR event
Inflow	=	0.54 cfs @ 12.08 hrs, Volume= 1,884 cf
Outflow	=	0.54 cfs @ 12.08 hrs, Volume= 1,884 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.54 cfs @ 12.08 hrs, Volume= 1,884 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 219.96' @ 12.08 hrs Flood Elev= 226.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.59'	12.0" Round Culvert L= 27.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.59' / 217.70' S= 0.0700 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.53 cfs @ 12.08 hrs HW=219.96' TW=218.39' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.53 cfs @ 2.06 fps)

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 12P: CB#12

 Inflow Area =
 23,749 sf, 95.15% Impervious, Inflow Depth > 4.00" for 10-YEAR event

 Inflow =
 2.32 cfs @ 12.08 hrs, Volume=
 7,912 cf

 Outflow =
 2.32 cfs @ 12.08 hrs, Volume=
 7,912 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 2.32 cfs @ 12.08 hrs, Volume=
 7,912 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 217.66' @ 12.14 hrs Flood Elev= 220.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	216.50'	12.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 216.50' / 216.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			-

Primary OutFlow Max=2.31 cfs @ 12.08 hrs HW=217.55' TW=217.18' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.31 cfs @ 2.95 fps)

Summary for Pond 14P: CB#14

Inflow Area	a =	21,562 sf, 88.93% Impervious, Inflow Depth > 3.77" for 1	0-YEAR event
Inflow	=	2.00 cfs @ 12.08 hrs, Volume= 6,771 cf	
Outflow	=	2.00 cfs @ 12.08 hrs, Volume= 6,771 cf, Atten= 0%,	Lag= 0.0 min
Primary	=	2.00 cfs @ 12.08 hrs, Volume= 6,771 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 217.92' @ 12.11 hrs Flood Elev= 223.38'

Device	Routing	Invert	Outlet Devices
#1	Primary	217.11'	18.0" Round Culvert
	,		L= 152.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.11' / 216.35' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.99 cfs @ 12.08 hrs HW=217.90' TW=217.18' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.99 cfs @ 3.06 fps)

Summary for Pond 15P: CB#15

Inflow Area =	13,436 sf, 82.23% Impervious,	Inflow Depth > 3.51" for 10-YEAR event
Inflow =	1.19 cfs @ 12.09 hrs, Volume=	3,927 cf
Outflow =	1.19 cfs @ 12.09 hrs, Volume=	3,927 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.19 cfs @ 12.09 hrs, Volume=	3,927 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.28' @ 12.09 hrs Flood Elev= 221.20'

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 79

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	217.60'	15.0" Round Culvert L= 78.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.60' / 217.21' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.19 cfs @ 12.09 hrs HW=218.28' TW=217.90' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 1.19 cfs @ 2.54 fps)

Summary for Pond 16P: CB#16

Inflow Area	=	5,381 sf,100.00% Impervious,	Inflow Depth > 4.20" for 10-YEAR event
Inflow :	=	0.54 cfs @ 12.08 hrs, Volume=	1,884 cf
Outflow :	=	0.54 cfs @ 12.08 hrs, Volume=	1,884 cf, Atten= 0%, Lag= 0.0 min
Primary :	=	0.54 cfs @ 12.08 hrs, Volume=	1,884 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.09'@ 12.08 hrs Flood Elev= 226.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.72'	12.0" Round Culvert
	,		L= 28.8' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.72' / 217.70' S= 0.0701 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.53 cfs @ 12.08 hrs HW=220.09' TW=218.27' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.53 cfs @ 2.06 fps)

Summary for Pond 17P: CB#17

Inflow Area =	=	12,834 sf,100.00% Impervious	, Inflow Depth > 4.20" for 10-YEAR event
Inflow =		1.28 cfs @ 12.08 hrs, Volume=	4,492 cf
Outflow =		1.28 cfs @ 12.08 hrs, Volume=	4,492 cf, Atten= 0%, Lag= 0.0 min
Primary =		1.28 cfs @ 12.08 hrs, Volume=	4,492 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 235.66' @ 21.18 hrs Flood Elev= 236.12'

Device	Routing	Invert	Outlet Devices
#1	Primary	234.15'	15.0" Round Culvert L= 28.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 234.15' / 234.00' S= 0.0054 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.28 cfs @ 12.08 hrs HW=234.79' TW=234.23' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.28 cfs @ 2.93 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 18P: CB#18

 Inflow Area =
 19,404 sf, 68.86% Impervious, Inflow Depth > 2.99" for 10-YEAR event

 Inflow =
 1.55 cfs @ 12.09 hrs, Volume=
 4,838 cf

 Outflow =
 1.55 cfs @ 12.09 hrs, Volume=
 4,839 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.55 cfs @ 12.09 hrs, Volume=
 4,839 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 235.66' @ 21.19 hrs Flood Elev= 237.67'

Device	Routing	Invert	Outlet Devices
#1	Primary	232.98'	18.0" Round Culvert L= 96.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 232.98' / 232.50' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.54 cfs @ 12.09 hrs HW=234.32' TW=234.25' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.54 cfs @ 1.23 fps)

Summary for Pond 19P: CB#19

Inflow Area	=	9,491 sf, 64.25% Impervious, Inflow Depth > 2.83" for 10-YEAR e	vent
Inflow	=	0.72 cfs @ 12.09 hrs, Volume= 2,239 cf	
Outflow	=	0.72 cfs @ 12.09 hrs, Volume= 2,238 cf, Atten= 0%, Lag= 0.0	min
Primary	=	0.72 cfs @ 12.09 hrs, Volume= 2,238 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 235.66' @ 21.19 hrs Flood Elev= 237.67'

Device	Routing	Invert	Outlet Devices
#1	Primary	233.70'	15.0" Round Culvert
	-		L= 123.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 233.70' / 233.08' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.72 cfs @ 12.09 hrs HW=234.45' TW=234.32' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.72 cfs @ 1.35 fps)

Summary for Pond 21P: CB#21

Inflow Area	a =	10,579 sf,100.00% Impervious, Inflow Depth > 4.20" for 10-YEAR event	
Inflow	=	1.05 cfs @ 12.08 hrs, Volume= 3,703 cf	
Outflow	=	1.05 cfs @ 12.08 hrs, Volume= 3,703 cf, Atten= 0%, Lag= 0.0 min	l
Primary	=	1.05 cfs @ 12.08 hrs, Volume= 3,703 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 235.66' @ 21.31 hrs Flood Elev= 239.70'

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 81

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		15.0" Round Culvert L= 74.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 234.80' / 234.25' S= 0.0074 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.05 cfs @ 12.08 hrs HW=235.35' TW=234.79' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 1.05 cfs @ 2.97 fps)

Summary for Pond 22P: CB#22

Inflow Are	a =	6,630 sf,100.00% Impervious, Inflow Depth > 4.20" for 10-YEAR event
Inflow	=	0.66 cfs @ 12.08 hrs, Volume= 2,321 cf
Outflow	=	0.66 cfs @ 12.08 hrs, Volume= 2,321 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.66 cfs @ 12.08 hrs, Volume= 2,321 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 235.67' @ 12.08 hrs Flood Elev= 239.70'

Device	Routing	Invert	Outlet Devices
#1	Primary	235.20'	15.0" Round Culvert
	ŗ		L= 60.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 235.20' / 234.90' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.66 cfs @ 12.08 hrs HW=235.67' TW=235.35' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.66 cfs @ 2.29 fps)

Summary for Pond 24P: CB#24

Inflow Area	a =	26,271 sf, 92.21% Impervious, Inflow Depth > 3.88" for 10-YEAR event	t
Inflow	=	2.51 cfs @ 12.08 hrs, Volume= 8,502 cf	
Outflow	=	2.51 cfs @ 12.08 hrs, Volume= 8,502 cf, Atten= 0%, Lag= 0.0 min	۱
Primary	=	2.51 cfs @ 12.08 hrs, Volume= 8,502 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 241.43' @ 12.08 hrs Flood Elev= 250.54'

Device	Routing	Invert	Outlet Devices
#1	Primary	240.50'	12.0" Round Culvert L= 104.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 240.50' / 234.00' S= 0.0625 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.51 cfs @ 12.08 hrs HW=241.43' TW=234.24' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.51 cfs @ 3.29 fps)

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 25P: CB#25

 Inflow Area =
 19,795 sf, 95.32% Impervious, Inflow Depth > 4.01" for 10-YEAR event

 Inflow =
 1.92 cfs @ 12.08 hrs, Volume=
 6,614 cf

 Outflow =
 1.92 cfs @ 12.08 hrs, Volume=
 6,614 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.92 cfs @ 12.08 hrs, Volume=
 6,614 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 244.27' @ 12.08 hrs Flood Elev= 250.54'

Device	Routing	Invert	Outlet Devices
#1	Primary	243.50'	12.0" Round Culvert L= 128.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 243.50' / 240.60' S= 0.0227 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.92 cfs @ 12.08 hrs HW=244.27' TW=241.43' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.92 cfs @ 2.98 fps)

Summary for Pond 27P: CB#27

Inflow Area	=	37,738 sf,	73.20% Impervious,	Inflow Depth > 3.7	17" for 10-YEAR event
Inflow	=	3.11 cfs @	12.09 hrs, Volume=	9,955 cf	
Outflow	=	3.11 cfs @	12.09 hrs, Volume=	9,955 cf, A	Atten= 0%, Lag= 0.0 min
Primary	=	3.11 cfs @	12.09 hrs, Volume=	9,955 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 217.64' @ 12.27 hrs Flood Elev= 218.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	215.93'	15.0" Round Culvert
	-		L= 10.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 215.93' / 215.88' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.10 cfs @ 12.09 hrs HW=217.47' TW=217.19' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.10 cfs @ 2.53 fps)

Summary for Pond 29P: DMH#29

Inflow Area =	=	184,783 sf,	1.76% Impervious,	Inflow Depth > 0.7	6" for 10-YEAR event
Inflow =	:	1.53 cfs @	12.57 hrs, Volume=	11,674 cf	
Outflow =	:	1.53 cfs @	12.57 hrs, Volume=	11,674 cf, A	tten= 0%, Lag= 0.0 min
Primary =	:	1.53 cfs @	12.57 hrs, Volume=	11,674 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 238.50' @ 12.57 hrs Flood Elev= 242.00'

Prepared by KNA

Hyc	droCAD®	10.00-26	s/n 01045	© 2020 H	HydroCAD	Software	Solutions L	L
-----	---------	----------	-----------	----------	----------	----------	-------------	---

Device	Routing	Invert	Outlet Devices
#1	Primary	237.90'	15.0" Round Culvert
			L= 156.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 237.90' / 232.20' S= 0.0365 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.53 cfs @ 12.57 hrs HW=238.50' TW=232.72' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 1.53 cfs @ 2.64 fps)

Summary for Pond 30P: DMH#30

Inflow Area =	282,142 sf, 25.55% Impervious,	Inflow Depth > 0.72" for 10-YEAR event
Inflow =	1.62 cfs @ 12.57 hrs, Volume=	16,832 cf
Outflow =	1.62 cfs @ 12.57 hrs, Volume=	16,832 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.62 cfs @ 12.57 hrs, Volume=	16,832 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 232.72' @ 12.57 hrs Elood Elev= 235.00'

F	lood	Elev=	235.00	

Device	Routing	Invert	Outlet Devices
#1	Primary	232.10'	15.0" Round Culvert
			L= 273.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 232.10' / 220.88' S= 0.0411 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.62 cfs @ 12.57 hrs HW=232.72' TW=221.40' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.62 cfs @ 2.68 fps)

Summary for Pond 32P: DMH#32

Inflow Area =	282,142 sf, 25.55% Impervious,	Inflow Depth > 0.72" for 10-YEAR event
Inflow =	1.62 cfs @ 12.57 hrs, Volume=	16,832 cf
Outflow =	1.62 cfs @ 12.57 hrs, Volume=	16,832 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.62 cfs @ 12.57 hrs, Volume=	16,832 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 221.40' @ 12.57 hrs Flood Elev= 226.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	220.78'	15.0" Round Culvert L= 253.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 220.78' / 212.32' S= 0.0334 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.62 cfs @ 12.57 hrs HW=221.40' TW=212.89' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.62 cfs @ 2.68 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 33P: DMH#33

 Inflow Area =
 282,142 sf, 25.55% Impervious, Inflow Depth > 0.72" for 10-YEAR event

 Inflow =
 1.62 cfs @ 12.57 hrs, Volume=
 16,832 cf

 Outflow =
 1.62 cfs @ 12.57 hrs, Volume=
 16,832 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.62 cfs @ 12.57 hrs, Volume=
 16,832 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 212.89' @ 12.57 hrs Flood Elev= 218.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	212.22'	15.0" Round Culvert L= 17.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 212.22' / 212.00' S= 0.0129 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.62 cfs @ 12.57 hrs HW=212.89' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.62 cfs @ 3.54 fps)

Summary for Pond 47P: CB#47

Inflow Area	a =	2,272 sf,100.00% Impervious, Inflow	Depth > 4.20" for 10-YEAR event
Inflow	=	0.23 cfs @ 12.08 hrs, Volume=	795 cf
Outflow	=	0.23 cfs @ 12.08 hrs, Volume=	795 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.23 cfs @12.08 hrs, Volume=	795 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.72' @ 12.08 hrs Flood Elev= 236.50'

Device	Routing	Invert	Outlet Devices
#1	Primary		15.0" Round Culvert L= 99.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 236.50' / 235.40' S= 0.0111 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.23 cfs @ 12.08 hrs HW=236.72' TW=235.67' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.23 cfs @ 2.39 fps)

Summary for Pond 101P: CB#101

Inflow Area	=	256,408 sf	, 11.33% Impervious,	Inflow Depth > 0	0.21" for 10-YEAR event
Inflow	=	1.33 cfs @	12.09 hrs, Volume=	4,468 cf	
Outflow	=	1.33 cfs @	12.09 hrs, Volume=	4,468 cf,	Atten= 0%, Lag= 0.0 min
Primary	=	1.33 cfs @	12.09 hrs, Volume=	4,468 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 212.93' @ 12.09 hrs Flood Elev= 215.80'

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 85

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
<u>=====</u> #1	Primary		12.0" Round Culvert L= 23.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 212.20' / 212.08' S= 0.0052 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.32 cfs @ 12.09 hrs HW=212.93' TW=212.60' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 1.32 cfs @ 3.00 fps)

Summary for Pond 102P: HW#102

Inflow Area =	243,556 sf, 7.72% Impervious,	Inflow Depth > 0.04" for 10-YEAR event
Inflow =	0.22 cfs @ 12.13 hrs, Volume=	843 cf
Outflow =	0.22 cfs @ 12.13 hrs, Volume=	843 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.22 cfs @ 12.13 hrs, Volume=	843 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 213.36' @ 12.12 hrs Flood Elev= 215.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	213.12'	12.0" Round Culvert
	·		L= 41.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 213.12' / 212.30' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.22 cfs @ 12.13 hrs HW=213.36' TW=212.91' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.22 cfs @ 2.30 fps)

Summary for Pond 108P: CB#108

Inflow Area :	=	15,217 sf,	47.87% Impervious,	Inflow Depth > 2.30	for 10-YEAR event
Inflow =	:	0.94 cfs @	12.09 hrs, Volume=	2,916 cf	
Outflow =	:	0.94 cfs @	12.09 hrs, Volume=	2,916 cf, Att	en= 0%, Lag= 0.0 min
Primary =		0.94 cfs @	12.09 hrs, Volume=	2,916 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.08' @ 12.20 hrs Flood Elev= 225.98'

Device	Routing	Invert	Outlet Devices
#1	Primary	221.37'	15.0" Round Culvert L= 30.5 ' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 221.37 ' / 220.00 ' S= 0.0449 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.94 cfs @ 12.09 hrs HW=222.71' TW=222.68' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.94 cfs @ 0.77 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 112P: CB#112

 Inflow Area =
 7,976 sf, 90.47% Impervious, Inflow Depth > 3.80" for 10-YEAR event

 Inflow =
 0.76 cfs @
 12.08 hrs, Volume=
 2,529 cf

 Outflow =
 0.76 cfs @
 12.08 hrs, Volume=
 2,528 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.76 cfs @
 12.08 hrs, Volume=
 2,528 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.43' @ 12.79 hrs Flood Elev= 222.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	217.20'	12.0" Round Culvert L= 20.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.20' / 217.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			······································

Primary OutFlow Max=0.76 cfs @ 12.08 hrs HW=219.08' TW=219.04' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 0.76 cfs @ 0.97 fps)

Summary for Pond 114P: DMH#114

Inflow Area	a =	92,418 sf, 25.78% Impervious,	Inflow Depth > 1.55" for 10-YEAR event
Inflow	=	2.90 cfs @ 12.12 hrs, Volume=	11,965 cf
Outflow	=	2.90 cfs @ 12.12 hrs, Volume=	11,965 cf, Atten= 0%, Lag= 0.0 min
Primary	=	2.90 cfs @ 12.12 hrs, Volume=	11,965 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.43' @ 12.77 hrs Flood Elev= 226.65'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.19'	24.0" Round Culvert
	Ĵ		L= 79.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.19' / 218.00' S= 0.0151 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=2.89 cfs @ 12.12 hrs HW=219.97' TW=219.26' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.89 cfs @ 3.79 fps)

Summary for Pond 115P: DCB#115

Inflow Area	a =	92,418 sf	, 25.78% Impervious,	Inflow Depth > 1	.55" for 10-YEAR event
Inflow	=	2.90 cfs @	12.12 hrs, Volume=	11,965 cf	
Outflow	=	2.90 cfs @	12.12 hrs, Volume=	11,965 cf,	Atten= 0%, Lag= 0.0 min
Primary	=	2.90 cfs @	12.12 hrs, Volume=	11,965 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.61' @ 12.12 hrs Flood Elev= 227.54'

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 87

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device Routing Invert Outlet Devices	
#1 Primary 222.81' 18.0" Round Culvert L= 235.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 222.81' / 219.29' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf)

Primary OutFlow Max=2.89 cfs @ 12.12 hrs HW=223.61' TW=219.97' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.89 cfs @ 3.04 fps)

Summary for Pond 116P: CB#116

Inflow Area =	60,922 sf, 4.24% Impervious,	Inflow Depth > 0.85" for 10-YEAR event
Inflow =	0.85 cfs @ 12.23 hrs, Volume=	4,307 cf
Outflow =	0.85 cfs @ 12.23 hrs, Volume=	4,307 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.85 cfs @ 12.23 hrs, Volume=	4,307 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 228.38'@ 12.23 hrs Flood Elev= 233.82'

Device	Routing	Invert	Outlet Devices
#1	Primary	227.94'	15.0" Round Culvert
	Ţ		L= 125.7' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 227.94' / 222.91' S= 0.0400 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.85 cfs @ 12.23 hrs HW=228.38' TW=223.50' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.85 cfs @ 2.25 fps)

Summary for Pond 119P: CB#119

Inflow Area =	89,050 sf, 56.36% Impervious,	Inflow Depth > 2.61" for 10-YEAR event
Inflow =	5.12 cfs @ 12.10 hrs, Volume=	19,386 cf
Outflow =	5.12 cfs @ 12.10 hrs, Volume=	19,385 cf, Atten= 0%, Lag= 0.0 min
Primary =	5.12 cfs @ 12.10 hrs, Volume=	19,385 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.43' @ 12.78 hrs Flood Elev= 226.18'

Device	Routing	Invert	Outlet Devices
#1	Primary	218.57'	24.0" Round Culvert L= 37.9' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 218.57' / 218.00' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=5.12 cfs @ 12.10 hrs HW=219.68' TW=219.13' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 5.12 cfs @ 4.15 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 88

Summary for Pond 120P: DCB#120

 Inflow Area =
 66,796 sf, 42.29% Impervious, Inflow Depth > 2.10" for 10-YEAR event

 Inflow =
 3.00 cfs @
 12.11 hrs, Volume=
 11,706 cf

 Outflow =
 3.00 cfs @
 12.11 hrs, Volume=
 11,706 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 3.00 cfs @
 12.11 hrs, Volume=
 11,706 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.52' @ 12.11 hrs Flood Elev= 227.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	222.71'	18.0" Round Culvert L= 269.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 222.71' / 218.67' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.99 cfs @ 12.11 hrs HW=223.52' TW=219.71' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.99 cfs @ 3.07 fps)

Summary for Pond 121P: CB#121

Inflow Area	=	36,429 sf,	, 14.50% Impervious,	Inflow Depth > 1.	.17" for 10-YEAR event
Inflow =	=	0.79 cfs @	12.22 hrs, Volume=	3,556 cf	
Outflow =	=	0.79 cfs @	12.22 hrs, Volume=	3,556 cf,	Atten= 0%, Lag= 0.0 min
Primary =	=	0.79 cfs @	12.22 hrs, Volume=	3,556 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 226.48' @ 12.22 hrs Flood Elev= 230.00'

Device	Routing	Invert	Outlet Devices		
#1	Primary	226.06'	15.0" Round Culvert		
			L= 54.2' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 226.06' / 222.81' S= 0.0600 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf		

Primary OutFlow Max=0.79 cfs @ 12.22 hrs HW=226.48' TW=223.41' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.79 cfs @ 2.20 fps)

Summary for Pond B1: INFILTRATION POND 1

Inflow Area =	113,915 sf, 75.64% Impervious,	Inflow Depth > 3.34" for 10-YEAR event
Inflow =	9.45 cfs @ 12.09 hrs, Volume=	31,677 cf
Outflow =	3.64 cfs @ 12.32 hrs, Volume=	24,334 cf, Atten= 61%, Lag= 14.3 min
Discarded =	0.19 cfs @ 12.32 hrs, Volume=	8,162 cf
Primary =	3.46 cfs @ 12.32 hrs, Volume=	16,172 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3

Prepared by KNA

Peak Elev= 217.59' @ 12.32 hrs Surf.Area= 8,008 sf Storage= 13,645 cf Flood Elev= 218.00' Surf.Area= 9,382 sf Storage= 17,174 cf

Plug-Flow detention time= 175.7 min calculated for 24,334 cf (77% of inflow) Center-of-Mass det. time= 92.1 min (869.2 - 777.1)

Volume	Invert	Avail.Sto	age Storage Description		
#1	214.75'	17,17	74 cf Cust	om Stage Data (P	rismatic)Listed below (Recalc)
Flavetia		uf Aug a	las Ctore	Curra Starra	
Elevatio		rf.Area	Inc.Store	•	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
214.7	75	2,279	0	0	
216.0	00	4,499	4,236	4,236	
217.0	00	5,997	5,248	9,484	
218.0	00	9,382	7,690	17,174	
Device	Routing	Invert	Outlet Dev	vices	
#1	Primary	214.00'	15.0" Roi	und Culvert	
	2		L= 26.0'	CPP, square edge l	headwall, Ke= 0.500
			Inlet / Outl	et Invert= 214.00' /	213.75' S= 0.0096 '/' Cc= 0.900
				Flow Area= 1.23 st	
#2	Discarded	214.75'	,		Surface area Phase-In= 0.01'
#3	Device 1				e/Grate C= 0.600
#4	Device 1	217.90'		.0" Horiz. Orifice/	
<i>"</i> ·	Device 1	211.00		weir flow at low hea	
#5	Primary	217.40'			Broad-Crested Rectangular Weir
#0	тппату	217.40			0.80 1.00 1.20 1.40 1.60
			•	,	70 2.69 2.68 2.69 2.67 2.64
				JIISII) 2.49 2.50 2.	10 2.09 2.00 2.09 2.01 2.04

Discarded OutFlow Max=0.19 cfs @ 12.32 hrs HW=217.59' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.19 cfs)

Primary OutFlow Max=3.45 cfs @ 12.32 hrs HW=217.59' TW=210.92' (Dynamic Tailwater) 1=Culvert (Passes 1.33 cfs of 10.18 cfs potential flow) -3=Orifice/Grate (Orifice Controls 1.33 cfs @ 3.20 fps) 4=Orifice/Crate (Controls 0.00 cfs)

-4=Orifice/Grate (Controls 0.00 cfs)

-5=Broad-Crested Rectangular Weir (Weir Controls 2.13 cfs @ 1.10 fps)

Summary for Pond B2: POCKET POND 1

Inflow Area = 97,359 sf, 70.69% Impervious, Inflow Depth > 3.21" for 10-YEAR event					
Inflow = 7.65 cfs @ 12.09 hrs, Volume= 26,054 cf					
Outflow = 0.10 cfs @ 21.18 hrs, Volume= 5,157 cf, Atten= 99%, Lag= 545.9	min				
Primary = 0.10 cfs @ 21.18 hrs, Volume= 5,157 cf					
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3					

Starting Elev= 232.50' Surf.Area= 4,585 sf Storage= 6,096 cf Peak Elev= 235.66' @ 21.18 hrs Surf.Area= 8,824 sf Storage= 27,133 cf (21,037 cf above start) Flood Elev= 237.00' Surf.Area= 10,865 sf Storage= 40,310 cf (34,214 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Prepared by KNA

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Page 90

Center-of-Mass det. time= 233.3 min (1,007.5 - 774.2)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	229.0	0' 40,3	10 cf Custon	n Stage Data (P	rismatic) Listed below (Recalc)
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
229.0	1	550	0	0	
230.0	-	1,050	800	800	
232.0	00	2,480	3,530	4,330	
232.5	50	4,585	1,766	6,096	
234.0		6,510	8,321	14,418	
236.0		9,300	15,810	30,228	
237.0	00	10,865	10,083	40,310	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	232.50'	15.0" Round	d Culvert	
					headwall, Ke= 0.500
					232.20' S= 0.0125 '/' Cc= 0.900
			,	ow Area= 1.23 st	
#2	Device 1	232.50'		rifice/Grate C=	
#3	Device 1	236.00'		" Horiz. Orifice/ eir flow at low hea	Grate C= 0.600
				an now at low nea	aus

Primary OutFlow Max=0.10 cfs @ 21.18 hrs HW=235.66' TW=232.31' (Dynamic Tailwater)

-1=Culvert (Passes 0.10 cfs of 9.41 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.10 cfs @ 8.47 fps)

Summary for Pond B3: DETENTION POND 1

Inflow Area =	184,783 sf, 1.76% Impervious	, Inflow Depth > 0.78" for 10-YEAR event
Inflow =	2.04 cfs @ 12.32 hrs, Volume=	11,937 cf
Outflow =	1.53 cfs @ 12.57 hrs, Volume=	11,674 cf, Atten= 25%, Lag= 14.7 min
Primary =	1.53 cfs @ 12.57 hrs, Volume=	11,674 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 244.66' @ 12.57 hrs Surf.Area= 2,734 sf Storage= 1,506 cf Flood Elev= 248.00' Surf.Area= 8,476 sf Storage= 19,484 cf

Plug-Flow detention time= 28.3 min calculated for 11,670 cf (98% of inflow) Center-of-Mass det. time= 17.0 min (924.3 - 907.4)

Volume	Invert Av	/ail.Storage	Storage	Description	
#1	244.00'	19,484 cf	Custom	Stage Data (Pi	rismatic)Listed below (Recalc) x 2
Elevation (feet)	Surf.Are (sq-fl		c.Store c-feet)	Cum.Store (cubic-feet)	
244.00	90	4	0	0	
246.00	2,30	0	3,204	3,204	
248.00	4,23	8	6,538	9,742	

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 91

r repared by RivA						
HydroCAD® 10.00-26	s/n 01045	© 2020 Hy	ydroCAD	Software	Solutions	LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	244.00'	12.0" Round Culvert L= 103.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 244.00' / 238.00' S= 0.0583 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf

Primary OutFlow Max=1.53 cfs @ 12.57 hrs HW=244.66' TW=238.50' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.53 cfs @ 2.77 fps)

Summary for Pond B4: INFILTRATION POND 2

Inflow Area =	204,461 sf, 39.73% Impervious,	Inflow Depth > 2.07" for 10-YEAR event
Inflow =	9.07 cfs @ 12.10 hrs, Volume=	35,185 cf
Outflow =	1.42 cfs @ 12.79 hrs, Volume=	20,678 cf, Atten= 84%, Lag= 41.3 min
Discarded =	0.17 cfs @ 12.79 hrs, Volume=	8,554 cf
Primary =	1.26 cfs $\overline{@}$ 12.79 hrs, Volume=	12,124 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.43' @ 12.79 hrs Surf.Area= 7,193 sf Storage= 17,213 cf Flood Elev= 222.00' Surf.Area= 9,536 sf Storage= 30,365 cf

Plug-Flow detention time= 224.0 min calculated for 20,670 cf (59% of inflow) Center-of-Mass det. time= 107.6 min (920.9 - 813.3)

Volume	Invert	Avail.Sto	rage Storage	e Description	
#1	217.00'	30,36	65 cf Custor	n Stage Data (P	rismatic)Listed below (Recalc)
_				a a	
Elevatio	on Si	urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
217.0	00	2,693	0	0	
218.0	00	4,247	3,470	3,470	
220.0	00	6,556	10,803	14,273	
222.0	00	9,536	16,092	30,365	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	214.44'	12.0" Roun	d Culvert	
			L= 22.0' CN	/IP, square edge	headwall, Ke= 0.500
			Inlet / Outlet	Invert= 214.44'/	214.00' S= 0.0200 '/' Cc= 0.900
			n= 0.013 Cc	prrugated PE. sm	ooth interior, Flow Area= 0.79 sf
#2	Device 1	220.00'		Drifice X 2.00 C	
#3	Device 1	221.50'	24.0" x 24.0	" Horiz. Grate (C= 0.600
				eir flow at low hea	
#4	Discarded	217.00'	1.000 in/hr E	Exfiltration over	Surface area Phase-In= 0.01'

Type III 24-hr 10-YEAR Rainfall=4.44" Printed 9/8/2022 ns LLC Page 92

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.17 cfs @ 12.79 hrs HW=220.43' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.17 cfs)

Primary OutFlow Max=1.26 cfs @ 12.79 hrs HW=220.43' TW=212.65' (Dynamic Tailwater) **1=Culvert** (Passes 1.26 cfs of 8.86 cfs potential flow)

2=Orifice (Orifice Controls 1.26 cfs @ 2.23 fps)

-3=Grate (Controls 0.00 cfs)

Summary for Pond B5: BIORETENTION POND 1

Inflow Area =	30,725 sf, 60.33% Impervious,	Inflow Depth > 2.82" for 10-YEAR event
Inflow =	2.16 cfs @ 12.09 hrs, Volume=	7,225 cf
Outflow =	1.25 cfs @ 12.20 hrs, Volume=	7,225 cf, Atten= 42%, Lag= 7.0 min
Primary =	1.25 cfs @ 12.20 hrs, Volume=	7,225 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.07' @ 12.20 hrs Surf.Area= 1,306 sf Storage= 1,748 cf Flood Elev= 224.00' Surf.Area= 1,738 sf Storage= 3,165 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 42.3 min (830.9 - 788.7)

Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	221.0	0' 3,16	65 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee 221.0 222.0 224.0	21) 00 00	Surf.Area (sq-ft) 424 810 1,738	Inc.Store (cubic-feet) 0 617 2,548	Cum.Store (cubic-feet) 0 617 3,165	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	217.55'	12.0" Roun	d Culvert	
#2 #3	Device 1 Device 1	223.00' 221.00'	L= 22.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $217.55' / 217.00'$ S= 0.0250'/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 48.0" x 48.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads 10.000 in/hr Exfiltration over Surface area		

Primary OutFlow Max=1.24 cfs @ 12.20 hrs HW=223.07' TW=217.32' (Dynamic Tailwater)

_1=Culvert (Passes 1.24 cfs of 8.47 cfs potential flow)

2=Grate (Weir Controls 0.94 cfs @ 0.86 fps)

3=Exfiltration (Exfiltration Controls 0.30 cfs)

2009212-POST DEVELOPMENT REV3 Type / Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond B6: DETENTION POND 2

Inflow Area =	232,259 sf, 8.10% Impervious,	Inflow Depth > 1.02" for 10-YEAR event
Inflow =	3.05 cfs @ 12.28 hrs, Volume=	19,687 cf
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0 cf, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 219.48' @ 24.00 hrs Surf.Area= 9,161 sf Storage= 19,685 cf Flood Elev= 222.00' Surf.Area= 11,980 sf Storage= 46,271 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	: Avail.Sto	rage Storage	Description	
#1	217.00	46,27	71 cf Custom	n Stage Data (Pri	ismatic)Listed below (Recalc) x 2
Elevatio	on S	urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
217.0	00	3,390	0	0	
218.0	00	3,847	3,619	3,619	
220.0	00	4,840	8,687	12,306	
222.0	00	5,990	10,830	23,136	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	217.00'	12.0" Round	d Culvert	
	2		L= 20.0' CP	P, square edge h	eadwall, Ke= 0.500
			Inlet / Outlet I	Invert= 217.00' / 2	216.50' S= 0.0250 '/' Cc= 0.900
			n= 0.013, Flo	ow Area= 0.79 sf	
#2	Device 1	217.00'	2.0" Vert. Or	ifice C= 0.600	
#3	Device 1	220.00'	6.0" Vert. Or	ifice C= 0.600	
#4	Device 1	221.50'	24.0" x 24.0"	' Horiz. Grate C	= 0.600
			Limited to we	ir flow at low hea	ds

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=217.00' TW=220.00' (Dynamic Tailwater)

-1=Culvert (Controls 0.00 cfs)

-2=Orifice (Controls 0.00 cfs)

-3=Orifice (Controls 0.00 cfs)

-4=Grate (Controls 0.00 cfs)

Summary for Link A: CHASE BROOK

Inflow Are	a =	1,196,864 sf, 23.33% Impervious, Inflow Depth > 0.73" for 10-YEAR even	th > 0.73" for 10-YEAR event
Inflow	=	8.99 cfs @ 12.34 hrs, Volume= 73,262 cf	262 cf
Primary	=	8.99 cfs @ 12.34 hrs, Volume= 73,262 cf, Atten= 0%, Lag= 0.0 mir	262 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs

Type III 24-hr 25-YEAR Rainfall=5.61" Printed 9/8/2022 ns LLC Page 94

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

> Time span=0.00-24.00 hrs, dt=0.010 hrs, 2401 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S:	Runoff Area=194,527 sf 0.14% Impervious Runoff Depth>1.32" Flow Length=716' Tc=16.8 min CN=55.4 Runoff=4.33 cfs 21,447 cf
Subcatchment2S:	Runoff Area=60,922 sf 4.24% Impervious Runoff Depth>1.48" Flow Length=809' Tc=13.6 min CN=57.6 Runoff=1.71 cfs 7,526 cf
Subcatchment3S:	Runoff Area=36,429 sf 14.50% Impervious Runoff Depth>1.91" Flow Length=674' Tc=14.5 min CN=63.2 Runoff=1.37 cfs 5,809 cf
Subcatchment4S:	Runoff Area=48,409 sf 6.73% Impervious Runoff Depth>1.56" Flow Length=779' Tc=17.6 min CN=58.6 Runoff=1.31 cfs 6,278 cf
Subcatchment5S:	Runoff Area=136,374 sf 0.00% Impervious Runoff Depth>1.32" Flow Length=903' Tc=18.3 min CN=55.4 Runoff=2.93 cfs 14,990 cf
Subcatchment6S:	Runoff Area=299,000 sf 0.73% Impervious Runoff Depth>1.33" Flow Length=520' Tc=13.3 min CN=55.4 Runoff=7.27 cfs 33,034 cf
Subcatchment7S:	Runoff Area=14,561 sf 25.68% Impervious Runoff Depth>2.54" Tc=6.0 min CN=70.5 Runoff=0.99 cfs 3,082 cf
Subcatchment8S:	Runoff Area=13,429 sf 0.00% Impervious Runoff Depth>1.75" Tc=6.0 min CN=61.0 Runoff=0.59 cfs 1,955 cf
Subcatchment9S:	Runoff Area=5,750 sf 82.97% Impervious Runoff Depth>4.65" Tc=6.0 min CN=91.7 Runoff=0.68 cfs 2,228 cf
Subcatchment10S:	Runoff Area=8,237 sf 91.84% Impervious Runoff Depth>5.02" Tc=6.0 min CN=95.0 Runoff=1.02 cfs 3,444 cf
Subcatchment11S:	Runoff Area=14,549 sf 92.08% Impervious Runoff Depth>5.03" Tc=6.0 min CN=95.1 Runoff=1.80 cfs 6,096 cf
Subcatchment12S: BUILDING1	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=1.16 cfs 4,116 cf
Subcatchment13S: BUILDING1	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=1.16 cfs 4,116 cf
Subcatchment14S:	Runoff Area=8,778 sf 73.24% Impervious Runoff Depth>4.26" Tc=6.0 min CN=88.1 Runoff=0.98 cfs 3,114 cf
Subcatchment15S:	Runoff Area=8,055 sf 70.37% Impervious Runoff Depth>4.14" Tc=6.0 min CN=87.0 Runoff=0.88 cfs 2,782 cf
Subcatchment16S:	Runoff Area=5,381 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=0.68 cfs 2,407 cf

Prepared by KNA HvdroCAD® 10.00-26 s/n 01045 © 2020 HvdroCAD Software Solutions LLC

Type III 24-hr 25-YEAR Rainfall=5.61" Printed 9/8/2022

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 Hyd	IroCAD Software Solutions LLC Printed 9/8/2022
Subcatchment17S:	Runoff Area=5,381 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=0.68 cfs 2,407 cf
Subcatchment18S:	Runoff Area=12,630 sf 75.22% Impervious Runoff Depth>4.34" Tc=6.0 min CN=88.8 Runoff=1.42 cfs 4,564 cf
Subcatchment19S: BUILDING2	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=1.16 cfs 4,116 cf
Subcatchment20S: BUILDING 2	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=1.16 cfs 4,116 cf
Subcatchment21S:	Runoff Area=8,126 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=1.03 cfs 3,635 cf
Subcatchment22S:	Runoff Area=9,491 sf 64.25% Impervious Runoff Depth>3.91" Tc=6.0 min CN=84.8 Runoff=0.98 cfs 3,091 cf
Subcatchment23S:	Runoff Area=9,913 sf 73.27% Impervious Runoff Depth>4.26" Tc=6.0 min CN=88.1 Runoff=1.10 cfs 3,518 cf
Subcatchment24S:	Runoff Area=4,358 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=0.55 cfs 1,950 cf
Subcatchment25S:	Runoff Area=3,949 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=0.50 cfs 1,767 cf
Subcatchment26S: BUILDING 3	Runoff Area=13,600 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=1.72 cfs 6,084 cf
Subcatchment27S:	Runoff Area=6,195 sf 85.04% Impervious Runoff Depth>4.73" Tc=6.0 min CN=92.5 Runoff=0.74 cfs 2,444 cf
Subcatchment28S:	Runoff Area=6,476 sf 82.72% Impervious Runoff Depth>4.64" Tc=6.0 min CN=91.6 Runoff=0.76 cfs 2,503 cf
Subcatchment29S:	Runoff Area=20,450 sf 0.00% Impervious Runoff Depth>1.75" Tc=6.0 min CN=61.0 Runoff=0.91 cfs 2,976 cf
Subcatchment30S:	Runoff Area=12,852 sf 79.69% Impervious Runoff Depth>4.52" Tc=6.0 min CN=90.5 Runoff=1.49 cfs 4,836 cf
Subcatchment31S:	Runoff Area=8,139 sf 0.00% Impervious Runoff Depth>1.75" Tc=6.0 min CN=61.0 Runoff=0.36 cfs 1,185 cf
Subcatchment32S:	Runoff Area=15,017 sf 0.00% Impervious Runoff Depth>1.75" Tc=6.0 min CN=61.0 Runoff=0.66 cfs 2,186 cf
Subcatchment33S:	Runoff Area=11,297 sf 0.00% Impervious Runoff Depth>1.55" Tc=6.0 min CN=58.4 Runoff=0.43 cfs 1,459 cf

Prepared by KNA

Type III 24-hr 25-YEAR Rainfall=5.61" Printed 9/8/2022 ns LLC Page 96

HydroCAD® 10.00-26 s/n 0	1045 © 2020 HydroCAD Software Solutions LLC Page 96
Subcatchment34S:	Runoff Area=7,007 sf 0.00% Impervious Runoff Depth>1.75" Tc=6.0 min CN=61.0 Runoff=0.31 cfs 1,020 cf
Subcatchment35S:	Runoff Area=4,258 sf 0.00% Impervious Runoff Depth>1.75" Tc=6.0 min CN=61.0 Runoff=0.19 cfs 620 cf
Subcatchment36S:	Runoff Area=7,976 sf 90.47% Impervious Runoff Depth>4.96" Tc=6.0 min CN=94.5 Runoff=0.98 cfs 3,297 cf
Subcatchment37S:	Runoff Area=11,004 sf 97.16% Impervious Runoff Depth>5.25" Tc=6.0 min CN=97.0 Runoff=1.38 cfs 4,810 cf
Subcatchment38S:	Runoff Area=15,217 sf 47.87% Impervious Runoff Depth>3.30" Tc=6.0 min CN=78.7 Runoff=1.35 cfs 4,187 cf
Subcatchment40S: BUIL	DING 4 Runoff Area=11,250 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=1.42 cfs 5,033 cf
Subcatchment41S: BUIL	DING 4 Runoff Area=11,250 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=1.42 cfs 5,033 cf
Subcatchment42S:	Runoff Area=31,496 sf 67.44% Impervious Runoff Depth>4.01" Flow Length=469' Tc=7.4 min CN=85.7 Runoff=3.18 cfs 10,513 cf
Subcatchment43S:	Runoff Area=30,367 sf 75.63% Impervious Runoff Depth>4.34" Flow Length=454' Tc=7.3 min CN=88.9 Runoff=3.28 cfs 10,979 cf
Subcatchment45S:	Runoff Area=2,272 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=0.29 cfs 1,016 cf
Subcatchment46S:	Runoff Area=2,255 sf 100.00% Impervious Runoff Depth>5.37" Tc=6.0 min CN=98.0 Runoff=0.28 cfs 1,009 cf
Subcatchment47S:	Runoff Area=10,949 sf 57.68% Impervious Runoff Depth>3.66" Tc=6.0 min CN=82.3 Runoff=1.07 cfs 3,340 cf
Subcatchment50S:	Runoff Area=12,488 sf 0.00% Impervious Runoff Depth>1.65" Tc=6.0 min CN=59.7 Runoff=0.51 cfs 1,713 cf
Reach 1R: SWALE	Avg. Flow Depth=1.40' Max Vel=1.66 fps Inflow=11.28 cfs 69,944 cf n=0.069 L=255.0' S=0.0078 '/' Capacity=24.34 cfs Outflow=11.09 cfs 69,807 cf
Reach 2R: SWALE	Avg. Flow Depth=0.22' Max Vel=2.29 fps Inflow=1.31 cfs 6,278 cf n=0.025 L=126.0' S=0.0159 '/' Capacity=26.66 cfs Outflow=1.31 cfs 6,272 cf
Reach 3R: SWALE	Avg. Flow Depth=0.31' Max Vel=5.28 fps Inflow=4.33 cfs 21,447 cf n=0.025 L=550.0' S=0.0527 '/' Capacity=174.16 cfs Outflow=4.30 cfs 21,402 cf
Reach 4R: SWALE	Avg. Flow Depth=1.01' Max Vel=1.11 fps Inflow=4.49 cfs 39,083 cf n=0.069 L=177.0' S=0.0050 '/' Capacity=19.38 cfs Outflow=4.47 cfs 38,984 cf

2009212-POST DEVELOPMENT REV3 Type III 24-hr 25-YEAR Rainfall=5.61"

Printed 9/8/2022

Prepared by KNA	OPMENT REV3 Type III 24-rif 25-YEAR Rainfall=5.61 Printed 9/8/2022
	045 © 2020 HydroCAD Software Solutions LLC Page 97
Reach 5R: (new Reach) 24.0" Rour	Avg. Flow Depth=0.00' Max Vel=0.00 fps nd Pipe n=0.013 L=37.9' S=0.0150 '/' Capacity=27.74 cfs Outflow=0.00 cfs 0 cf
Reach 33R: SWALE	Avg. Flow Depth=0.09' Max Vel=2.07 fps Inflow=0.43 cfs 6,801 cf n=0.025 L=182.0' S=0.0330 '/' Capacity=31.32 cfs Outflow=0.42 cfs 6,778 cf
Pond 1P: HW#1	Peak Elev=213.34' Inflow=4.47 cfs 38,984 cf 12.0" Round Culvert n=0.013 L=42.0' S=0.0100 '/' Outflow=4.47 cfs 38,984 cf
Pond 2P: CB#2	Peak Elev=211.94' Inflow=4.64 cfs 41,212 cf 15.0" Round Culvert n=0.013 L=42.0' S=0.0050 '/' Outflow=4.64 cfs 41,212 cf
Pond 7P: CB#7	Peak Elev=218.02' Inflow=2.18 cfs 7,560 cf 12.0" Round Culvert n=0.013 L=12.7' S=0.0102 '/' Outflow=2.18 cfs 7,560 cf
Pond 8P: CB#8	Peak Elev=218.77' Inflow=3.08 cfs 10,085 cf 15.0" Round Culvert n=0.013 L=204.0' S=0.0050 '/' Outflow=3.08 cfs 10,085 cf
Pond 9P: CB#9	Peak Elev=218.87' Inflow=1.65 cfs 5,522 cf 15.0" Round Culvert n=0.013 L=90.0' S=0.0050 '/' Outflow=1.65 cfs 5,522 cf
Pond 10P: CB#10	Peak Elev=220.01' Inflow=0.68 cfs 2,407 cf 12.0" Round Culvert n=0.013 L=27.0' S=0.0700 '/' Outflow=0.68 cfs 2,407 cf
Pond 12P: CB#12	Peak Elev=218.28' Inflow=2.96 cfs 10,212 cf 12.0" Round Culvert n=0.013 L=10.0' S=0.0100 '/' Outflow=2.96 cfs 10,212 cf
Pond 14P: CB#14	Peak Elev=218.16' Inflow=2.58 cfs 8,824 cf 18.0" Round Culvert n=0.013 L=152.5' S=0.0050 '/' Outflow=2.58 cfs 8,824 cf
Pond 15P: CB#15	Peak Elev=218.46' Inflow=1.56 cfs 5,189 cf 15.0" Round Culvert n=0.013 L=78.0' S=0.0050 '/' Outflow=1.56 cfs 5,189 cf
Pond 16P: CB#16	Peak Elev=220.14' Inflow=0.68 cfs 2,407 cf 12.0" Round Culvert n=0.013 L=28.8' S=0.0701 '/' Outflow=0.68 cfs 2,407 cf
Pond 17P: CB#17	Peak Elev=236.04' Inflow=1.62 cfs 5,741 cf 15.0" Round Culvert n=0.013 L=28.0' S=0.0054 '/' Outflow=1.62 cfs 5,741 cf
Pond 18P: CB#18	Peak Elev=236.04' Inflow=2.09 cfs 6,609 cf 18.0" Round Culvert n=0.013 L=96.0' S=0.0050 '/' Outflow=2.09 cfs 6,609 cf
Pond 19P: CB#19	Peak Elev=236.04' Inflow=0.98 cfs 3,091 cf 15.0" Round Culvert n=0.013 L=123.0' S=0.0050 '/' Outflow=0.98 cfs 3,091 cf
Pond 21P: CB#21	Peak Elev=236.04' Inflow=1.33 cfs 4,732 cf 15.0" Round Culvert n=0.013 L=74.0' S=0.0074 '/' Outflow=1.33 cfs 4,732 cf
Pond 22P: CB#22	Peak Elev=236.04' Inflow=0.84 cfs 2,966 cf 15.0" Round Culvert n=0.013 L=60.0' S=0.0050 '/' Outflow=0.84 cfs 2,966 cf

2009212-POST DEVE	
Prepared by KNA	Printed 9/8/2022
HydroCAD® 10.00-26 s/n 01	045 © 2020 HydroCAD Software Solutions LLC Page 98
Pond 24P: CB#24	Peak Elev=241.73' Inflow=3.22 cfs 11,031 cf
	12.0" Round Culvert n=0.013 L=104.0' S=0.0625 '/' Outflow=3.22 cfs 11,031 cf
Pond 25P: CB#25	Peak Elev=244.42' Inflow=2.46 cfs 8,528 cf 12.0" Round Culvert n=0.013 L=128.0' S=0.0227 '/' Outflow=2.46 cfs 8,528 cf
	12.0 Round Culvent $n=0.013$ L=120.0 S=0.0227 / Outhow=2.46 Cis 6,526 Ci
Pond 27P: CB#27	Peak Elev=218.17' Inflow=4.15 cfs 13,425 cf
	15.0" Round Culvert n=0.013 L=10.0' S=0.0050 '/' Outflow=4.15 cfs 13,425 cf
Dand 20D, DMU#20	Peak Elev=238.79' Inflow=2.98 cfs 20,932 cf
Pond 29P: DMH#29	15.0" Round Culvert n=0.013 L=156.0' S=0.0365 '/' Outflow=2.98 cfs 20,932 cf
Pond 30P: DMH#30	Peak Elev=233.00' Inflow=3.08 cfs 31,390 cf
	15.0" Round Culvert n=0.013 L=273.0' S=0.0411 '/' Outflow=3.08 cfs 31,390 cf
Pond 32P: DMH#32	Peak Elev=221.68' Inflow=3.08 cfs 31,390 cf
	15.0" Round Culvert n=0.013 L=253.0' S=0.0334 '/' Outflow=3.08 cfs 31,390 cf
Pond 33P: DMH#33	Peak Elev=213.21' Inflow=3.08 cfs 31,390 cf 15.0" Round Culvert n=0.013 L=17.0' S=0.0129 '/' Outflow=3.08 cfs 31,390 cf
Pond 47P: CB#47	Peak Elev=236.75' Inflow=0.29 cfs 1,016 cf
	15.0" Round Culvert n=0.013 L=99.0' S=0.0111 '/' Outflow=0.29 cfs 1,016 cf
Pond 101P: CB#101	Peak Elev=213.12' Inflow=1.89 cfs 11,614 cf
	12.0" Round Culvert n=0.013 L=23.0' S=0.0052 '/' Outflow=1.89 cfs 11,614 cf
Pond 102P: HW#102	Peak Elev=213.48' Inflow=0.42 cfs 6,778 cf 12.0" Round Culvert n=0.013 L=41.0' S=0.0200 '/' Outflow=0.42 cfs 6,778 cf
Pond 108P: CB#108	Peak Elev=223.18' Inflow=1.35 cfs 4,187 cf
	15.0" Round Culvert n=0.013 L=30.5' S=0.0449 '/' Outflow=1.35 cfs 4,187 cf
Pond 112P: CB#112	Peak Elev=220.96' Inflow=0.98 cfs 3 297 cf
	12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.98 cfs 3,297 cf
Pond 114P: DMH#114	Peak Elev=220.98' Inflow=4.45 cfs 18,039 cf 24.0" Round Culvert n=0.013 L=79.0' S=0.0151 '/' Outflow=4.45 cfs 18,039 cf
Pond 115P: DCB#115	Peak Elev=223.84' Inflow=4.45 cfs 18,039 cf
	18.0" Round Culvert n=0.013 L=235.0' S=0.0150 '/' Outflow=4.45 cfs 18,039 cf
Pond 116P: CB#116	Peak Elev=228.58' Inflow=1.71 cfs 7,526 cf
	15.0" Round Culvert n=0.013 L=125.7' S=0.0400 '/' Outflow=1.71 cfs 7,526 cf
Pond 119P: CB#119	Peak Elev=220.98' Inflow=6.95 cfs 26,630 cf 24.0" Round Culvert n=0.013 L=37.9' S=0.0150 '/' Outflow=6.95 cfs 26,630 cf
Pond 120P: DCB#120	Peak Elev=223.71' Inflow=4.27 cfs 16,788 cf
	18.0" Round Culvert n=0.013 L=260.0' S=0.0150.1/ Outflow=4.27 cfs 16.788 cf

18.0" Round Culvert n=0.013 L=269.0' S=0.0150 '/' Outflow=4.27 cfs 16,788 cf

2009212-POST DEVELOPMENT R Prepared by KNA	Printed 9/8/2022
HydroCAD® 10.00-26 s/n 01045 © 2020 Hyd	roCAD Software Solutions LLC Page 99
Pond 121P: CB#121 15.0" Rou	Peak Elev=226.62' Inflow=1.37 cfs 5,809 cf d Culvert n=0.013 L=54.2' S=0.0600 '/' Outflow=1.37 cfs 5,809 cf
	Peak Elev=217.79' Storage=15,269 cf Inflow=12.45 cfs 41,976 cf 8,695 cf Primary=7.90 cfs 25,650 cf Outflow=8.10 cfs 34,345 cf
Pond B2: POCKET POND 1	Peak Elev=236.04' Storage=30,619 cf Inflow=10.14 cfs 34,588 cf Outflow=0.56 cfs 10,457 cf
Pond B3: DETENTION POND 1 12.0" Round	Peak Elev=245.12' Storage=2,908 cf Inflow=4.24 cfs 21,262 cf Culvert n=0.013 L=103.0' S=0.0583 '/' Outflow=2.98 cfs 20,932 cf
	Peak Elev=220.96' Storage=21,237 cf Inflow=12.92 cfs 50,151 cf 9,060 cf Primary=3.86 cfs 26,285 cf Outflow=4.05 cfs 35,345 cf
Pond B5: BIORETENTIONPOND 1	Peak Elev=223.13' Storage=1,831 cf Inflow=2.96 cfs 9,839 cf Outflow=2.82 cfs 9,839 cf
Pond B6: DETENTION POND 2	Peak Elev=220.27' Storage=27,229 cf Inflow=5.87 cfs 32,261 cf Outflow=0.23 cfs 5,342 cf
Link A: CHASE BROOK	Inflow=20.47 cfs 135,943 cf Primary=20.47 cfs 135,943 cf

 Type III 24-hr
 25-YEAR Rainfall=5.61"

 Printed
 9/8/2022

 ns LLC
 Page 100

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S:

Runoff = 4.33 cfs @ 12.27 hrs, Volume= 21,447 cf, Depth> 1.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Descriptio	n					
	270	98.0	Paved pa	rking, HSG	В				
	12,010	61.0	>75% Grass cover, Good, HSG B						
1	182,247 55.0		Woods, G	Woods, Good, HSG B					
1	94,527	55.4	Weighted	Average					
	94,257	55.4	0	ervious Are	ea				
	270	98.0	0.14% Im	pervious A	rea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•				
8.7	50	0.0550	0.10		Sheet Flow,				
_					Woods: Light underbrush n= 0.400 P2= 2.84"				
4.0	325	0.0750	1.37		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
1.1	60	0.0330	0.91		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
3.0	281	0.1000	1.58		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
16.8	716	Total			·				

Summary for Subcatchment 2S:

Runoff = 1.71	cfs @ 12.20 hrs,	Volume=	7,526 cf,	Depth> 1.48"
-----------------	------------------	---------	-----------	--------------

 Area (sf)	CN	Description
2,582	98.0	Paved parking, HSG B
7,802	61.0	>75% Grass cover, Good, HSG B
 50,538	55.0	Woods, Good, HSG B
 60,922	57.6	Weighted Average
58,340	55.8	95.76% Pervious Area
2,582	98.0	4.24% Impervious Area

 Type III 24-hr
 25-YEAR Rainfall=5.61"

 Printed
 9/8/2022

 ns LLC
 Page 101

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.9	50	0.1000	0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.84"
	5.5	470	0.0800	1.41		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.3	84	0.3300	4.02		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.8	205	0.0400	4.06		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps

13.6 809 Total

Summary for Subcatchment 3S:

Runoff	=	1.37 cfs @	12.22 hrs,	Volume=	5,809 cf, Depth> 1.	91"
--------	---	------------	------------	---------	---------------------	-----

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

5,283 98.0 Paved parking, HSG B 11,639 61.0 >75% Grass cover, Good, HSG B 19,507 55.0 Woods, Good, HSG B 36,429 63.2 Weighted Average		on	Descriptio	CN	rea (sf)	A	
19,507 55.0 Woods, Good, HSG B	Paved parking, HSG B						
	d, HSG B	ass cover, (>75% Gra	61.0	11,639		
36,429 63.2 Weighted Average		Good, HSG	Woods, G	55.0	19,507		
		Average	Weighted	63.2	36,429		
31,146 57.2 85.50% Pervious Area		Pervious Are	85.50% P	57.2	31,146		
5,283 98.0 14.50% Impervious Area	1	mpervious /	14.50% Ir	98.0	5,283		
Tc Length Slope Velocity Capacity Description	scription	Capacity	Velocity	Slope	Length	Tc	
(min) (feet) (ft/ft) (ft/sec) (cfs)		(cfs)	(ft/sec)	(ft/ft)	(feet)	(min)	
6.9 50 0.1000 0.12 Sheet Flow,	eet Flow,		0.12	0.1000	50	6.9	
Woods: Light underbrush n= 0.400 P2= 2.84"	oods: Light underbrush n= 0.400 P2=						
7.6 600 0.0700 1.32 Shallow Concentrated Flow,	allow Concentrated Flow,		1.32	0.0700	600	7.6	
Woodland Kv= 5.0 fps	oodland Kv= 5.0 fps						
0.1 24 0.4000 4.43 Shallow Concentrated Flow,			4.43	0.4000	24	0.1	
Short Grass Pasture Kv= 7.0 fps	ort Grass Pasture Kv= 7.0 fps						
14.5 674 Total				Total	674	14.5	

Summary for Subcatchment 4S:

Runoff = 1.31 cfs @ 12.27 hrs, Volume= 6,278 cf, Depth> 1.56"

 Type III 24-hr
 25-YEAR Rainfall=5.61"

 Printed
 9/8/2022

 ns LLC
 Page 102

Prepared b	y KNA
------------	-------

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description						
	3,260	98.0	Roofs, HS	SG B					
	5,695	61.0	>75% Gra	ass cover, (Good, HSG B				
	39,454	55.0	Woods, G	iood, HSG	В				
	48,409	58.6	Weighted	Average					
	45,149	55.8	93.27% P	ervious Are	ea				
	3,260	98.0	6.73% Im	pervious Ai	rea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
8.4	50	0.0600	0.10		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.84"				
9.2	729	0.0700	1.32		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
17.6	779	Total							

Summary for Subcatchment 5S:

Runoff = 2.93 cfs @ 12.28 hrs, Volume= 14,990 cf, Depth> 1.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Descriptio	Description						
	8,709	61.0	>75% Gra	75% Grass cover, Good, HSG B						
1	27,665	55.0	Woods, G	lood, HSG	В					
1	136,374 55.4		Weighted	Average						
1	36,374	55.4	100.00%	Pervious A	rea					
т.	1		\/.l!t.	0	Description					
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.6	50	0.1100	0.13		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 2.84"					
7.8	567	0.0580	1.20		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
3.8	286	0.0630	1.25		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
18.3	903	Total								

Summary for Subcatchment 6S:

Runoff = 7.27 cfs @ 12.21 hrs, Volume= 33,034 cf, Depth> 1.33"

 Type III 24-hr
 25-YEAR Rainfall=5.61"

 Printed
 9/8/2022

 ns LLC
 Page 103

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Descriptio	n						
	2,193	98.0	Paved pa	Paved parking, HSG B						
	6,633	61.0	>75% Ġra	ass cover, (Good, HSG B					
2	290,174 55.0		Woods, G	Good, HSG	В					
2	299,000	55.4	Weighted	Average						
2	296,807	55.1	99.27% P	ervious Are	ea					
	2,193	98.0	0.73% lm	pervious A	rea					
т.	1 11.		M. L	0	Description					
Tc (min)	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0	50	0.1400	0.14		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 2.84"					
2.0	210	0.1200	1.73		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
4.9	210	0.0200	0.71		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
0.3	50	0.2400	2.45		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
13.3	520	Total								

Summary for Subcatchment 7S:

Runoff = 0.99 cfs @ 12.09 hrs, Volume= 3,082 cf, Depth> 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Description						
	3,739	98.0	Paved par	rking, HSG	€B				
	10,822	61.0	>75% Ġra	>75% Grass cover, Good, HSG B					
	14,561	70.5	Weighted	Weighted Average					
	10,822	61.0	74.32% Pervious Area						
	3,739	98.0	25.68% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 8S:

Runoff = 0.59 cfs @ 12.10 hrs, Volume= 1,955 cf, Depth> 1.75"

 Area (sf)	CN	Description				
13,429	61.0	>75% Grass cover, Good, HSG B				
 13,429	61.0	100.00% Pervious Area				

2009212-POST DEVELOPMENT REV3 Type III 24-hr 25-YEAR Rainfall=5.61" Prepared by KNA Printed 9/8/2022 HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Page 104 Velocity Capacity Tc Length Slope Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 9S: 0.68 cfs @ 12.08 hrs, Volume= 2,228 cf, Depth> 4.65" Runoff = Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61" Area (sf) CN Description 4,771 98.0 Paved parking, HSG B 979 61.0 >75% Grass cover, Good, HSG B 5,750 91.7 Weighted Average 979 61.0 17.03% Pervious Area 82.97% Impervious Area 4,771 98.0 Length Slope Velocity Capacity Description Tc (feet) (ft/ft) (ft/sec) (cfs) (min) 6.0 Direct Entry, Summary for Subcatchment 10S:

Runoff = 1.02 cfs @ 12.08 hrs, Volume= 3,444 cf, Depth> 5.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Description					
	7,565	98.0	Paved pa	rking, HSG	G B			
	672	61.0	>75% Ġra	ass cover, (Good, HSG B			
	8,237	95.0	Weighted	Weighted Average				
	672	61.0	8.16% Pervious Area					
	7,565	98.0	91.84% Impervious Area					
Tc	Length	Slope	Velocity	Capacity	•			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec) (cfs)					
6.0					Direct Entry,			

Summary for Subcatchment 11S:

Runoff	=	1.80 cfs @	12.08 hrs,	Volume=	6,096 cf,	Depth>	5.03"

 Type III 24-hr
 25-YEAR Rainfall=5.61"

 Printed
 9/8/2022

 ns LLC
 Page 105

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Are	ea (sf)	CN	Description					
1;	3,397	98.0	Paved par	king, HSG	В			
	1,152	61.0	>75% Gra	iss cover, (Good, HSG B			
14	4,549	95.1	Weighted	Weighted Average				
	1,152	61.0	7.92% Pervious Area					
1:	3,397	98.0	92.08% Impervious Area					
Tc I (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 12S: BUILDING 1

Runoff = 1.16 cfs @ 12.08 hrs, Volume= 4,116 cf, Depth> 5.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

Α	rea (sf)	CN	Descriptio	on					
	9,200	98.0	Roofs, HS	Roofs, HSG B					
	9,200	98.0	100.00%	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 13S: BUILDING 1

Runoff = 1.16 cfs @ 12.08 hrs, Volume= 4,116 cf, Depth> 5.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Descriptio	n				
	9,200	98.0	Roofs, HSG B					
	9,200	98.0	100.00%	100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 14S:

Runoff = 0.98 cfs @ 12.09 hrs, Volume= 3,114 cf, Depth> 4.26"

 Type III 24-hr
 25-YEAR Rainfall=5.61"

 Printed
 9/8/2022

 ns LLC
 Page 106

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description						
	6,429	98.0	Paved pa	rking, HSG	GB				
	2,349	61.0	>75% Ġra	ass cover, (Good, HSG B				
	8,778	88.1	Weighted	Weighted Average					
	2,349	61.0	26.76% P	26.76% Pervious Area					
	6,429	98.0	73.24% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)					
6.0					Direct Entry,				

Summary for Subcatchment 15S:

Runoff = 0.88 cfs @ 12.09 hrs, Volume= 2,782 cf, Depth> 4.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Descriptio	n					
	5,668	98.0	Paved pa	rking, HSG	В				
	2,387	61.0	>75% Ġra	ass cover, (Good, HSG B				
	8,055	87.0	Weighted	Weighted Average					
	2,387	61.0	29.63% P	29.63% Pervious Area					
	5,668	98.0	70.37% Ir	npervious A	Area				
-		~		• ••					
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment 16S:

Runoff = 0.68 cfs @ 12.08 hrs, Volume= 2,407 cf, Depth> 5.37"

Α	rea (sf)	CN	Description							
	5,381	98.0	Paved pa	Paved parking, HSG B						
	5,381	98.0	100.00%	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 17S:

Runoff = 0.68 cfs @ 12.08 hrs, Volume= 2,407 cf, Depth> 5.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

Are	ea (sf)	CN	Description							
	5,381	98.0	Paved pa	Paved parking, HSG B						
	5,381	98.0	100.00%	100.00% Impervious Area						
Tc _(min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Summary for Subcatchment 18S:

Runoff = 1.42 cfs @ 12.09 hrs, Volume= 4,564 cf, Depth> 4.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

Area (sf)	CN	Description					
9,500	98.0	Paved parking, HSG B					
3,130	61.0	>75% Grass cover, Good, HSG B					
12,630	88.8	Weighted Average					
3,130	61.0	24.78% Pervious Area					
9,500	98.0	75.22% Impervious Area					
Tc Length (min) (feet)	Slope (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)					
6.0		Direct Entry,					

Summary for Subcatchment 19S: BUILDING 2

Runoff = 1.16 cfs @ 12.08 hrs, Volume= 4,116 cf, Depth> 5.37"

A	rea (sf)	CN	Description							
	9,200	98.0	Roofs, HS	Roofs, HSG B						
	9,200	98.0	100.00%	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 20S: BUILDING 2

Runoff = 1.16 cfs @ 12.08 hrs, Volume= 4,116 cf, Depth> 5.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Descriptio	n						
	9,200	98.0	Roofs, HS	Roofs, HSG B						
	9,200	98.0	100.00%	00.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					
			-	_						

Summary for Subcatchment 21S:

Runoff = 1.03 cfs @ 12.08 hrs, Volume= 3,635 cf, Depth> 5.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

Are	ea (sf)	CN	Description							
	8,126	98.0	Paved pa	Paved parking, HSG B						
	8,126	98.0	100.00%	100.00% Impervious Area						
(min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)						
6.0					Direct Entry,					

Summary for Subcatchment 22S:

Runoff = 0.98 cfs @ 12.09 hrs, Volume= 3,091 cf, Depth> 3.91"

A	rea (sf)	CN	Description							
	6,098	98.0	Paved pa	Paved parking, HSG B						
	3,393	61.0	>75% Ġra	ass cover, (Good, HSG B					
	9,491	84.8	Weighted	Weighted Average						
	3,393	61.0	35.75% P	35.75% Pervious Area						
	6,098	98.0	64.25% Ir	64.25% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	•					
6.0					Direct Entry,					

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 23S:

Runoff = 1.10 cfs @ 12.09 hrs, Volume= 3,518 cf, Depth> 4.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Descriptio	n	Description						
	7,263	98.0	Paved pa	rking, HSG	G B						
	2,650	61.0	>75% Gra	iss cover, (Good, HSG B						
	9,913	88.1	Weighted	Weighted Average							
	2,650	61.0	26.73% P	26.73% Pervious Area							
	7,263	98.0	73.27% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	•						
6.0	(1001)	(14/14)	(11000)	(010)	Direct Entry,						

Summary for Subcatchment 24S:

Runoff = 0.55 cfs @ 12.08 hrs, Volume= 1,950 cf, Depth> 5.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

Α	rea (sf)	CN	Description						
	4,358	98.0	Paved pa	Paved parking, HSG B					
	4,358	98.0	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 25S:

Runoff = 0.50 cfs @ 12.08 hrs, Volume= 1,767 cf, Depth> 5.37"

A	rea (sf)	CN	Description							
	3,949	98.0	Paved pa	Paved parking, HSG B						
	3,949	98.0	100.00%	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 26S: BUILDING 3

Runoff = 1.72 cfs @ 12.08 hrs, Volume= 6,084 cf, Depth> 5.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Description						
	13,600	98.0	Roofs, HS	Roofs, HSG B					
	13,600	98.0	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 27S:

Runoff = 0.74 cfs @ 12.08 hrs, Volume= 2,444 cf, Depth> 4.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Description				
	5,268	98.0	Paved pa	rking, HSG	G B		
	927	61.0	>75% Ġra	ass cover, (Good, HSG B		
	6,195	92.5	Weighted Average				
	927	61.0	14.96% Pervious Area				
	5,268	98.0	85.04% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	1		
6.0					Direct Entry,		

Summary for Subcatchment 28S:

Runoff = 0.76 cfs @ 12.08 hrs, Volume= 2,503 cf, Depth> 4.64"

Area (sf)	CN	Description			
5,357	98.0	Paved parking, HSG B			
1,119	61.0	>75% Grass cover, Good, HSG B			
6,476	91.6	Weighted Average			
1,119	61.0	17.28% Pervious Area			
5,357	98.0	82.72% Impervious Area			

Prepared	2009212-POST DEVELOPMENT REV3Type III 24-hr25-YEAR Rainfall=5.61"Prepared by KNAPrinted 9/8/2022HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLCPage 111									
	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		Description					
6.0					Direct Entry	у,				
	Summary for Subcatchment 29S:									
Runoff	=	0.91 cf	s@ 12.1	0 hrs, Volu	ime=	2,976 cf, Depth>	• 1.75"			
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"										
	ea (sf)	CN	Descriptio							
	20,450	61.0			Good, HSG B					
	20,450	61.0	100.00%	Pervious A	rea					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry	y,				
			Su	nmary fo	or Subcatch	nment 30S:				
Runoff	=	1.49 cf	s@ 12.0	8 hrs, Volu	ime=	4,836 cf, Depth>	• 4.52"			
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"										
Ar	ea (sf)	CN	Descriptio	on						
	10,242	98.0	Paved pa	rking, HSG	В					
	2,610	61.0			Good, HSG B					
	12,852	90.5	Weighted							
	2,610 10,242	61.0 98.0		Pervious Are						
	10,242	90.0	19.09% II	npervious /						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry	y,				

Summary for Subcatchment 31S:

0.36 cfs @ 12.10 hrs, Volume= 1,185 cf, Depth> 1.75" Runoff =

 Area (sf)	CN	Description				
8,139	61.0	>75% Grass cover, Good, HSG B				
 8,139	61.0	100.00% Pervious Area				

Prepared by KNA Printed 9/8/2									
	.00-26 s/n 01045 © 2020 HydroCAD Softw	vare Solutions LLC Page 112							
Tc Leng (min) (fee		ription							
6.0	Direc	ct Entry,							
	Summary for Subcatchment 32S:								
Runoff =	0.66 cfs @ 12.10 hrs, Volume=	2,186 cf, Depth> 1.75"							
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"								
Area (st									
15,01		HSG B							
15,01	7 61.0 100.00% Pervious Area								
Tc Leng (min) (fee		ription							
6.0	Direc	ct Entry,							
	Summary for Sub	ocatchment 33S:							
Runoff =	0.43 cfs @ 12.10 hrs, Volume=	1,459 cf, Depth> 1.55"							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"									
Area (st) CN Description								
6,48 4,81	0 61.0 >75% Grass cover, Good,	HSG B							
11,29 11,29									
Tc Leng (min) (fee		ription							
6.0		ct Entry,							

Type III 24-hr 25-YEAR Rainfall=5.61"

Summary for Subcatchment 34S:

 Area (sf)	CN	Description				
7,007	61.0	>75% Grass cover, Good, HSG B				
 7,007	61.0	100.00% Pervious Area				

Prepare	d by KN/	4		IT REV3 20 HydroCA	D Software Sol		[•] 25-YEAR Rainfall=5.61" Printed 9/8/2022 Page 113			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry	/,				
	Summary for Subcatchment 35S:									
Runoff	=	0.19 cf	s@ 12.1	0 hrs, Volu	ime=	620 cf, Depth>	1.75"			
			hod, UH=S ainfall=5.6		nted-CN, Time	e Span= 0.00-24.00) hrs, dt= 0.010 hrs			
A	rea (sf)	CN	Descriptio	n						
	4,258	61.0			Good, HSG B					
	4,258	61.0	100.00%	Pervious A	rea					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry	/,				
			Su	nmary fo	or Subcatch	iment 36S:				
Runoff	=	0.98 cf	s@ 12.0	8 hrs, Volu	ime=	3,297 cf, Depth>	4.96"			
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"									
A	rea (sf)	CN	Descriptio	n						
	7,216	98.0		rking, HSG	iВ					
	760	61.0	>75% Gra	ass cover, (Good, HSG B					
	7,976	94.5	Weighted							
	760	61.0		rvious Area						
	7,216	98.0	90.47% Ir	npervious <i>i</i>	Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry	/,				

Summary for Subcatchment 37S:

1.38 cfs @ 12.08 hrs, Volume= 4,810 cf, Depth> 5.25" Runoff =

CN	Description			
98.0	Paved parking, HSG B			
61.0	>75% Grass cover, Good, HSG B			
97.0	Weighted Average			
61.0	2.84% Pervious Area			
98.0	97.16% Impervious Area			
	98.0 61.0 97.0 61.0			

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)								
6.0	Direct Entry,								
Summary for Subcatchment 38S:									
Runoff =	1.35 cfs @ 12.09 hrs, Volume= 4,187 cf, Depth> 3.30"								
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61" Area (sf) CN Description								
7,285	98.0 Paved parking, HSG B								
7,932	61.0 >75% Grass cover, Good, HSG B								
15,217	78.7 Weighted Average								
7,932	•								
7,285	98.0 47.87% Impervious Area								
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)								

6.0

Direct Entry,

Summary for Subcatchment 40S: BUILDING 4

Runoff = 1.42 cfs @ 12.08 hrs, Volume= 5,033 cf, Depth> 5.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Description					
	11,250	98.0	Roofs, HSG B					
	11,250	98.0	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 41S: BUILDING 4

Runoff = 1.42 cfs @ 12.08 hrs, Volume= 5,033 cf, Depth> 5.37"

 Area (sf)	CN	Description
11,250	98.0	Roofs, HSG B
 11,250	98.0	100.00% Impervious Area

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			
	Summary for Subcatchment 42S:							
Runoff	=	3.18 cf	s@ 12.1	0 hrs, Volu	Ime= 10,513 cf, Depth> 4.01"			
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"							
A	rea (sf)	CN	Descriptio	on				
	21,240	98.0	Paved pa	rking, HSG	B			
	9,027	61.0			Good, HSG B			
	1,229	55.0	Woods, G	Good, HSG	В			
	31,496	85.7	Weighted					
	10,256	60.3	32.56% Pervious Area					
	21,240	98.0	67.44% Ir	npervious <i>i</i>	Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0	50	0.2200	0.17	()	Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 2.84"			
1.1	80	0.0625	1.25		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.2	44	0.2700	3.64		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
1.1	295	0.0470	4.40		Shallow Concentrated Flow,			
	100	-			Paved Kv= 20.3 fps			
7 /	160	Total						

7.4 469 Total

Summary for Subcatchment 43S:

Runoff = 3.28 cfs @ 12.10 hrs, Volume= 10,979 cf, Depth> 4.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

Area (sf)	CN	Description
22,966	98.0	Paved parking, HSG B
3,724	61.0	>75% Grass cover, Good, HSG B
3,677	60.0	Woods, Fair, HSG B
30,367	88.9	Weighted Average
7,401	60.5	24.37% Pervious Area
22,966	98.0	75.63% Impervious Area

 Type III 24-hr
 25-YEAR Rainfall=5.61"

 Printed
 9/8/2022

 ns LLC
 Page 115

Type III 24-hr 25-YEAR Rainfall=5.61" Printed 9/8/2022 HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Page 116

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	4.8	50	0.2400	0.17		Sheet Flow,
	1.2	80	0.0500	1.12		Woods: Light underbrush n= 0.400 P2= 2.84" Shallow Concentrated Flow,
	1.2	00	0.0000	1.12		Woodland Kv= 5.0 fps
	0.2	44	0.2700	3.64		Shallow Concentrated Flow,
	1.1	280	0.0470	4.40		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow,
		200	0.0110			Paved Kv= 20.3 fps

7.3 454 Total

Summary for Subcatchment 45S:

Runoff	=	0.29 cfs @	12.08 hrs,	Volume=	1,016 cf, Depth> 5.37"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

A	rea (sf)	CN	Descriptic	n	
	2,272	98.0	Paved parking, HSG B		
	2,272	98.0	100.00% Impervious Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 46S:

0.28 cfs @ 12.08 hrs, Volume= 1,009 cf, Depth> 5.37" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

Area	(sf)	CN	Descriptio	n	
2,	255	98.0	Paved parking, HSG B		
2,	255	98.0	100.00% Impervious Area		
	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 47S:

Runoff 1.07 cfs @ 12.09 hrs, Volume= 3,340 cf, Depth> 3.66" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

Prepared by KNA

 Type III 24-hr
 25-YEAR Rainfall=5.61"

 Printed
 9/8/2022

 ns LLC
 Page 117

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description			
	6,315	98.0	Paved parking, HS	G B		
	4,634	61.0	>75% Grass cover	>75% Grass cover, Good, HSG B		
	10,949	82.3	Weighted Average			
	4,634	61.0	42.32% Pervious Area			
	6,315	98.0	57.68% Imperviou	s Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity Capacit (ft/sec) (cfs			
6.0				Direct Entry,		

Summary for Subcatchment 50S:

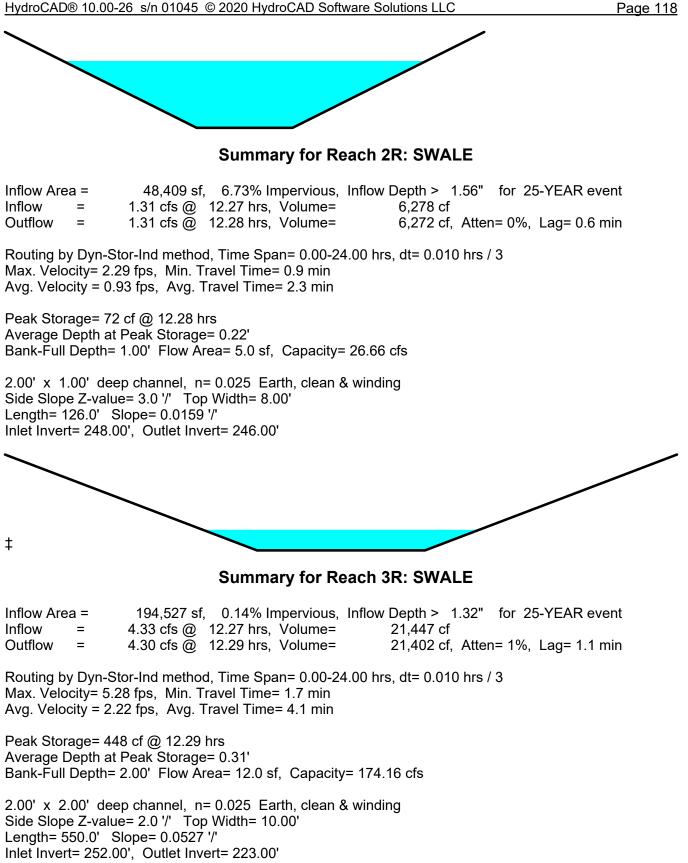
Runoff = 0.51 cfs @ 12.10 hrs, Volume= 1,713 cf, Depth> 1.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 25-YEAR Rainfall=5.61"

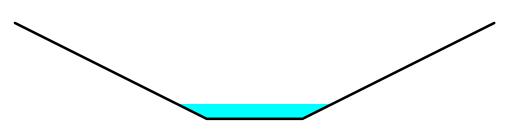
A	rea (sf)	CN	Description		
	9,796	61.0	>75% Gra	ass cover, (Good, HSG B
	2,692	55.0	Woods, Good, HSG B		
	12,488	59.7	Weighted Average		
	12,488	59.7	100.00%	Pervious A	rea
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Reach 1R: SWALE

Inflow Area	a =	603,234 sf,	33.97% Impervious,	Inflow Depth >	1.39"	for 25-YEAR event
Inflow	=	11.28 cfs @	12.18 hrs, Volume=	69,944 c	f	
Outflow	=	11.09 cfs @	12.24 hrs, Volume=	69,807 c	f, Atter	n= 2%, Lag= 3.8 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Max. Velocity= 1.66 fps, Min. Travel Time= 2.6 min Avg. Velocity = 0.63 fps, Avg. Travel Time= 6.8 min

Peak Storage= 1,705 cf @ 12.24 hrs Average Depth at Peak Storage= 1.40' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 24.34 cfs


2.00' x 2.00' deep channel, n= 0.069 Riprap, 6-inch Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 255.0' Slope= 0.0078 '/' Inlet Invert= 210.00', Outlet Invert= 208.00'

Prepared by KNA

Type III 24-hr 25-YEAR Rainfall=5.61" Printed 9/8/2022 Page 118

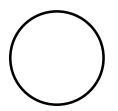
Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Reach 4R: SWALE

Inflow Area =	469,008 sf, 23.51% Impervious, Inflow Depth > 1.00" for 25-Y	EAR event
Inflow =	4.49 cfs @ 12.43 hrs, Volume= 39,083 cf	
Outflow =	4.47 cfs @ 12.47 hrs, Volume= 38,984 cf, Atten= 0%, La	ıg= 2.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Max. Velocity= 1.11 fps, Min. Travel Time= 2.7 min Avg. Velocity = 0.47 fps, Avg. Travel Time= 6.2 min

Peak Storage= 715 cf @ 12.47 hrs Average Depth at Peak Storage= 1.01' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 19.38 cfs


2.00' x 2.00' deep channel, n= 0.069 Riprap, 6-inch Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 177.0' Slope= 0.0050 '/' Inlet Invert= 212.08', Outlet Invert= 211.20'

Summary for Reach 5R: (new Reach)

Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 27.74 cfs

24.0" Round Pipe n= 0.013 Length= 37.9' Slope= 0.0150 '/' Inlet Invert= 218.57', Outlet Invert= 218.00'

2009212-POST DEVELOPMENT REV3Type IPrepared by KNAHydroCAD® 10.00-26s/n 01045© 2020 HydroCAD Software Solutions LLC

Summary for Reach 33R: SWALE

 Inflow Area =
 243,556 sf,
 7.72% Impervious,
 Inflow Depth >
 0.34"
 for
 25-YEAR event

 Inflow =
 0.43 cfs @
 12.10 hrs,
 Volume=
 6,801 cf

 Outflow =
 0.42 cfs @
 12.11 hrs,
 Volume=
 6,778 cf,
 Atten= 2%,
 Lag= 1.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Max. Velocity= 2.07 fps, Min. Travel Time= 1.5 min Avg. Velocity = 1.30 fps, Avg. Travel Time= 2.3 min

Peak Storage= 37 cf @ 12.11 hrs Average Depth at Peak Storage= 0.09' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 31.32 cfs

2.00' x 1.00' deep channel, n= 0.025 Earth, clean & winding Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 182.0' Slope= 0.0330 '/' Inlet Invert= 220.00', Outlet Invert= 214.00'

Summary for Pond 1P: HW#1

Inflow Area =	469,008 sf, 23.51% Impervious,	Inflow Depth > 1.00" for 25-YEAR event
Inflow =	4.47 cfs @ 12.47 hrs, Volume=	38,984 cf
Outflow =	4.47 cfs @ 12.47 hrs, Volume=	38,984 cf, Atten= 0%, Lag= 0.0 min
Primary =	4.47 cfs @ 12.47 hrs, Volume=	38,984 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 213.34' @ 12.44 hrs Flood Elev= 213.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	210.73'	12.0" Round Culvert L= 42.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 210.73' / 210.31' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=4.47 cfs @ 12.47 hrs HW=213.32' TW=211.91' (Dynamic Tailwater) -1=Culvert (Outlet Controls 4.47 cfs @ 5.69 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 2P: CB#2

 Inflow Area =
 474,758 sf, 24.23% Impervious, Inflow Depth > 1.04" for 25-YEAR event

 Inflow =
 4.64 cfs @ 12.45 hrs, Volume=
 41,212 cf

 Outflow =
 4.64 cfs @ 12.45 hrs, Volume=
 41,212 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 4.64 cfs @ 12.45 hrs, Volume=
 41,212 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 211.94' @ 12.39 hrs Flood Elev= 213.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	210.21'	15.0" Round Culvert L= 42.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 210.21' / 210.00' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.64 cfs @ 12.45 hrs HW=211.92' TW=211.31' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 4.64 cfs @ 3.78 fps)

Summary for Pond 7P: CB#7

Inflow Area	a =	17,437 sf,	96.15% Impervious,	Inflow Depth >	5.20"	for 25-YEAR event
Inflow	=	2.18 cfs @	12.08 hrs, Volume=	7,560 c	f	
Outflow	=	2.18 cfs @	12.08 hrs, Volume=	7,560 c	f, Atter	n= 0%, Lag= 0.0 min
Primary	=	2.18 cfs @	12.08 hrs, Volume=	7,560 c	f	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.02' @ 12.11 hrs Flood Elev= 220.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	216.50'	12.0" Round Culvert
	2		L= 12.7' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 216.50' / 216.37' S= 0.0102 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.17 cfs @ 12.08 hrs HW=217.97' TW=217.64' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.17 cfs @ 2.77 fps)

Summary for Pond 8P: CB#8

Inflow Area	a =	26,789 sf,	79.55% Impervious,	Inflow Depth > 4	.52" for 25-YEAR event
Inflow	=	3.08 cfs @	12.08 hrs, Volume=	10,085 cf	
Outflow	=	3.08 cfs @	12.08 hrs, Volume=	10,085 cf,	Atten= 0%, Lag= 0.0 min
Primary	=	3.08 cfs @	12.08 hrs, Volume=	10,085 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.77' @ 12.09 hrs Flood Elev= 223.52'

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	217.05'	15.0" Round Culvert
	·		L= 204.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.05' / 216.03' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.07 cfs @ 12.08 hrs HW=218.75' TW=218.14' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 3.07 cfs @ 2.50 fps)

Summary for Pond 9P: CB#9

Inflow Area	a =	14,159 sf, 83.41% Impervious, Inflow Depth > 4.68" for 25-YEAR even	nt
Inflow	=	1.65 cfs @ 12.08 hrs, Volume= 5,522 cf	
Outflow	=	1.65 cfs @ 12.08 hrs, Volume= 5,522 cf, Atten= 0%, Lag= 0.0 mi	n
Primary	=	1.65 cfs @ 12.08 hrs, Volume= 5,522 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.87' @ 12.09 hrs Flood Elev= 221.20'

	ev- 221.20		
Daviaa	Douting	luo voint	Outlat Davia

Device	Routing	Invert	Outlet Devices
#1	Primary	217.60'	15.0" Round Culvert
			L= 90.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 217.60' / 217.15' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.21 cfs @ 12.08 hrs HW=218.82' TW=218.75' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.21 cfs @ 1.25 fps)

Summary for Pond 10P: CB#10

Inflow Area	a =	5,381 sf,100.00% Impervious, Inflow Depth > 5.37" for 25-YEAR event	
Inflow	=	0.68 cfs @ 12.08 hrs, Volume= 2,407 cf	
Outflow	=	0.68 cfs @ 12.08 hrs, Volume= 2,407 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	0.68 cfs @ 12.08 hrs, Volume= 2,407 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.01' @ 12.08 hrs Flood Elev= 226.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.59'	12.0" Round Culvert L= 27.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.59' / 217.70' S= 0.0700 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.68 cfs @ 12.08 hrs HW=220.01' TW=218.81' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.68 cfs @ 2.19 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 12P: CB#12

 Inflow Area =
 23,749 sf, 95.15% Impervious, Inflow Depth > 5.16" for 25-YEAR event

 Inflow =
 2.96 cfs @
 12.08 hrs, Volume=
 10,212 cf

 Outflow =
 2.96 cfs @
 12.08 hrs, Volume=
 10,212 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 2.96 cfs @
 12.08 hrs, Volume=
 10,212 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.28' @ 12.10 hrs Flood Elev= 220.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	216.50'	12.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 216.50' / 216.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			5

Primary OutFlow Max=2.95 cfs @ 12.08 hrs HW=218.25' TW=217.64' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.95 cfs @ 3.76 fps)

Summary for Pond 14P: CB#14

Inflow Area =	21,562 sf, 88.93% Impervious,	Inflow Depth > 4.91" for 25-YEAR event
Inflow =	2.58 cfs @ 12.08 hrs, Volume=	8,824 cf
Outflow =	2.58 cfs @ 12.08 hrs, Volume=	8,824 cf, Atten= 0%, Lag= 0.0 min
Primary =	2.58 cfs @ 12.08 hrs, Volume=	8,824 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.16' @ 12.10 hrs Flood Elev= 223.38'

Device	Routing	Invert	Outlet Devices
#1	Primary	217.11'	18.0" Round Culvert
	-		L= 152.5' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 217.11' / 216.35' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.58 cfs @ 12.08 hrs HW=218.15' TW=217.64' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.58 cfs @ 2.78 fps)

Summary for Pond 15P: CB#15

Inflow Area	a =	13,436 sf	, 82.23% Impervious,	Inflow Depth > 4	.63" for 25-YEAR event
Inflow	=	1.56 cfs @	12.08 hrs, Volume=	5,189 cf	
Outflow	=	1.56 cfs @	12.08 hrs, Volume=	5,189 cf,	Atten= 0%, Lag= 0.0 min
Primary	=	1.56 cfs @	12.08 hrs, Volume=	5,189 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.46' @ 12.09 hrs Flood Elev= 221.20'

Type III 24-hr 25-YEAR Rainfall=5.61" Printed 9/8/2022 ns LLC Page 124

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	217.60'	15.0" Round Culvert
			L= 78.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 217.60' / 217.21' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.55 cfs @ 12.08 hrs HW=218.46' TW=218.15' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.55 cfs @ 2.45 fps)

Summary for Pond 16P: CB#16

Inflow Area	ı =	5,381 sf,100.00% Impervious, Inflow D	epth > 5.37" for 25-YEAR event
Inflow	=	0.68 cfs @ 12.08 hrs, Volume=	2,407 cf
Outflow	=	0.68 cfs @ 12.08 hrs, Volume=	2,407 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.68 cfs @ 12.08 hrs, Volume=	2,407 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.14' @ 12.08 hrs Flood Elev= 226.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.72'	12.0" Round Culvert
	ý		L= 28.8' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.72' / 217.70' S= 0.0701 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.68 cfs @ 12.08 hrs HW=220.14' TW=218.45' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.68 cfs @ 2.19 fps)

Summary for Pond 17P: CB#17

Inflow Area	a =	12,834 sf,100.00% Impervious, Inflow Depth > 5.37" for 25-YEAR event
Inflow	=	1.62 cfs @ 12.08 hrs, Volume= 5,741 cf
Outflow	=	1.62 cfs @ 12.08 hrs, Volume= 5,741 cf, Atten= 0%, Lag= 0.0 min
Primary	=	1.62 cfs @ 12.08 hrs, Volume= 5,741 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.04' @ 14.07 hrs Flood Elev= 236.12'

Device	Routing	Invert	Outlet Devices
#1	Primary	234.15'	15.0" Round Culvert L= 28.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 234.15' / 234.00' S= 0.0054 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.62 cfs @ 12.08 hrs HW=234.97' TW=234.73' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.62 cfs @ 2.69 fps)

Summary for Pond 18P: CB#18

 Inflow Area =
 19,404 sf, 68.86% Impervious, Inflow Depth > 4.09" for 25-YEAR event

 Inflow =
 2.09 cfs @ 12.09 hrs, Volume=
 6,609 cf

 Outflow =
 2.09 cfs @ 12.09 hrs, Volume=
 6,609 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 2.09 cfs @ 12.09 hrs, Volume=
 6,609 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.04' @ 14.07 hrs Flood Elev= 237.67'

Device	Routing	Invert	Outlet Devices
#1	Primary	232.98'	18.0" Round Culvert L= 96.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 232.98' / 232.50' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
			5

Primary OutFlow Max=2.08 cfs @ 12.09 hrs HW=234.81' TW=234.74' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 2.08 cfs @ 1.23 fps)

Summary for Pond 19P: CB#19

Inflow Area	a =	9,491 sf, 64.	.25% Impervious,	Inflow Depth >	3.91"	for 25-YEAR event
Inflow	=	0.98 cfs @ 12.0	09 hrs, Volume=	3,091 c	f	
Outflow	=	0.98 cfs @ 12.0	09 hrs, Volume=	3,091 c	f, Atter	n= 0%, Lag= 0.0 min
Primary	=	0.98 cfs @ 12.0	09 hrs, Volume=	3,091 c	f	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.04' @ 14.06 hrs Flood Elev= 237.67'

Device	Routing	Invert	Outlet Devices
#1	Primary	233.70'	15.0" Round Culvert
	-		L= 123.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 233.70' / 233.08' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.98 cfs @ 12.09 hrs HW=234.88' TW=234.81' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.98 cfs @ 1.06 fps)

Summary for Pond 21P: CB#21

Inflow Area	a =	10,579 sf,100.00% Impervious, Inflow Depth > 5.37" for 25-YEAR event
Inflow	=	.33 cfs @ 12.08 hrs, Volume= 4,732 cf
Outflow	=	1.33 cfs @ 12.08 hrs, Volume= 4,732 cf, Atten= 0%, Lag= 0.0 min
Primary	=	.33 cfs @ 12.08 hrs, Volume= 4,732 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.04' @ 14.06 hrs Flood Elev= 239.70'

Prepared by KNA HydroCAD® 10 00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

TYUIUCA	D® 10.00-20 :	S/11 0 1045 @ .	2020 HydroCAD Software Solutions LLC
Device	Routina	Invert	Outlet Devices

Device	rtouting	Invort	Oddiet Betrieco
#1	Primary	234.80'	15.0" Round Culvert
			L= 74.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 234.80' / 234.25' S= 0.0074 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.33 cfs @ 12.08 hrs HW=235.46' TW=234.97' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.33 cfs @ 2.94 fps)

Summary for Pond 22P: CB#22

Inflow Area	=	6,630 sf	,100.00% Impervious	, Inflow Depth >	5.37"	for 25-YEAR event
Inflow =	=	0.84 cfs @	12.08 hrs, Volume=	2,966 0	of	
Outflow =	=	0.84 cfs @	12.08 hrs, Volume=	2,966 0	of, Atter	n= 0%, Lag= 0.0 min
Primary =	=	0.84 cfs @	12.08 hrs, Volume=	2,966 0	of	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.04' @ 14.07 hrs Flood Elev= 239.70'

Device	Routing	Invert	Outlet Devices
#1	Primary	235.20'	15.0" Round Culvert L= 60.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 235.20' / 234.90' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.82 cfs @ 12.08 hrs HW=235.76' TW=235.46' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.82 cfs @ 2.31 fps)

Summary for Pond 24P: CB#24

Inflow Area	=	26,271 sf, 92.21% Impervious, Inflow Depth > 5.04" for 25-YEAR event	t
Inflow	=	3.22 cfs @ 12.08 hrs, Volume= 11,031 cf	
Outflow	=	3.22 cfs @ 12.08 hrs, Volume= 11,031 cf, Atten= 0%, Lag= 0.0 min	۱
Primary	=	3.22 cfs @ 12.08 hrs, Volume= 11,031 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 241.73' @ 12.08 hrs Flood Elev= 250.54'

Device	Routing	Invert	Outlet Devices
#1	Primary	240.50'	12.0" Round Culvert L= 104.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 240.50' / 234.00' S= 0.0625 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.22 cfs @ 12.08 hrs HW=241.72' TW=234.73' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 3.22 cfs @ 4.09 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 25P: CB#25

 Inflow Area =
 19,795 sf, 95.32% Impervious, Inflow Depth > 5.17" for 25-YEAR event

 Inflow =
 2.46 cfs @
 12.08 hrs, Volume=
 8,528 cf

 Outflow =
 2.46 cfs @
 12.08 hrs, Volume=
 8,528 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 2.46 cfs @
 12.08 hrs, Volume=
 8,528 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 244.42' @ 12.08 hrs Flood Elev= 250.54'

Device	Routing	Invert	Outlet Devices
#1	Primary	243.50'	12.0" Round Culvert L= 128.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 243.50' / 240.60' S= 0.0227 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.45 cfs @ 12.08 hrs HW=244.41' TW=241.72' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.45 cfs @ 3.26 fps)

Summary for Pond 27P: CB#27

Inflow Area	=	37,738 sf,	73.20% Impervious,	Inflow Depth > 4	.27" for 25-YEAR event
Inflow	=	4.15 cfs @	12.09 hrs, Volume=	13,425 cf	
Outflow	=	4.15 cfs @	12.09 hrs, Volume=	13,425 cf,	Atten= 0%, Lag= 0.0 min
Primary	=	4.15 cfs @	12.09 hrs, Volume=	13,425 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.17' @ 12.10 hrs Flood Elev= 218.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	215.93'	15.0" Round Culvert
	·		L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 215.93' / 215.88' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.14 cfs @ 12.09 hrs HW=218.14' TW=217.65' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 4.14 cfs @ 3.38 fps)

Summary for Pond 29P: DMH#29

Inflow Area	=	184,783 sf,	1.76% Impervious,	Inflow Depth > 1.36"	for 25-YEAR event
Inflow	=	2.98 cfs @	12.53 hrs, Volume=	20,932 cf	
Outflow	=	2.98 cfs @	12.53 hrs, Volume=	20,932 cf, Atte	n= 0%, Lag= 0.0 min
Primary	=	2.98 cfs @	12.53 hrs, Volume=	20,932 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 238.79' @ 12.53 hrs Flood Elev= 242.00'

Prepared by KNA

Hyc	droCAD®	10.00-26	s/n 01045	© 2020 H	HydroCAD	Software	Solutions L	L
-----	---------	----------	-----------	----------	----------	----------	-------------	---

	Device	Routing	Invert	Outlet Devices
#1 Primary 237.90' 15.0" Round Culvert L= 156.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 237.90' / 232.20' S= 0.0365 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf		<u> </u>		15.0" Round Culvert L= 156.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 237.90' / 232.20' S= 0.0365 '/' Cc= 0.900

Primary OutFlow Max=2.98 cfs @ 12.53 hrs HW=238.79' TW=233.00' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 2.98 cfs @ 3.21 fps)

Summary for Pond 30P: DMH#30

Inflow Area	=	282,142 sf, 25.55% Impervious	, Inflow Depth > 1.34" for 25-YEAR event
Inflow =	=	3.08 cfs @ 12.53 hrs, Volume=	31,390 cf
Outflow =	=	3.08 cfs @ 12.53 hrs, Volume=	31,390 cf, Atten= 0%, Lag= 0.0 min
Primary =	=	3.08 cfs @ 12.53 hrs, Volume=	31,390 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 233.00' @ 12.53 hrs Flood Elev= 235.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	232.10'	15.0" Round Culvert
			L= 273.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 232.10' / 220.88' S= 0.0411 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.08 cfs @ 12.53 hrs HW=233.00' TW=221.68' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.08 cfs @ 3.24 fps)

Summary for Pond 32P: DMH#32

Inflow Area	=	282,142 sf,	, 25.55% Impervious,	Inflow Depth > 1	.34" for 25-YEAR event
Inflow =	=	3.08 cfs @	12.53 hrs, Volume=	31,390 cf	
Outflow =	=	3.08 cfs @	12.53 hrs, Volume=	31,390 cf,	Atten= 0%, Lag= 0.0 min
Primary =	=	3.08 cfs @	12.53 hrs, Volume=	31,390 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 221.68' @ 12.53 hrs Flood Elev= 226.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	220.78'	15.0" Round Culvert L= 253.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 220.78' / 212.32' S= 0.0334 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.08 cfs @ 12.53 hrs HW=221.68' TW=213.21' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.08 cfs @ 3.24 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 33P: DMH#33

 Inflow Area =
 282,142 sf, 25.55% Impervious, Inflow Depth > 1.34" for 25-YEAR event

 Inflow =
 3.08 cfs @ 12.53 hrs, Volume=
 31,390 cf

 Outflow =
 3.08 cfs @ 12.53 hrs, Volume=
 31,390 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 3.08 cfs @ 12.53 hrs, Volume=
 31,390 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 213.21' @ 12.53 hrs Flood Elev= 218.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	212.22'	15.0" Round Culvert L= 17.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 212.22' / 212.00' S= 0.0129 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
			5

Primary OutFlow Max=3.08 cfs @ 12.53 hrs HW=213.21' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 3.08 cfs @ 4.04 fps)

Summary for Pond 47P: CB#47

Inflow Area	a =	2,272 sf,100.00% Impervious, Inflow Depth > 5.37" for 25-YEAR	event
Inflow	=	0.29 cfs @ 12.08 hrs, Volume= 1,016 cf	
Outflow	=	0.29 cfs @ 12.08 hrs, Volume= 1,016 cf, Atten= 0%, Lag= 0	.0 min
Primary	=	0.29 cfs @ 12.08 hrs, Volume= 1,016 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.75' @ 12.08 hrs Flood Elev= 236.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	236.50'	15.0" Round Culvert
			L= 99.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 236.50' / 235.40' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.29 cfs @ 12.08 hrs HW=236.75' TW=235.76' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.29 cfs @ 2.50 fps)

Summary for Pond 101P: CB#101

Inflow Area	ı =	256,408 sf,	11.33% Impervious,	Inflow Depth > (0.54" for 25-YEAR event
Inflow	=	1.89 cfs @	12.09 hrs, Volume=	11,614 cf	
Outflow	=	1.89 cfs @	12.09 hrs, Volume=	11,614 cf,	Atten= 0%, Lag= 0.0 min
Primary	=	1.89 cfs @	12.09 hrs, Volume=	11,614 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 213.12' @ 12.42 hrs Flood Elev= 215.80'

Type III 24-hr 25-YEAR Rainfall=5.61" Printed 9/8/2022 ns LLC Page 130

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	212.20'	12.0" Round Culvert
			L= 23.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 212.20' / 212.08' S= 0.0052 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.89 cfs @ 12.09 hrs HW=213.12' TW=212.73' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 1.89 cfs @ 3.29 fps)

Summary for Pond 102P: HW#102

Inflow Area =	243,556 sf, 7.72% Impervious,	Inflow Depth > 0.33" for 25-YEAR event
Inflow =	0.42 cfs @ 12.11 hrs, Volume=	6,778 cf
Outflow =	0.42 cfs @ 12.11 hrs, Volume=	6,778 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.42 cfs @ 12.11 hrs, Volume=	6,778 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 213.48' @ 12.10 hrs Flood Elev= 215.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	213.12'	12.0" Round Culvert
	ý		L= 41.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 213.12' / 212.30' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.42 cfs @ 12.11 hrs HW=213.48' TW=213.10' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.42 cfs @ 2.50 fps)

Summary for Pond 108P: CB#108

Inflow Area =	15,217 sf, 47.87% Impervious,	Inflow Depth > 3.30" for 25-YEAR event
Inflow =	1.35 cfs @ 12.09 hrs, Volume=	4,187 cf
Outflow =	1.35 cfs @ 12.09 hrs, Volume=	4,187 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.35 cfs @ 12.09 hrs, Volume=	4,187 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.18' @ 12.11 hrs Flood Elev= 225.98'

Device	Routing	Invert	Outlet Devices
#1	Primary	221.37'	15.0" Round Culvert L= 30.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 221.37' / 220.00' S= 0.0449 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.35 cfs @ 12.09 hrs HW=223.17' TW=223.12' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.35 cfs @ 1.10 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 112P: CB#112

 Inflow Area =
 7,976 sf, 90.47% Impervious, Inflow Depth > 4.96" for 25-YEAR event

 Inflow =
 0.98 cfs @
 12.08 hrs, Volume=
 3,297 cf

 Outflow =
 0.98 cfs @
 12.08 hrs, Volume=
 3,297 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.98 cfs @
 12.08 hrs, Volume=
 3,297 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.96' @ 12.52 hrs Flood Elev= 222.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	217.20'	12.0" Round Culvert L= 20.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.20' / 217.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			6 <i>i i i</i>

Primary OutFlow Max=0.98 cfs @ 12.08 hrs HW=219.85' TW=219.78' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 0.98 cfs @ 1.24 fps)

Summary for Pond 114P: DMH#114

Inflow Area	ı =	92,418 sf,	25.78% Impervious,	Inflow Depth >	2.34"	for 25-YEAR event
Inflow	=	4.45 cfs @	12.13 hrs, Volume=	18,039 c	f	
Outflow	=	4.45 cfs @	12.13 hrs, Volume=	18,039 c	f, Atter	n= 0%, Lag= 0.0 min
Primary	=	4.45 cfs @	12.13 hrs, Volume=	18,039 c	f	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.98' @ 12.50 hrs Flood Elev= 226.65'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.19'	24.0" Round Culvert
			L= 79.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.19' / 218.00' S= 0.0151 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=4.45 cfs @ 12.13 hrs HW=220.45' TW=220.08' (Dynamic Tailwater) -1=Culvert (Outlet Controls 4.45 cfs @ 3.06 fps)

Summary for Pond 115P: DCB#115

Inflow Area	=	92,418 sf	, 25.78% Impervious,	Inflow Depth >	2.34"	for 25-YEAR event
Inflow	=	4.45 cfs @	12.13 hrs, Volume=	18,039 cf		
Outflow	=	4.45 cfs @	12.13 hrs, Volume=	18,039 cf,	, Atter	n= 0%, Lag= 0.0 min
Primary	=	4.45 cfs @	12.13 hrs, Volume=	18,039 cf		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.84' @ 12.13 hrs Flood Elev= 227.54'

Type III 24-hr 25-YEAR Rainfall=5.61" Printed 9/8/2022 ns LLC Page 132

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
	Primary		18.0" Round Culvert L= 235.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 222.81' / 219.29' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=4.45 cfs @ 12.13 hrs HW=223.84' TW=220.45' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 4.45 cfs @ 3.45 fps)

Summary for Pond 116P: CB#116

Inflow Area =	60,922 sf, 4.24% Impervious,	Inflow Depth > 1.48" for 25-YEAR event
Inflow =	1.71 cfs @ 12.20 hrs, Volume=	7,526 cf
Outflow =	1.71 cfs @ 12.20 hrs, Volume=	7,526 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.71 cfs @ 12.20 hrs, Volume=	7,526 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 228.58' @ 12.20 hrs Flood Elev= 233.82'

Device	Routing	Invert	Outlet Devices
#1	Primary	227.94'	15.0" Round Culvert
	·		L= 125.7' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 227.94' / 222.91' S= 0.0400 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.71 cfs @ 12.20 hrs HW=228.58' TW=223.74' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.71 cfs @ 2.72 fps)

Summary for Pond 119P: CB#119

Inflow Area =	89,050 sf, 56.36% Impervious,	Inflow Depth > 3.59" for 25-YEAR event
Inflow =	6.95 cfs @ 12.10 hrs, Volume=	26,630 cf
Outflow =	6.95 cfs @ 12.10 hrs, Volume=	26,630 cf, Atten= 0%, Lag= 0.0 min
Primary =	6.95 cfs @ 12.10 hrs, Volume=	26,630 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.98' @ 12.50 hrs Flood Elev= 226.18'

Device	Routing	Invert	Outlet Devices
#1	Primary	218.57'	24.0" Round Culvert L= 37.9' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 218.57' / 218.00' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=6.95 cfs @ 12.10 hrs HW=220.24' TW=219.90' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 6.95 cfs @ 3.36 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 120P: DCB#120

 Inflow Area =
 66,796 sf, 42.29% Impervious, Inflow Depth > 3.02" for 25-YEAR event

 Inflow =
 4.27 cfs @ 12.12 hrs, Volume=
 16,788 cf

 Outflow =
 4.27 cfs @ 12.12 hrs, Volume=
 16,788 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 4.27 cfs @ 12.12 hrs, Volume=
 16,788 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.71' @ 12.12 hrs Flood Elev= 227.60'

#1 Primary 222.71' 18.0" Round Culvert L= 269.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 222 71' / 218 67' S= 0.0150 // Cc= 0.900	Device	Routing	Invert	Outlet Devices
n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf		U	222.71'	L= 269.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 222.71' / 218.67' S= 0.0150 '/' Cc= 0.900

Primary OutFlow Max=4.27 cfs @ 12.12 hrs HW=223.71' TW=220.31' (Dynamic Tailwater) -1=Culvert (Inlet Controls 4.27 cfs @ 3.41 fps)

Summary for Pond 121P: CB#121

Inflow Area	a =	36,429 sf, 14.50% Impervious, Inflow Depth > 1.91" for 25-YEAR event	
Inflow	=	I.37 cfs @ 12.22 hrs, Volume= 5,809 cf	
Outflow	=	I.37 cfs @ 12.22 hrs, Volume= 5,809 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	I.37 cfs @ 12.22 hrs, Volume= 5,809 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 226.62' @ 12.22 hrs Flood Elev= 230.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	226.06'	15.0" Round Culvert
			L= 54.2' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 226.06' / 222.81' S= 0.0600 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.37 cfs @ 12.22 hrs HW=226.62' TW=223.58' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.37 cfs @ 2.55 fps)

Summary for Pond B1: INFILTRATION POND 1

Inflow Area =	113,915 sf, 75.64% Impervious,	Inflow Depth > 4.42" for 25-YEAR event
Inflow =	12.45 cfs @ 12.08 hrs, Volume=	41,976 cf
Outflow =	8.10 cfs @ 12.18 hrs, Volume=	34,345 cf, Atten= 35%, Lag= 5.5 min
Discarded =	0.20 cfs @ 12.18 hrs, Volume=	8,695 cf
Primary =	7.90 cfs @ 12.18 hrs, Volume=	25,650 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3

Prepared by KNA

Peak Elev= 217.79' @ 12.18 hrs Surf.Area= 8,667 sf Storage= 15,269 cf Flood Elev= 218.00' Surf.Area= 9,382 sf Storage= 17,174 cf

Plug-Flow detention time= 150.3 min calculated for 34,331 cf (82% of inflow) Center-of-Mass det. time= 77.6 min (849.8 - 772.3)

Volume	Invert	Avail.Sto	rage	Storage	Description	
#1	214.75'	17,17	74 cf	Custom	Stage Data (Pr	rismatic)Listed below (Recalc)
Elevetia		uf Augo	lin e	Ctore	Curra Chara	
Elevatio		rf.Area		.Store	Cum.Store	
(fee		(sq-ft)	(CUDIO	c-feet)	(cubic-feet)	
214.7	75	2,279		0	0	
216.0	00	4,499		4,236	4,236	
217.0	00	5,997		5,248	9,484	
218.0	00	9,382		7,690	17,174	
Device	Routing	Invert	Outle	et Devices	S	
#1	Primary	214.00'	15.0	" Round	Culvert	
	,		L= 2	6.0' CPF	P, square edge h	neadwall, Ke= 0.500
			Inlet	/ Outlet Ir	nvert= 214.00'/	213.75' S= 0.0096 '/' Cc= 0.900
			n= 0	.013. Flo	w Area= 1.23 sf	
#2	Discarded	214.75'		,		Surface area Phase-In= 0.01'
#3	Device 1	-				e/Grate C= 0.600
#4	Device 1	217.90'				Grate $C = 0.600$
<i>n</i> -	Device 1	211.00			r flow at low hea	
#5	Primary	217.40'				road-Crested Rectangular Weir
#5	i iiiiai y	217.40		•		0.80 1.00 1.20 1.40 1.60
				· · ·		70 2.69 2.68 2.69 2.67 2.64
			Cue	i. (⊏nyiisi	1) 2.49 2.00 Z.	10 2.03 2.00 2.03 2.01 2.04

Discarded OutFlow Max=0.20 cfs @ 12.18 hrs HW=217.79' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=7.89 cfs @ 12.18 hrs HW=217.79' TW=211.36' (Dynamic Tailwater) 1=Culvert (Passes 1.70 cfs of 10.51 cfs potential flow) -3=Orifice/Grate (Orifice Controls 1.70 cfs @ 3.70 fps) -4=Orifice/Grate (Controls 0.00 cfs)

4=Orifice/Grate (Controls 0.00 cfs)

-5=Broad-Crested Rectangular Weir (Weir Controls 6.19 cfs @ 1.59 fps)

Summary for Pond B2: POCKET POND 1

Inflow Are	ea =	97,359 sf	, 70.69% Impervious,	Inflow Depth > 4.26" for 25-YEAR event	
Inflow	=	10.14 cfs @	12.09 hrs, Volume=	34,588 cf	
Outflow	=	0.56 cfs @	14.07 hrs, Volume=	10,457 cf, Atten= 94%, Lag= 119.0 min	
Primary	=	0.56 cfs @	14.07 hrs, Volume=	10,457 cf	
Douting by Dyn Stor Ind method. Time Spann 0.00.24.00 hrs. dt= 0.010 hrs. (2					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Starting Elev= 232.50' Surf.Area= 4,585 sf Storage= 6,096 cf Peak Elev= 236.04' @ 14.07 hrs Surf.Area= 9,366 sf Storage= 30,619 cf (24,522 cf above start) Flood Elev= 237.00' Surf.Area= 10,865 sf Storage= 40,310 cf (34,214 cf above start)

Plug-Flow detention time= 719.0 min calculated for 4,361 cf (13% of inflow)

Prepared by KNA

Type III 24-hr 25-YEAR Rainfall=5.61" Printed 9/8/2022 ons LLC Page 135

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Center-of-Mass det. time= 207.1 min(977.5 - 770.4)

Volume	Inve	ert Avail.Sto	orage Stora	age Description	
#1	229.0	0' 40,3	10 cf Cus	tom Stage Data (P	rismatic)Listed below (Recalc)
-		0 ()		0 0	
Elevatio		Surf.Area	Inc.Store		
(fee	et)	(sq-ft)	(cubic-feet) (cubic-feet)	
229.0	00	550	() 0	
230.0	00	1,050	800	008 0	
232.0	00	2,480	3,530) 4,330	
232.5	50	4,585	1,766	6,096	
234.0	00	6,510	8,321	1 14,418	
236.0	00	9,300	15,810	30,228	
237.0	00	10,865	10,083	3 40,310	
Device	Routing	Invert	Outlet Dev	vices	
#1	Primary	232.50'	15.0" Ro	und Culvert	
	-		L= 24.0'	CPP. square edge	headwall, Ke= 0.500
					232.20' S= 0.0125 '/' Cc= 0.900
				Flow Area= 1.23 s	
#2	Device 1	232.50'	,	Orifice/Grate C=	
#3	Device 1	236.00'		3.0" Horiz. Orifice/	
<i>#</i> 0	Device 1	200.00		weir flow at low he	

Primary OutFlow Max=0.56 cfs @ 14.07 hrs HW=236.04' TW=232.63' (Dynamic Tailwater)

_1=Culvert (Passes 0.56 cfs of 10.09 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.11 cfs @ 8.89 fps)

-3=Orifice/Grate (Weir Controls 0.45 cfs @ 0.67 fps)

Summary for Pond B3: DETENTION POND 1

Inflow Area =	184,783 sf, 1.76% Impervious,	Inflow Depth > 1.38" for 25-YEAR event
Inflow =	4.24 cfs @ 12.28 hrs, Volume=	21,262 cf
Outflow =	2.98 cfs @ 12.53 hrs, Volume=	20,932 cf, Atten= 30%, Lag= 15.0 min
Primary =	2.98 cfs @ 12.53 hrs, Volume=	20,932 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 245.12' @ 12.53 hrs Surf.Area= 3,374 sf Storage= 2,908 cf Flood Elev= 248.00' Surf.Area= 8,476 sf Storage= 19,484 cf

Plug-Flow detention time= 22.9 min calculated for 20,924 cf (98% of inflow) Center-of-Mass det. time= 14.5 min (901.2 - 886.7)

Volume	Invert A	Avail.Storage	Storage	Description	
#1	244.00'	19,484 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc) x 2
Elevation (feet)	Surf.Ar (sq-		:.Store c-feet)	Cum.Store (cubic-feet)	
244.00	9	04	0	0	
246.00	2,3	00	3,204	3,204	
248.00	4,2	38	6,538	9,742	

 Type III 24-hr
 25-YEAR Rainfall=5.61"

 Printed
 9/8/2022

 ns LLC
 Page 136

Prepared by KNA			
HydroCAD® 10.00-26	s/n 01045	© 2020 HydroCAD	Software Solutions LL

Device	Routing	Invert	Outlet Devices
#1	Primary	244.00'	12.0" Round Culvert L= 103.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 244.00' / 238.00' S= 0.0583 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf

Primary OutFlow Max=2.98 cfs @ 12.53 hrs HW=245.12' TW=238.79' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 2.98 cfs @ 3.80 fps)

Summary for Pond B4: INFILTRATION POND 2

Inflow Area =	204,461 sf, 39.73% Impervious,	Inflow Depth > 2.94" for 25-YEAR event
Inflow =	12.92 cfs @ 12.11 hrs, Volume=	50,151 cf
Outflow =	4.05 cfs @ 12.52 hrs, Volume=	35,345 cf, Atten= 69%, Lag= 24.8 min
Discarded =	0.18 cfs @ 12.52 hrs, Volume=	9,060 cf
Primary =	3.86 cfs @ 12.52 hrs, Volume=	26,285 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.96'@ 12.52 hrs Surf.Area= 7,983 sf Storage= 21,237 cf Flood Elev= 222.00' Surf.Area= 9,536 sf Storage= 30,365 cf

Plug-Flow detention time= 175.0 min calculated for 35,330 cf (70% of inflow) Center-of-Mass det. time= 76.6 min (885.0 - 808.4)

Volume	Inver	t Avail.Sto	rage Storage	e Description	
#1	217.00	' 30,36	65 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)
- 1	0	.		0	
Elevatio		urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
217.0	00	2,693	0	0	
218.0	00	4,247	3,470	3,470	
220.0	00	6,556	10,803	14,273	
222.0	00	9,536	16,092	30,365	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	214.44'	12.0" Round	d Culvert	
	5		L= 22.0' CM	IP, square edge	headwall, Ke= 0.500
					214.00' S= 0.0200 '/' Cc= 0.900
			n= 0.013 Co	rrugated PE. sm	nooth interior, Flow Area= 0.79 sf
#2	Device 1	220.00'		Drifice X 2.00 C	
#3	Device 1	221.50'		"Horiz. Grate (
				eir flow at low hea	
#4	Discarded	217.00'			Surface area Phase-In= 0.01'
		=			

Type III 24-hr 25-YEAR Rainfall=5.61" Printed 9/8/2022 ns LLC Page 137

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.18 cfs @ 12.52 hrs HW=220.96' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.18 cfs)

Primary OutFlow Max=3.86 cfs @ 12.52 hrs HW=220.96' TW=213.08' (Dynamic Tailwater)

2=Orifice (Orifice Controls 3.86 cfs @ 3.54 fps)

-3=Grate (Controls 0.00 cfs)

Summary for Pond B5: BIORETENTION POND 1

Inflow Area =	30,725 sf, 60.33% Impervious,	Inflow Depth > 3.84" for 25-YEAR event
Inflow =	2.96 cfs @ 12.09 hrs, Volume=	9,839 cf
Outflow =	2.82 cfs @ 12.11 hrs, Volume=	9,839 cf, Atten= 5%, Lag= 1.6 min
Primary =	2.82 cfs @ 12.11 hrs, Volume=	9,839 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.13' @ 12.11 hrs Surf.Area= 1,335 sf Storage= 1,831 cf Flood Elev= 224.00' Surf.Area= 1,738 sf Storage= 3,165 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 39.3 min (823.8 - 784.5)

Volume	Inver	rt Avail.Sto	rage Storage	Description	
#1	221.00	0' 3,16	65 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee 221.0 222.0 224.0)0 00	Surf.Area (sq-ft) 424 810 1,738	Inc.Store (cubic-feet) 0 617 2,548	Cum.Store (cubic-feet) 0 617 3,165	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	217.55'	12.0" Round Culvert		
#2 #3	Device 1 Device 1	223.00' 221.00'	Limited to weir flow at low heads		

Primary OutFlow Max=2.81 cfs @ 12.11 hrs HW=223.13' TW=217.46' (Dynamic Tailwater)

_1=Culvert (Passes 2.81 cfs of 8.52 cfs potential flow)

2=Grate (Weir Controls 2.50 cfs @ 1.19 fps)

3=Exfiltration (Exfiltration Controls 0.31 cfs)

2009212-POST DEVELOPMENT REV3Type IPrepared by KNAHydroCAD® 10.00-26s/n 01045© 2020 HydroCAD Software Solutions LLC

Summary for Pond B6: DETENTION POND 2

Inflow Area =	232,259 sf, 8.10% Impervious,	Inflow Depth > 1.67" for 25-YEAR event
Inflow =	5.87 cfs @ 12.25 hrs, Volume=	32,261 cf
Outflow =	0.23 cfs @ 20.08 hrs, Volume=	5,342 cf, Atten= 96%, Lag= 469.7 min
Primary =	0.23 cfs @ 20.08 hrs, Volume=	5,342 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.27' @ 20.08 hrs Surf.Area= 9,986 sf Storage= 27,229 cf Flood Elev= 222.00' Surf.Area= 11,980 sf Storage= 46,271 cf

Plug-Flow detention time= 562.5 min calculated for 5,342 cf (17% of inflow) Center-of-Mass det. time= 364.9 min (1,234.0 - 869.1)

Volume	Invei	t Avail.Sto	rage Storage	e Description
#1	217.00)' 46,27	71 cf Custom	m Stage Data (Prismatic) Listed below (Recalc) x 2
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)
217.0	00	3,390	0	0
218.0	00	3,847	3,619	3,619
220.0	00	4,840	8,687	12,306
222.0	00	5,990	10,830	23,136
Device	Routing	Invert	Outlet Device	es
#1	Primary	217.00'	12.0" Round	d Culvert
	-		L= 20.0' CP	PP, square edge headwall, Ke= 0.500
			Inlet / Outlet I	Invert= 217.00' / 216.50' S= 0.0250 '/' Cc= 0.900
			n= 0.013, Flo	low Area= 0.79 sf
#2	Device 1	217.00'	2.0" Vert. Or	rifice C= 0.600
#3	Device 1	220.00'	6.0" Vert. Or	rifice C= 0.600
#4	Device 1	221.50'	24.0" x 24.0"	"Horiz. Grate C= 0.600
			Limited to we	eir flow at low heads
Primary	OutFlow	Max=0.23 cfs (ຈັ20.08 hrs H	IW=220.27' TW=220.07' (Dynamic Tailwater)

Primary OutFlow Max=0.23 cfs @ 20.08 hrs HW=220.27' TW=220.07' (Dynamic Tailwater)

_1=Culvert (Passes 0.23 cfs of 1.69 cfs potential flow)

2=Orifice (Orifice Controls 0.05 cfs @ 2.15 fps)

—3=Orifice (Orifice Controls 0.19 cfs 0 1.76 fps)

-4=Grate (Controls 0.00 cfs)

Summary for Link A: CHASE BROOK

Inflow Are	a =	1,196,864 sf, 23.33% Impervious, Inflow Depth > 1.36" for 25-YEAR	event
Inflow	=	20.47 cfs @ 12.24 hrs, Volume= 135,943 cf	
Primary	=	20.47 cfs @ 12.24 hrs, Volume= 135,943 cf, Atten= 0%, Lag= 0	.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs

Prepared by KNA

 Type III 24-hr
 50-YEAR Rainfall=6.72"

 Printed
 9/8/2022

 ns LLC
 Page 139

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.010 hrs, 2401 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S:	Runoff Area=194,527 sf 0.14% Impervious Runoff Depth>1.98" Flow Length=716' Tc=16.8 min CN=55.4 Runoff=6.93 cfs 32,056 cf
Subcatchment2S:	Runoff Area=60,922 sf 4.24% Impervious Runoff Depth>2.18" Flow Length=809' Tc=13.6 min CN=57.6 Runoff=2.65 cfs 11,044 cf
Subcatchment3S:	Runoff Area=36,429 sf 14.50% Impervious Runoff Depth>2.70" Flow Length=674' Tc=14.5 min CN=63.2 Runoff=1.98 cfs 8,192 cf
Subcatchment4S:	Runoff Area=48,409 sf 6.73% Impervious Runoff Depth>2.27" Flow Length=779' Tc=17.6 min CN=58.6 Runoff=2.00 cfs 9,142 cf
Subcatchment5S:	Runoff Area=136,374 sf 0.00% Impervious Runoff Depth>1.97" Flow Length=903' Tc=18.3 min CN=55.4 Runoff=4.69 cfs 22,416 cf
Subcatchment6S:	Runoff Area=299,000 sf 0.73% Impervious Runoff Depth>1.98" Flow Length=520' Tc=13.3 min CN=55.4 Runoff=11.64 cfs 49,363 cf
Subcatchment7S:	Runoff Area=14,561 sf 25.68% Impervious Runoff Depth>3.43" Tc=6.0 min CN=70.5 Runoff=1.35 cfs 4,167 cf
Subcatchment8S:	Runoff Area=13,429 sf 0.00% Impervious Runoff Depth>2.50" Tc=6.0 min CN=61.0 Runoff=0.88 cfs 2,796 cf
Subcatchment9S:	Runoff Area=5,750 sf 82.97% Impervious Runoff Depth>5.74" Tc=6.0 min CN=91.7 Runoff=0.83 cfs 2,750 cf
Subcatchment10S:	Runoff Area=8,237 sf 91.84% Impervious Runoff Depth>6.12" Tc=6.0 min CN=95.0 Runoff=1.23 cfs 4,201 cf
Subcatchment11S:	Runoff Area=14,549 sf 92.08% Impervious Runoff Depth>6.13" Tc=6.0 min CN=95.1 Runoff=2.17 cfs 7,433 cf
Subcatchment12S: BUILDING1	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=1.39 cfs 4,965 cf
Subcatchment13S: BUILDING1	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=1.39 cfs 4,965 cf
Subcatchment14S:	Runoff Area=8,778 sf 73.24% Impervious Runoff Depth>5.33" Tc=6.0 min CN=88.1 Runoff=1.21 cfs 3,897 cf
Subcatchment15S:	Runoff Area=8,055 sf 70.37% Impervious Runoff Depth>5.21" Tc=6.0 min CN=87.0 Runoff=1.09 cfs 3,496 cf
Subcatchment16S:	Runoff Area=5,381 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=0.81 cfs 2,904 cf

Prepared by KNA HvdroCAD® 10.00-26 s/n 01045 © 2020 HvdroCAD Software Solutions LLC

Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022 ons LLC Page 140

HydroCAD® 10.00-26 s/n 01045 © 2020 Hyd	roCAD Software Solutions LLC Page 140
Subcatchment17S:	Runoff Area=5,381 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=0.81 cfs 2,904 cf
Subcatchment18S:	Runoff Area=12,630 sf 75.22% Impervious Runoff Depth>5.41" Tc=6.0 min CN=88.8 Runoff=1.76 cfs 5,695 cf
Subcatchment19S: BUILDING 2	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=1.39 cfs 4,965 cf
Subcatchment20S: BUILDING2	Runoff Area=9,200 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=1.39 cfs 4,965 cf
Subcatchment21S:	Runoff Area=8,126 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=1.23 cfs 4,385 cf
Subcatchment22S:	Runoff Area=9,491 sf 64.25% Impervious Runoff Depth>4.96" Tc=6.0 min CN=84.8 Runoff=1.24 cfs 3,919 cf
Subcatchment23S:	Runoff Area=9,913 sf 73.27% Impervious Runoff Depth>5.33" Tc=6.0 min CN=88.1 Runoff=1.36 cfs 4,402 cf
Subcatchment24S:	Runoff Area=4,358 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=0.66 cfs 2,352 cf
Subcatchment25S:	Runoff Area=3,949 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=0.60 cfs 2,131 cf
Subcatchment26S: BUILDING 3	Runoff Area=13,600 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=2.06 cfs 7,340 cf
Subcatchment27S:	Runoff Area=6,195 sf 85.04% Impervious Runoff Depth>5.83" Tc=6.0 min CN=92.5 Runoff=0.90 cfs 3,008 cf
Subcatchment28S:	Runoff Area=6,476 sf 82.72% Impervious Runoff Depth>5.73" Tc=6.0 min CN=91.6 Runoff=0.93 cfs 3,091 cf
Subcatchment29S:	Runoff Area=20,450 sf 0.00% Impervious Runoff Depth>2.50" Tc=6.0 min CN=61.0 Runoff=1.34 cfs 4,257 cf
Subcatchment30S:	Runoff Area=12,852 sf 79.69% Impervious Runoff Depth>5.60" Tc=6.0 min CN=90.5 Runoff=1.83 cfs 5,997 cf
Subcatchment31S:	Runoff Area=8,139 sf 0.00% Impervious Runoff Depth>2.50" Tc=6.0 min CN=61.0 Runoff=0.53 cfs 1,694 cf
Subcatchment32S:	Runoff Area=15,017 sf 0.00% Impervious Runoff Depth>2.50" Tc=6.0 min CN=61.0 Runoff=0.98 cfs 3,126 cf
Subcatchment33S:	Runoff Area=11,297 sf 0.00% Impervious Runoff Depth>2.26" Tc=6.0 min CN=58.4 Runoff=0.66 cfs 2,126 cf

Prepared by KNA

Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022 HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Page 141

Hydrocade 10.00-26 s/n	01043 © 2020 HydroCAD Soltware Solutions LLC Page 141
Subcatchment34S:	Runoff Area=7,007 sf 0.00% Impervious Runoff Depth>2.50" Tc=6.0 min CN=61.0 Runoff=0.46 cfs 1,459 cf
Subcatchment35S:	Runoff Area=4,258 sf 0.00% Impervious Runoff Depth>2.50" Tc=6.0 min CN=61.0 Runoff=0.28 cfs 886 cf
Subcatchment36S:	Runoff Area=7,976 sf 90.47% Impervious Runoff Depth>6.06" Tc=6.0 min CN=94.5 Runoff=1.18 cfs 4,028 cf
Subcatchment37S:	Runoff Area=11,004 sf 97.16% Impervious Runoff Depth>6.35" Tc=6.0 min CN=97.0 Runoff=1.66 cfs 5,825 cf
Subcatchment38S:	Runoff Area=15,217 sf 47.87% Impervious Runoff Depth>4.29" Tc=6.0 min CN=78.7 Runoff=1.75 cfs 5,445 cf
Subcatchment40S: BUI	LDING 4 Runoff Area=11,250 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=1.70 cfs 6,071 cf
Subcatchment41S: BUI	LDING 4 Runoff Area=11,250 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=1.70 cfs 6,071 cf
Subcatchment42S:	Runoff Area=31,496 sf 67.44% Impervious Runoff Depth>5.06" Flow Length=469' Tc=7.4 min CN=85.7 Runoff=3.98 cfs 13,279 cf
Subcatchment43S:	Runoff Area=30,367 sf 75.63% Impervious Runoff Depth>5.41" Flow Length=454' Tc=7.3 min CN=88.9 Runoff=4.04 cfs 13,699 cf
Subcatchment45S:	Runoff Area=2,272 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=0.34 cfs 1,226 cf
Subcatchment46S:	Runoff Area=2,255 sf 100.00% Impervious Runoff Depth>6.48" Tc=6.0 min CN=98.0 Runoff=0.34 cfs 1,217 cf
Subcatchment47S:	Runoff Area=10,949 sf 57.68% Impervious Runoff Depth>4.69" Tc=6.0 min CN=82.3 Runoff=1.36 cfs 4,276 cf
Subcatchment50S:	Runoff Area=12,488 sf 0.00% Impervious Runoff Depth>2.38" Tc=6.0 min CN=59.7 Runoff=0.77 cfs 2,473 cf
Reach 1R: SWALE	Avg. Flow Depth=1.76' Max Vel=1.89 fps Inflow=18.92 cfs 110,525 cf n=0.069 L=255.0' S=0.0078 '/' Capacity=24.34 cfs Outflow=18.32 cfs 110,342 cf
Reach 2R: SWALE	Avg. Flow Depth=0.27' Max Vel=2.61 fps Inflow=2.00 cfs 9,142 cf n=0.025 L=126.0' S=0.0159 '/' Capacity=26.66 cfs Outflow=1.99 cfs 9,134 cf
Reach 3R: SWALE	Avg. Flow Depth=0.40' Max Vel=6.09 fps Inflow=6.93 cfs 32,056 cf n=0.025 L=550.0' S=0.0527 '/' Capacity=174.16 cfs Outflow=6.89 cfs 32,003 cf
Reach 4R: SWALE	Avg. Flow Depth=1.22' Max Vel=1.23 fps Inflow=6.68 cfs 68,819 cf n=0.069 L=177.0' S=0.0050 '/' Capacity=19.38 cfs Outflow=6.66 cfs 68,688 cf

Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022

2009212-PUSI DEVEL	••
Prepared by KNA	045 © 2020 HydroCAD Software Solutions LLC Printed 9/8/2022 Printed 9/8/2022
Reach 5R: (new Reach) 24.0" Rou	Avg. Flow Depth=0.00' Max Vel=0.00 fps nd Pipe n=0.013 L=37.9' S=0.0150 '/' Capacity=27.74 cfs Outflow=0.00 cfs 0 cf
Reach 33R: SWALE	Avg. Flow Depth=0.12' Max Vel=2.46 fps Inflow=0.68 cfs 20,410 cf n=0.025 L=182.0' S=0.0330 '/' Capacity=31.32 cfs Outflow=0.68 cfs 20,380 cf
Pond 1P: HW#1	Peak Elev=215.98' Inflow=6.66 cfs 68,688 cf 12.0" Round Culvert n=0.013 L=42.0' S=0.0100 '/' Outflow=6.66 cfs 68,688 cf
Pond 2P: CB#2	Peak Elev=212.98' Inflow=6.86 cfs 71,438 cf 15.0" Round Culvert n=0.013 L=42.0' S=0.0050 '/' Outflow=6.86 cfs 71,438 cf
Pond 7P: CB#7	Peak Elev=218.34' Inflow=2.62 cfs 9,166 cf 12.0" Round Culvert n=0.013 L=12.7' S=0.0102 '/' Outflow=2.62 cfs 9,166 cf
Pond 8P: CB#8	Peak Elev=219.53' Inflow=3.78 cfs 12,496 cf 15.0" Round Culvert n=0.013 L=204.0' S=0.0050 '/' Outflow=3.78 cfs 12,496 cf
Pond 9P: CB#9	Peak Elev=219.66' Inflow=2.02 cfs 6,801 cf 15.0" Round Culvert n=0.013 L=90.0' S=0.0050 '/' Outflow=2.02 cfs 6,801 cf
Pond 10P: CB#10	Peak Elev=220.07' Inflow=0.81 cfs 2,904 cf 12.0" Round Culvert n=0.013 L=27.0' S=0.0700 '/' Outflow=0.81 cfs 2,904 cf
Pond 12P: CB#12	Peak Elev=218.74' Inflow=3.56 cfs 12,398 cf 12.0" Round Culvert n=0.013 L=10.0' S=0.0100 '/' Outflow=3.56 cfs 12,398 cf
Pond 14P: CB#14	Peak Elev=218.33' Inflow=3.13 cfs 10,785 cf 18.0" Round Culvert n=0.013 L=152.5' S=0.0050 '/' Outflow=3.13 cfs 10,785 cf
Pond 15P: CB#15	Peak Elev=218.61' Inflow=1.90 cfs 6,400 cf 15.0" Round Culvert n=0.013 L=78.0' S=0.0050 '/' Outflow=1.90 cfs 6,400 cf
Pond 16P: CB#16	Peak Elev=220.18' Inflow=0.81 cfs 2,904 cf 12.0" Round Culvert n=0.013 L=28.8' S=0.0701 '/' Outflow=0.81 cfs 2,904 cf
Pond 17P: CB#17	Peak Elev=236.13' Inflow=1.94 cfs 6,926 cf 15.0" Round Culvert n=0.013 L=28.0' S=0.0054 '/' Outflow=1.94 cfs 6,926 cf
Pond 18P: CB#18	Peak Elev=236.13' Inflow=2.60 cfs 8,321 cf 18.0" Round Culvert n=0.013 L=96.0' S=0.0050 '/' Outflow=2.60 cfs 8,321 cf
Pond 19P: CB#19	Peak Elev=236.13' Inflow=1.24 cfs 3,919 cf 15.0" Round Culvert n=0.013 L=123.0' S=0.0050 '/' Outflow=1.24 cfs 3,919 cf
Pond 21P: CB#21	Peak Elev=236.13' Inflow=1.60 cfs 5,709 cf 15.0" Round Culvert n=0.013 L=74.0' S=0.0074 '/' Outflow=1.60 cfs 5,709 cf
Pond 22P: CB#22	Peak Elev=236.13' Inflow=1.00 cfs 3,578 cf 15.0" Round Culvert n=0.013 L=60.0' S=0.0050 '/' Outflow=1.00 cfs 3,578 cf

Type III 24-hr 50-YEAR Rainfall=6.72"

2009212-POST DEVE	LOPMENT REV3	Type III 24-hr 50-Y	'EAR Rainfall=6.72"
Prepared by KNA			Printed 9/8/2022
HydroCAD® 10.00-26 s/n 0	1045 © 2020 HydroCAD Software S	olutions LLC	Page 143
			0.00 (10.100 (
Pond 24P: CB#24		Peak Elev=242.06' Inflo	
	12.0" Round Culvert n=0.013 L	_=104.0° S=0.0625 7° Outflo	w=3.89 cts 13,439 ct
Pond 25P: CB#25		Peak Elev=244.61' Inflo	w-2.06 cfc 10.348 cf
F0110 25F. CB#25	12.0" Round Culvert n=0.013 L		
		-120.0 0-0.0227 / Outilo	
Pond 27P: CB#27		Peak Elev=218.61' Inflo	w=5 14 cfs 16 773 cf
	15.0" Round Culvert n=0.013		
Pond 29P: DMH#29		Peak Elev=239.01' Inflo	w=4.14 cfs 31,162 cf
	15.0" Round Culvert n=0.013 L	_=156.0' S=0.0365 '/' Outflo	w=4.14 cfs 31,162 cf
Pond 30P: DMH#30		Peak Elev=233.94' Inflo	
	15.0" Round Culvert n=0.013 L	_=273.0' S=0.0411 '/' Outflo	w=6.52 cfs 49,858 cf
Pond 32P: DMH#32		Peak Elev=222.62' Inflo	
	15.0" Round Culvert n=0.013 L	_=253.0° S=0.0334 7° Outflo	W=6.52 cts 49,858 ct
Pond 33P: DMH#33		Peak Elev=214.08' Inflo	w-6.52 cfc 10.858 cf
Fond 33F. DMH#33	15.0" Round Culvert n=0.013		
Pond 47P: CB#47		Peak Elev=236.78' Infl	low=0.34 cfs 1.226 cf
	15.0" Round Culvert n=0.013		
Pond 101P: CB#101		Peak Elev=213.47' Inflo	
	12.0" Round Culvert n=0.013	L=23.0' S=0.0052 '/' Outflo	w=2.45 cfs 26,377 cf
Pond 102P: HW#102		Peak Elev=213.67' Inflo	
	12.0" Round Culvert n=0.013	L=41.0' S=0.0200 7' Outflo	w=0.68 cfs 20,380 cf
Pond 108P: CB#108		Peak Elev=223.25' Infl	low-1 75 of 5 445 of
FOII0 106F. CB#108	15.0" Round Culvert n=0.013		
) E-30.5 8-0.0449 / Outin	0w-1.70 013 0,440 01
Pond 112P: CB#112		Peak Elev=221.55' Infl	low=1.18 cfs 4.028 cf
	12.0" Round Culvert n=0.013		
Pond 114P: DMH#114		Peak Elev=221.58' Inflo	
	24.0" Round Culvert n=0.013	L=79.0' S=0.0151 '/' Outflo	w=6.05 cfs 24,323 cf
Pond 115P: DCB#115		Peak Elev=224.07' Inflo	
	18.0" Round Culvert n=0.013 L	_=235.0' S=0.0150 7' Outflo	w=6.05 cfs 24,323 cf
Dond 116D: CB#116		Dook Flow-228 76' Inflo	w-2.65 of 11.044 of
Pond 116P: CB#116	15.0" Round Culvert n=0.013 L	Peak Elev=228.76' Inflo	
		-120.1 0-0.0400 / Outilo	w-2.00 018 11,044 01
Pond 119P: CB#119		Peak Elev=221.59' Inflo	w=8.73 cfs 33 786 cf
	24.0" Round Culvert n=0.013		
			,
Pond 120P: DCB#120		Peak Elev=223.89' Inflo	w=5.53 cfs 21,891 cf
	18.0" Round Culvert n=0.013 I	=269.0' S=0.0150 '/' Outfloo	w=5.53 cfs 21.891 cf

18.0" Round Culvert n=0.013 L=269.0' S=0.0150 '/' Outflow=5.53 cfs 21,891 cf

2009212-POST DEVELOPMENT RE Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 Hyd		<i>50-YEAR Rainfall=6.72"</i> Printed 9/8/2022 Page 144
Pond 121P: CB#121 15.0" Roun	Peak Elev=226.75 nd Culvert_n=0.013_L=54.2'_S=0.0600 '/'	5' Inflow=1.98 cfs 8,192 cf Outflow=1.98 cfs 8,192 cf
Pond B1: INFILTRATIONPOND 1 Discarded=0.21 cfs 9	Peak Elev=217.92' Storage=16,409 cf 9,140 cf Primary=11.83 cfs 34,921 cf O	
Pond B2: POCKET POND 1	Peak Elev=236.12' Storage=31,401 cf	Inflow=12.55 cfs 42,873 cf Outflow=2.40 cfs 18,696 cf
Pond B3: DETENTION POND 1 12.0" Round (Peak Elev=245.70' Storage=5,075 cf Culvert n=0.013 L=103.0' S=0.0583 '/'	
	Peak Elev=221.55' Storage=26,191 cf 9,507 cf Primary=5.84 cfs 40,747 cf (
Pond B5: BIORETENTIONPOND 1	Peak Elev=223.16' Storage=1,870 cf	Inflow=3.73 cfs 12,402 cf Outflow=3.69 cfs 12,403 cf
Pond B6: DETENTION POND 2	Peak Elev=220.63' Storage=30,893 cf	Inflow=8.95 cfs 45,865 cf Outflow=0.65 cfs 18,283 cf
Link A: CHASE BROOK		nflow=33.13 cfs 212,035 cf imary=33.13 cfs 212,035 cf

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S:

Runoff = 6.93 cfs @ 12.25 hrs, Volume= 32,056 cf, Depth> 1.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Descriptio	n		
	270	98.0	Paved pa	rking, HSG	В	
	12,010	61.0	>75% Ġra	ass cover, (Good, HSG B	
1	82,247	55.0	Woods, G	Woods, Good, HSG B		
1	194,527 55.4 Weighted Average					
	94,257	55.4	0	ervious Are	ea	
	270	98.0	0.14% Im	pervious A	rea	
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•	
8.7	50	0.0550	0.10		Sheet Flow,	
_					Woods: Light underbrush n= 0.400 P2= 2.84"	
4.0	325	0.0750	1.37		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
1.1	60	0.0330	0.91		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
3.0	281	0.1000	1.58		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
16.8	716	Total			·	

Summary for Subcatchment 2S:

Runoff = 2.65 cfs @ 12.20 h	s, Volume= 11,044	cf, Depth> 2.18"
-----------------------------	-------------------	------------------

Area (sf) C	Description
2,582 98) Paved parking, HSG B
7,802 61	>75% Grass cover, Good, HSG B
50,538 55) Woods, Good, HSG B
60,922 57	6 Weighted Average
58,340 55	3 95.76% Pervious Area
2,582 98) 4.24% Impervious Area

 Type III 24-hr
 50-YEAR Rainfall=6.72"

 Printed
 9/8/2022

 ns LLC
 Page 146

1 2				
HydroCAD® 10.00-26	s/n 01045	© 2020 Hy	ydroCAD Soft	ware Solutions LLC

 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.9	50	0.1000	0.12		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.84"
5.5	470	0.0800	1.41		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.3	84	0.3300	4.02		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.8	205	0.0400	4.06		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps

13.6 809 Total

Summary for Subcatchment 3S:

Runoff	=	1.98 cfs @	12.21 hrs,	Volume=	8,192 cf, Depth> 2.70"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

Α	rea (sf)	CN	Descriptio	n					
	5,283	98.0	Paved pa	rking, HSG	B				
	11,639	61.0	>75% Gra	ass cover, (Good, HSG B				
	19,507	55.0	Woods, G	iood, HSG	В				
	36,429	63.2	Weighted	Average					
	31,146	57.2	85.50% P	85.50% Pervious Area					
	5,283	98.0	14.50% Ir	npervious /	Area				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.9	50	0.1000	0.12		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.84"				
7.6	600	0.0700	1.32		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.1	24	0.4000	4.43		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
14.5	674	Total							

Summary for Subcatchment 4S:

Runoff = 2.00 cfs @ 12.26 hrs, Volume= 9,142 cf, Depth> 2.27"

 Type III 24-hr
 50-YEAR Rainfall=6.72"

 Printed
 9/8/2022

 ns LLC
 Page 147

Prepared	by	KNA	
repuied	NУ	1 1 1 1 1	

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Ar	ea (sf)	CN	Descriptio	n							
	3,260	98.0	Roofs, HS	Roofs, HSG B							
	5,695	61.0	>75% Gra	ass cover, (Good, HSG B						
3	39,454	55.0	Woods, G	iood, HSG	В						
2	48,409	58.6	Weighted	Average							
4	45,149	55.8	93.27% P	ervious Are	ea						
	3,260	98.0	6.73% lm	pervious Ai	rea						
Тс	Length	Slope	Velocity	Capacity	Description						
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
8.4	50	0.0600	0.10		Sheet Flow,						
					Woods: Light underbrush n= 0.400 P2= 2.84"						
9.2	729	0.0700	1.32		Shallow Concentrated Flow,						
					Woodland Kv= 5.0 fps						
17.6	779	Total									
	Summary for Subcatchment 5S:										

Runoff = 4.69 cfs @ 12.28 hrs, Volume= 22,416 cf, Depth> 1.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Descriptio	n			
	8,709	61.0	>75% Gra	ass cover, (Good, HSG B		
1	27,665	55.0	Woods, G	ood, HSG	В		
1	36,374	55.4	Weighted Average				
1	36,374	55.4	100.00%	Pervious A	rea		
_							
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.6	50	0.1100	0.13		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 2.84"		
7.8	567	0.0580	1.20		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
3.8	286	0.0630	1.25		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
18.3	903	Total					

Summary for Subcatchment 6S:

Runoff = 11.64 cfs @ 12.20 hrs, Volume= 49,363 cf, Depth> 1.98"

 Type III 24-hr
 50-YEAR Rainfall=6.72"

 Printed
 9/8/2022

 ns LLC
 Page 148

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Descriptio	n	
	2,193	98.0	Paved pa	rking, HSG	В
	6,633	61.0	>75% Ġra	ass cover, (Good, HSG B
2	290,174	55.0	Woods, G	Good, HSG	В
2	299,000	55.4	Weighted	Average	
2	296,807	55.1	99.27% P	ervious Are	ea
	2,193	98.0	0.73% lm	pervious A	rea
т.	1 11.		M. L	0	Description
Tc (min)	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0	50	0.1400	0.14		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.84"
2.0	210	0.1200	1.73		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
4.9	210	0.0200	0.71		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.3	50	0.2400	2.45		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
13.3	520	Total			

Summary for Subcatchment 7S:

Runoff = 1.35 cfs @ 12.09 hrs, Volume= 4,167 cf, Depth> 3.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Descriptio	n					
	3,739	98.0	Paved par	rking, HSG	€B				
	10,822	61.0	>75% Ġra	iss cover, (Good, HSG B				
	14,561	70.5	Weighted Average						
	10,822	61.0	74.32% P	ervious Are	ea				
	3,739	98.0	25.68% In	npervious A	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 8S:

Runoff = 0.88 cfs @ 12.09 hrs, Volume= 2,796 cf, Depth> 2.50"

 Area (sf)	CN	Description
13,429	61.0	>75% Grass cover, Good, HSG B
 13,429	61.0	100.00% Pervious Area

2009212-POST DEVELOPMENT REV3 Type III 24-hr 50-YEAR Rainfall=6.72" Prepared by KNA Printed 9/8/2022 HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Page 149 Velocity Capacity Tc Lenath Slope Description (ft/ft) (min) (feet) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 9S: 0.83 cfs @ 12.08 hrs, Volume= 2,750 cf, Depth> 5.74" Runoff = Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72" Area (sf) CN Description 4,771 98.0 Paved parking, HSG B 979 61.0 >75% Grass cover, Good, HSG B 5,750 91.7 Weighted Average 979 61.0 17.03% Pervious Area 82.97% Impervious Area 4,771 98.0 Lenath Slope Velocity Capacity Description Tc (feet) (ft/ft) (ft/sec) (cfs) (min) 6.0 Direct Entry, Summary for Subcatchment 10S: Runoff 1.23 cfs @ 12.08 hrs, Volume= 4,201 cf, Depth> 6.12" = Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72" Area (sf) CN Description 7,565 98.0 Paved parking, HSG B 672 61.0 >75% Grass cover, Good, HSG B

_		8,237 672 7,565	61.0		Average rvious Area npervious A			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	6.0					Direct Entry,		

Summary for Subcatchment 11S:

Runoff	=	2.17 cfs @	12.08 hrs, V	olume=	7,433 cf,	Depth>	6.13"

Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022 ns LLC Page 150

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description				
	13,397	98.0	Paved parking, HSG B				
	1,152	61.0	>75% Grass cover, Good, HSG B				
	14,549	95.1	Weighted Average				
	1,152	61.0	7.92% Pervious Area				
	13,397	98.0	92.08% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment 12S: BUILDING 1

Runoff = 1.39 cfs @ 12.08 hrs, Volume= 4,965 cf, Depth> 6.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Description				
	9,200	98.0	Roofs, HSG B				
	9,200	98.0	100.00% Impervious Area				
_							
Tc	Length	Slope			Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.0					Direct Entry,		
					-		

Summary for Subcatchment 13S: BUILDING 1

Runoff = 1.39 cfs @ 12.08 hrs, Volume= 4,965 cf, Depth> 6.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Description				
	9,200	98.0	Roofs, HSG B				
	9,200	98.0	100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment 14S:

Runoff = 1.21 cfs @ 12.08 hrs, Volume= 3,897 cf, Depth> 5.33"

 Type III 24-hr
 50-YEAR Rainfall=6.72"

 Printed
 9/8/2022

 ns LLC
 Page 151

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description						
	6,429	98.0	Paved par	rking, HSG	Э В				
	2,349	61.0	>75% Ġra	iss cover, (Good, HSG B				
	8,778	88.1	Weighted	Average					
	2,349	61.0	26.76% P	26.76% Pervious Area					
	6,429	98.0	73.24% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 15S:

Runoff = 1.09 cfs @ 12.09 hrs, Volume= 3,496 cf, Depth> 5.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

Area (sf) CN	Description						
5,668 98.0	Paved parking, HSG B						
2,387 61.0	>75% Grass cover, Good, HSG B						
8,055 87.0	Weighted Average						
2,387 61.0	29.63% Pervious Area						
5,668 98.0	70.37% Impervious Area						
Tc Length Slope							
(min) (feet) (ft/ft	(ft/sec) (cfs)						
6.0	Direct Entry,						

Summary for Subcatchment 16S:

Runoff = 0.81 cfs @ 12.08 hrs, Volume= 2,904 cf, Depth> 6.48"

Α	rea (sf)	CN	Description							
	5,381	98.0	Paved pa	Paved parking, HSG B						
	5,381	98.0	100.00%	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 17S:

Runoff = 0.81 cfs @ 12.08 hrs, Volume= 2,904 cf, Depth> 6.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Description						
	5,381	98.0	Paved pa	Paved parking, HSG B					
	5,381	98.0	100.00%	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 18S:

Runoff = 1.76 cfs @ 12.08 hrs, Volume= 5,695 cf, Depth> 5.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

Area (sf)	CN	Description					
9,500	98.0	Paved parking, HSG B					
3,130	61.0	>75% Grass cover, Good, HSG B					
12,630	88.8	Weighted Average					
3,130	61.0	24.78% Pervious Area					
9,500	98.0	75.22% Impervious Area					
Tc Length (min) (feet)	Slope (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)					
6.0		Direct Entry,					

Summary for Subcatchment 19S: BUILDING 2

Runoff = 1.39 cfs @ 12.08 hrs, Volume= 4,965 cf, Depth> 6.48"

A	rea (sf)	CN	Descriptio	n						
	9,200	98.0	Roofs, HS	Roofs, HSG B						
	9,200	98.0	100.00%	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 20S: BUILDING 2

Runoff = 1.39 cfs @ 12.08 hrs, Volume= 4,965 cf, Depth> 6.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Description							
	9,200	98.0	Roofs, HS	Roofs, HSG B						
	9,200	98.0	100.00%	100.00% Impervious Area						
Tc _(min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Summary for Subcatchment 21S:

Runoff = 1.23 cfs @ 12.08 hrs, Volume= 4,385 cf, Depth> 6.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Description						
	8,126	98.0	Paved pa	rking, HSG	3 B				
	8,126	98.0	100.00%	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment 22S:

Runoff = 1.24 cfs @ 12.09 hrs, Volume= 3,919 cf, Depth> 4.96"

A	rea (sf)	CN	Description						
	6,098	98.0	Paved pa	rking, HSG	GB				
	3,393	61.0	>75% Ġra	ass cover, (Good, HSG B				
	9,491	84.8	Weighted	Average					
	3,393	61.0	35.75% P	35.75% Pervious Area					
	6,098	98.0	64.25% Impervious Area						
Tc (min)	Length	Slope	Velocity	Capacity					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 23S:

Runoff = 1.36 cfs @ 12.08 hrs, Volume= 4,402 cf, Depth> 5.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Description					
	7,263	98.0	Paved pa	rking, HSG	€B			
	2,650	61.0	>75% Ġra	iss cover, (Good, HSG B			
	9,913	88.1	Weighted	Average				
	2,650	61.0	26.73% P	ervious Are	ea			
	7,263	98.0	73.27% Ir	npervious A	Area			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			
					-			

Summary for Subcatchment 24S:

Runoff = 0.66 cfs @ 12.08 hrs, Volume= 2,352 cf, Depth> 6.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Descriptio	n						
	4,358	98.0	Paved pa	Paved parking, HSG B						
	4,358	98.0	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Summary for Subcatchment 25S:

Runoff = 0.60 cfs @ 12.08 hrs, Volume= 2,131 cf, Depth> 6.48"

A	rea (sf)	CN	Description							
	3,949	98.0	Paved pa	Paved parking, HSG B						
	3,949	98.0	100.00%	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 26S: BUILDING 3

Runoff = 2.06 cfs @ 12.08 hrs, Volume= 7,340 cf, Depth> 6.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

Are	a (sf)	CN	Descriptio	n					
1	3,600	98.0	Roofs, HS	Roofs, HSG B					
1	3,600	98.0	100.00%	Impervious	s Area				
Tc I (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)					
6.0					Direct Entry,				

Summary for Subcatchment 27S:

Runoff = 0.90 cfs @ 12.08 hrs, Volume= 3,008 cf, Depth> 5.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Description						
	5,268	98.0	Paved parking, HSG B						
	927	61.0	>75% Ġra	ass cover, (Good, HSG B				
	6,195	92.5	Weighted Average						
	927	61.0	14.96% Pervious Area						
	5,268	98.0	85.04% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)					
6.0					Direct Entry,				

Summary for Subcatchment 28S:

Runoff = 0.93 cfs @ 12.08 hrs, Volume= 3,091 cf, Depth> 5.73"

Area (sf)	CN	Description			
5,357	98.0	Paved parking, HSG B			
1,119	61.0	>75% Grass cover, Good, HSG B			
6,476	91.6	Weighted Average			
1,119	61.0	17.28% Pervious Area			
5,357	98.0	82.72% Impervious Area			

2009212-POST DEVELOPMENT REV3 Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solu	Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022 Itions LLC Page 156						
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,	,						
Summary for Subcatch	ment 29S:						
Runoff = 1.34 cfs @ 12.09 hrs, Volume=	4,257 cf, Depth> 2.50"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"							
Area (sf) CN Description							
20,450 61.0 >75% Grass cover, Good, HSG B							
20,450 61.0 100.00% Pervious Area							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,	,						
Summary for Subcatchr	ment 30S:						
Runoff = 1.83 cfs @ 12.08 hrs, Volume=	5,997 cf, Depth> 5.60"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"							
Area (sf) CN Description							
10,242 98.0 Paved parking, HSG B							
2,610 61.0 >75% Grass cover, Good, HSG B							
12,852 90.5 Weighted Average							
2,610 61.0 20.31% Pervious Area							
10,242 98.0 79.69% Impervious Area							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,	,						

Summary for Subcatchment 31S:

Runoff = 0.53 cfs @ 12.09 hrs, Volume= 1,694 cf, Depth> 2.50"

 Area (sf)	CN	Description
8,139	61.0	>75% Grass cover, Good, HSG B
 8,139	61.0	100.00% Pervious Area

Prepared by KN		Printed 9/8/2022							
	-26 s/n 01045 © 2020 HydroCAD Software So								
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)								
6.0	Direct Entr	у,							
	Summary for Subcatchment 32S:								
Runoff =	0.98 cfs @ 12.09 hrs, Volume=	3,126 cf, Depth> 2.50"							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"									
Area (sf)	CN Description								
15,017	61.0 >75% Grass cover, Good, HSG E	3							
15,017	61.0 100.00% Pervious Area								
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)								
6.0	Direct Entr	у ,							
	Summary for Subcate	hment 33S:							
Runoff =	0.66 cfs @ 12.10 hrs, Volume=	2,126 cf, Depth> 2.26"							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"									
Area (sf)	CN Description								
6,480	61.0 >75% Grass cover, Good, HSG E	3							
4,817	55.0 Woods, Good, HSG B								
11,297	58.4 Weighted Average								
11,297	58.4 100.00% Pervious Area								
Tc Length	Slope Velocity Capacity Description								
(min) (feet)	(ft/ft) (ft/sec) (cfs)								
6.0	Direct Entr	у,							
	Summary for Subcate	hment 34S.							

Type III 24-hr 50-YEAR Rainfall=6.72"

Summary for Subcatchment 34S:

Runoff = 0.46 cfs @ 12.09 hrs, Volume= 1,459 cf, Dept	oth> 2.50"
---	------------

 Area (sf)	CN	Description				
7,007	61.0	>75% Grass cover, Good, HSG B				
 7,007	61.0	100.00% Pervious Area				

Prepare	d by KNA	4		NT REV3	D Software Sol		50-YEAR Rainfall=6.72" Printed 9/8/2022 Page 158			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry	/,				
	Summary for Subcatchment 35S:									
Runoff	=	0.28 cf	s @ 12.0	9 hrs, Volu	ıme=	886 cf, Depth>	2.50"			
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"									
A	rea (sf)	CN	Descriptio	on						
	4,258	61.0	>75% Gr	ass cover, (Good, HSG B					
	4,258	61.0	100.00%	Pervious A	rea					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry	/,				
			Su	mmary fo	or Subcatch	iment 36S:				
Runoff	=	1.18 cf	s@ 12.0	8 hrs, Volu	ıme=	4,028 cf, Depth>	6.06"			
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"										
A	rea (sf)	CN	Descriptio	on						
	7,216 760	98.0 61.0		irking, HSG ass cover, (B Good, HSG B					
	7,976	94.5	Weighted							
	760	61.0		ervious Area	а					
	7,216	98.0	90.47% l	mpervious /	Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
60					Direct Entry	,				

6.0

Direct Entry,

Summary for Subcatchment 37S:

1.66 cfs @ 12.08 hrs, Volume= 5,825 cf, Depth> 6.35" Runoff =

Area (sf)	CN	Description			
10,692	98.0	Paved parking, HSG B			
312	61.0	>75% Grass cover, Good, HSG B			
11,004	97.0	Weighted Average			
312	61.0	2.84% Pervious Area			
10,692	98.0	97.16% Impervious Area			

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Tc Length (min) (feet) 6.0	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) Direct Entry,	_							
	Summary for Subcatchment 38S:								
Runoff =	1.75 cfs @ 12.09 hrs, Volume= 5,445 cf, Depth> 4.29"								
2	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"								
Area (sf)	CN Description								
7,285	98.0 Paved parking, HSG B	-							
7,932	61.0 >75% Grass cover, Good, HSG B	_							
15,217	78.7 Weighted Average								
7,932	61.0 52.13% Pervious Area								
7,285	98.0 47.87% Impervious Area								
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	_							
6.0 Direct Entry,									

Summary for Subcatchment 40S: BUILDING 4

Runoff = 1.70 cfs @ 12.08 hrs, Volume= 6,071 cf, Depth> 6.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

Are	ea (sf)	CN	Descriptio	n				
1	1,250	98.0	Roofs, HSG B					
1	1,250	98.0	100.00%	Impervious	s Area			
Tc l (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 41S: BUILDING 4

Runoff = 1.70 cfs @ 12.08 hrs, Volume= 6,071 cf, Depth> 6.48"

 Area (sf)	CN	Description
11,250	98.0	Roofs, HSG B
 11,250	98.0	100.00% Impervious Area

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)					
6.0	6.0 Direct Entry,								
	Summary for Subcatchment 42S:								
Runoff	=	3.98 cf	s@ 12.1	0 hrs, Volu	ume= 13,279 cf, Depth> 5.06"				
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"									
A	rea (sf)	CN	Descriptio	n					
	21,240	98.0		rking, HSG					
	9,027	61.0		,	Good, HSG B				
	1,229	55.0		bood, HSG	В				
	31,496	85.7	Weighted						
	10,256	60.3		ervious Are					
	21,240	98.0	67.44% Ir	npervious /	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0	50	0.2200	0.17		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.84"				
1.1	80	0.0625	1.25		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.2	44	0.2700	3.64		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
1.1	295	0.0470	4.40		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
7.4	469	Total							

Summary for Subcatchment 43S:

Runoff 4.04 cfs @ 12.10 hrs, Volume= 13,699 cf, Depth> 5.41" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

Area (sf)	CN	Description
22,966	98.0	Paved parking, HSG B
3,724	61.0	>75% Grass cover, Good, HSG B
3,677	60.0	Woods, Fair, HSG B
30,367	88.9	Weighted Average
7,401	60.5	24.37% Pervious Area
22,966	98.0	75.63% Impervious Area

Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022

Page 160

Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022 HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC Page 161

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.8	50	0.2400	0.17		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.84"
1.2	80	0.0500	1.12		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.2	44	0.2700	3.64		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
1.1	280	0.0470	4.40		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps

7.3 454 Total

Prepared by KNA

Summary for Subcatchment 45S:

Runoff	=	0.34 cfs @	12.08 hrs,	Volume=	1,226 cf, Depth> 6.48"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Descriptio	n	
	2,272	98.0	Paved pa	rking, HSG	В
	2,272	98.0	100.00%	Impervious	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 46S:

0.34 cfs @ 12.08 hrs, Volume= 1,217 cf, Depth> 6.48" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

A	rea (sf)	CN	Descriptio	on	
	2,255	98.0	Paved pa	rking, HSG	B
	2,255	98.0	100.00%	Impervious	s Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 47S:

1.36 cfs @ 12.09 hrs, Volume= 4,276 cf, Depth> 4.69" Runoff =

Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022 ns LLC Page 162

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Descriptio	n	
	6,315	98.0	Paved pa	rking, HSG	G B
	4,634	61.0	>75% Ġra	ass cover, (Good, HSG B
	10,949	82.3	Weighted	Average	
	4,634	61.0	42.32% P	ervious Are	rea
	6,315	98.0	57.68% Ir	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	1
6.0					Direct Entry,

Summary for Subcatchment 50S:

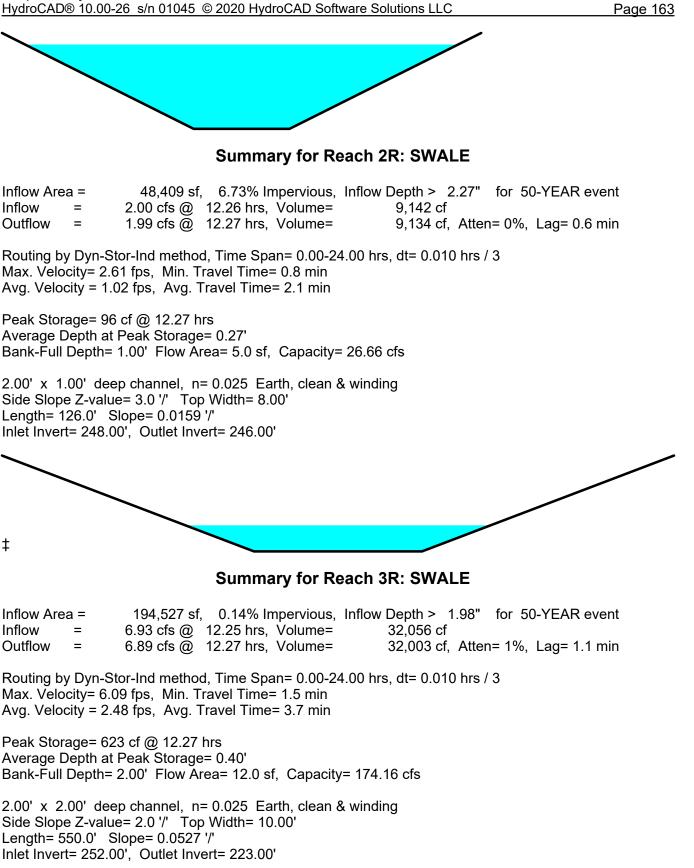
Runoff = 0.77 cfs @ 12.09 hrs, Volume= 2,473 cf, Depth> 2.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs Type III 24-hr 50-YEAR Rainfall=6.72"

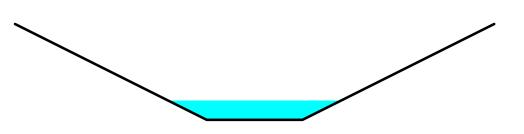
A	rea (sf)	CN	Descriptio	n	
	9,796	61.0	>75% Gra	ass cover, (Good, HSG B
	2,692	55.0	Woods, G	Good, HSG	В
	12,488	59.7	Weighted	Average	
	12,488	59.7	100.00%	Pervious A	rea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Reach 1R: SWALE

Inflow Are	a =	603,234 sf, 33.97% Impervious, Inflow Depth > 2.20" for 50-YEAR event
Inflow	=	18.92 cfs @ 12.15 hrs, Volume= 110,525 cf
Outflow	=	18.32 cfs @ 12.19 hrs, Volume= 110,342 cf, Atten= 3%, Lag= 2.1 min

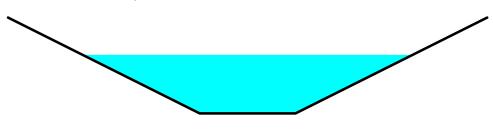

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Max. Velocity= 1.89 fps, Min. Travel Time= 2.3 min Avg. Velocity = 0.71 fps, Avg. Travel Time= 6.0 min

Peak Storage= 2,476 cf @ 12.19 hrs Average Depth at Peak Storage= 1.76' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 24.34 cfs


2.00' x 2.00' deep channel, n= 0.069 Riprap, 6-inch Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 255.0' Slope= 0.0078 '/' Inlet Invert= 210.00', Outlet Invert= 208.00'

Prepared by KNA

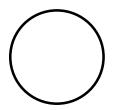
Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022


Summary for Reach 4R: SWALE

Inflow Area =	469,008 sf, 23.51% Impervious,	Inflow Depth > 1.76" for 50-YEAR event
Inflow =	6.68 cfs @ 12.45 hrs, Volume=	68,819 cf
Outflow =	6.66 cfs @ 12.47 hrs, Volume=	68,688 cf, Atten= 0%, Lag= 1.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Max. Velocity= 1.23 fps, Min. Travel Time= 2.4 min Avg. Velocity = 0.55 fps, Avg. Travel Time= 5.4 min

Peak Storage= 960 cf @ 12.47 hrs Average Depth at Peak Storage= 1.22' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 19.38 cfs


2.00' x 2.00' deep channel, n= 0.069 Riprap, 6-inch Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 177.0' Slope= 0.0050 '/' Inlet Invert= 212.08', Outlet Invert= 211.20'

Summary for Reach 5R: (new Reach)

Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 27.74 cfs

24.0" Round Pipe n= 0.013 Length= 37.9' Slope= 0.0150 '/' Inlet Invert= 218.57', Outlet Invert= 218.00'

2009212-POST DEVELOPMENT REV3Type IPrepared by KNAHydroCAD® 10.00-26s/n 01045© 2020 HydroCAD Software Solutions LLC

Summary for Reach 33R: SWALE

 Inflow Area =
 243,556 sf,
 7.72% Impervious,
 Inflow Depth >
 1.01"
 for
 50-YEAR event

 Inflow =
 0.68 cfs @
 16.39 hrs,
 Volume=
 20,410 cf

 Outflow =
 0.68 cfs @
 16.42 hrs,
 Volume=
 20,380 cf,
 Atten= 0%,
 Lag= 1.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Max. Velocity= 2.46 fps, Min. Travel Time= 1.2 min Avg. Velocity = 1.95 fps, Avg. Travel Time= 1.6 min

Peak Storage= 50 cf @ 16.42 hrs Average Depth at Peak Storage= 0.12' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 31.32 cfs

2.00' x 1.00' deep channel, n= 0.025 Earth, clean & winding Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 182.0' Slope= 0.0330 '/' Inlet Invert= 220.00', Outlet Invert= 214.00'

Summary for Pond 1P: HW#1

Inflow Area =	469,008 sf, 23.51% Impervious,	Inflow Depth > 1.76" for 50-YEAR event
Inflow =	6.66 cfs @ 12.47 hrs, Volume=	68,688 cf
Outflow =	6.66 cfs @ 12.47 hrs, Volume=	68,688 cf, Atten= 0%, Lag= 0.0 min
Primary =	6.66 cfs @ 12.47 hrs, Volume=	68,688 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 215.98' @ 12.46 hrs Flood Elev= 213.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	210.73'	12.0" Round Culvert L= 42.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 210.73' / 210.31' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=6.66 cfs @ 12.47 hrs HW=215.98' TW=212.83' (Dynamic Tailwater) -1=Culvert (Outlet Controls 6.66 cfs @ 8.47 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 2P: CB#2

 Inflow Area =
 474,758 sf, 24.23% Impervious, Inflow Depth > 1.81" for 50-YEAR event

 Inflow =
 6.86 cfs @
 12.46 hrs, Volume=
 71,438 cf

 Outflow =
 6.86 cfs @
 12.46 hrs, Volume=
 71,438 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 6.86 cfs @
 12.46 hrs, Volume=
 71,438 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 212.98' @ 12.24 hrs Flood Elev= 213.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	210.21'	15.0" Round Culvert L= 42.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 210.21' / 210.00' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.86 cfs @ 12.46 hrs HW=212.85' TW=211.50' (Dynamic Tailwater) -1=Culvert (Inlet Controls 6.86 cfs @ 5.59 fps)

Summary for Pond 7P: CB#7

Inflow Area	a =	17,437 sf, 96.15% Impervious, Inflow Depth > 6.31" for 50-YEAR event	Ĺ
Inflow	=	2.62 cfs @ 12.08 hrs, Volume= 9,166 cf	
Outflow	=	2.62 cfs @ 12.08 hrs, Volume= 9,166 cf, Atten= 0%, Lag= 0.0 min	1
Primary	=	2.62 cfs @ 12.08 hrs, Volume= 9,166 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.34' @ 12.10 hrs Flood Elev= 220.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	216.50'	12.0" Round Culvert
	-		L= 12.7' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 216.50' / 216.37' S= 0.0102 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.61 cfs @ 12.08 hrs HW=218.32' TW=217.84' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.61 cfs @ 3.33 fps)

Summary for Pond 8P: CB#8

Inflow Area	a =	26,789 sf,	79.55% Impervious,	Inflow Depth >	5.60"	for 50-YEAR event
Inflow	=	3.78 cfs @	12.08 hrs, Volume=	12,496 cf		
Outflow	=	3.78 cfs @	12.08 hrs, Volume=	12,496 cf,	, Atten	n= 0%, Lag= 0.0 min
Primary	=	3.78 cfs @	12.08 hrs, Volume=	12,496 cf		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 219.53' @ 12.09 hrs Flood Elev= 223.52'

Prepared by KNA

HydroCAD® 10.00-26	s/n 01045	© 2020 HydroCAD	Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	217.05'	15.0" Round Culvert
	-		L= 204.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.05' / 216.03' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.77 cfs @ 12.08 hrs HW=219.52' TW=218.60' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 3.77 cfs @ 3.07 fps)

Summary for Pond 9P: CB#9

Inflow Area =	14,159 sf, 83.41% Impervious,	Inflow Depth > 5.76" for 50-YEAR event
Inflow =	2.02 cfs @ 12.08 hrs, Volume=	6,801 cf
Outflow =	2.02 cfs @ 12.08 hrs, Volume=	6,801 cf, Atten= 0%, Lag= 0.0 min
Primary =	2.02 cfs @ 12.08 hrs, Volume=	6,801 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 219.66' @ 12.09 hrs Flood Elev= 221.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	217.60'	15.0" Round Culvert
	2		L= 90.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.60' / 217.15' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.85 cfs @ 12.08 hrs HW=219.64' TW=219.52' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.85 cfs @ 1.51 fps)

Summary for Pond 10P: CB#10

Inflow Area	a =	5,381 sf,100.00% Impervious, Inflow Depth > 6.48" for 50-YEAR event
Inflow	=	0.81 cfs @ 12.08 hrs, Volume= 2,904 cf
Outflow	=	0.81 cfs @ 12.08 hrs, Volume= 2,904 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.81 cfs @ 12.08 hrs, Volume= 2,904 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.07' @ 12.09 hrs Flood Elev= 226.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.59'	12.0" Round Culvert L= 27.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.59' / 217.70' S= 0.0700 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.80 cfs @ 12.08 hrs HW=220.06' TW=219.64' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.80 cfs @ 3.19 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 12P: CB#12

 Inflow Area =
 23,749 sf, 95.15% Impervious, Inflow Depth > 6.26" for 50-YEAR event

 Inflow =
 3.56 cfs @
 12.08 hrs, Volume=
 12,398 cf

 Outflow =
 3.56 cfs @
 12.08 hrs, Volume=
 12,398 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 3.56 cfs @
 12.08 hrs, Volume=
 12,398 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.74' @ 12.09 hrs Flood Elev= 220.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	216.50'	12.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 216.50' / 216.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.55 cfs @ 12.08 hrs HW=218.73' TW=217.84' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 3.55 cfs @ 4.52 fps)

Summary for Pond 14P: CB#14

Inflow Area	a =	21,562 sf, 88.93% Impervious, Inflow Depth > 6.00" for 50-YEAR ever	nt
Inflow	=	3.13 cfs @ 12.08 hrs, Volume= 10,785 cf	
Outflow	=	3.13 cfs @ 12.08 hrs, Volume= 10,785 cf, Atten= 0%, Lag= 0.0 mi	in
Primary	=	3.13 cfs @ 12.08 hrs, Volume= 10,785 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.33' @ 12.10 hrs Flood Elev= 223.38'

Device	Routing	Invert	Outlet Devices
#1	Primary	217.11'	18.0" Round Culvert
	,		L= 152.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.11' / 216.35' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=3.13 cfs @ 12.08 hrs HW=218.32' TW=217.84' (Dynamic Tailwater) -1=Culvert (Outlet Controls 3.13 cfs @ 2.80 fps)

Summary for Pond 15P: CB#15

Inflow Area	a =	13,436 sf	, 82.23% Impervious,	Inflow Depth > 5.3	72" for 50-YEAR event
Inflow	=	1.90 cfs @	12.08 hrs, Volume=	6,400 cf	
Outflow	=	1.90 cfs @	12.08 hrs, Volume=	6,400 cf, /	Atten= 0%, Lag= 0.0 min
Primary	=	1.90 cfs @	12.08 hrs, Volume=	6,400 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.61' @ 12.09 hrs Flood Elev= 221.20'

Prepared by KNA

HydroCAD® 10.00-26	s/n 01045 @	© 2020 HydroCAD	Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	217.60'	15.0" Round Culvert
			L= 78.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.60' / 217.21' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.90 cfs @ 12.08 hrs HW=218.61' TW=218.32' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 1.90 cfs @ 2.45 fps)

Summary for Pond 16P: CB#16

Inflow Area	=	5,381 sf,100.00% Impervious	, Inflow Depth > 6.48" for 50-YEAR event
Inflow =	=	0.81 cfs @ 12.08 hrs, Volume=	2,904 cf
Outflow =	=	0.81 cfs @ 12.08 hrs, Volume=	2,904 cf, Atten= 0%, Lag= 0.0 min
Primary =	=	0.81 cfs @ 12.08 hrs, Volume=	2,904 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.18' @ 12.08 hrs Flood Elev= 226.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.72'	12.0" Round Culvert
			L= 28.8' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.72' / 217.70' S= 0.0701 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Summary for Pond 17P: CB#17

Inflow Area	=	12,834 sf	,100.00% Impervious	Inflow Depth > 6	.48" for 50-YEAR event
Inflow =	=	1.94 cfs @	12.08 hrs, Volume=	6,926 cf	
Outflow =	=	1.94 cfs @	12.08 hrs, Volume=	6,926 cf,	Atten= 0%, Lag= 0.0 min
Primary =	=	1.94 cfs @	12.08 hrs, Volume=	6,926 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.13' @ 12.52 hrs Flood Elev= 236.12'

Device	Routing	Invert	Outlet Devices
#1	Primary	234.15'	15.0" Round Culvert L= 28.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 234.15' / 234.00' S= 0.0054 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.94 cfs @ 12.08 hrs HW=235.32' TW=235.18' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.94 cfs @ 2.11 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 18P: CB#18

 Inflow Area =
 19,404 sf, 68.86% Impervious, Inflow Depth > 5.15" for 50-YEAR event

 Inflow =
 2.60 cfs @
 12.09 hrs, Volume=
 8,321 cf

 Outflow =
 2.60 cfs @
 12.09 hrs, Volume=
 8,321 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 2.60 cfs @
 12.09 hrs, Volume=
 8,321 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.13' @ 12.52 hrs Flood Elev= 237.67'

Device	Routing	Invert	Outlet Devices
#1	Primary	232.98'	18.0" Round Culvert L= 96.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 232.98' / 232.50' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.60 cfs @ 12.09 hrs HW=235.30' TW=235.19' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.60 cfs @ 1.47 fps)

Summary for Pond 19P: CB#19

Inflow Area	a =	9,491 sf, 64.25% Impervious, Inflow Depth > 4.96" for 50-YEAR e	event
Inflow	=	1.24 cfs @ 12.09 hrs, Volume= 3,919 cf	
Outflow	=	1.24 cfs @ 12.09 hrs, Volume= 3,919 cf, Atten= 0%, Lag= 0.0) min
Primary	=	1.24 cfs @ 12.09 hrs, Volume= 3,919 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.13' @ 12.51 hrs Flood Elev= 237.67'

Device	Routing	Invert	Outlet Devices
#1	Primary	233.70'	15.0" Round Culvert
			L= 123.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 233.70' / 233.08' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.22 cfs @ 12.09 hrs HW=235.37' TW=235.30' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.22 cfs @ 0.99 fps)

Summary for Pond 21P: CB#21

Inflow Area	a =	10,579 sf,100.00% Impervious, Inflow Depth > 6.48" for 50-YEAR eve	nt
Inflow	=	1.60 cfs @ 12.08 hrs, Volume= 5,709 cf	
Outflow	=	1.60 cfs @12.08 hrs, Volume=5,709 cf, Atten= 0%, Lag= 0.0 m	nin
Primary	=	1.60 cfs @ 12.08 hrs, Volume= 5,709 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.13' @ 12.51 hrs Flood Elev= 239.70'

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	234.80'	15.0" Round Culvert
			L= 74.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 234.80' / 234.25' S= 0.0074 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.60 cfs @ 12.08 hrs HW=235.64' TW=235.32' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 1.60 cfs @ 2.56 fps)

Summary for Pond 22P: CB#22

Inflow Are	a =	6,630 sf,100.00% Impervious, Inflow Depth > 6.48" for 50-YEAF	R event
Inflow	=	1.00 cfs @ 12.08 hrs, Volume= 3,578 cf	
Outflow	=	1.00 cfs @ 12.08 hrs, Volume= 3,578 cf, Atten= 0%, Lag= 0).0 min
Primary	=	1.00 cfs @ 12.08 hrs, Volume= 3,578 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.13' @ 12.52 hrs Flood Elev= 239.70'

		-		
Device	Routing		Invert	Outlet De

Device	Routing	Invert	Outlet Devices
#1	Primary	235.20'	15.0" Round Culvert L= 60.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 235.20' / 234.90' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.96 cfs @ 12.08 hrs HW=235.87' TW=235.64' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.96 cfs @ 2.10 fps)

Summary for Pond 24P: CB#24

Inflow Area	=	26,271 sf, 92.21% Impervious, Inflow Depth > 6.14"	for 50-YEAR event
Inflow	=	3.89 cfs @ 12.08 hrs, Volume= 13,439 cf	
Outflow	=	3.89 cfs @ 12.08 hrs, Volume= 13,439 cf, Atten	= 0%, Lag= 0.0 min
Primary	=	3.89 cfs @ 12.08 hrs, Volume= 13,439 cf	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 242.06' @ 12.08 hrs Flood Elev= 250.54'

Device	Routing	Invert	Outlet Devices
#1	Primary	240.50'	12.0" Round Culvert L= 104.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 240.50' / 234.00' S= 0.0625 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.89 cfs @ 12.08 hrs HW=242.06' TW=235.18' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 3.89 cfs @ 4.95 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 25P: CB#25

 Inflow Area =
 19,795 sf, 95.32% Impervious, Inflow Depth > 6.27" for 50-YEAR event

 Inflow =
 2.96 cfs @
 12.08 hrs, Volume=
 10,348 cf

 Outflow =
 2.96 cfs @
 12.08 hrs, Volume=
 10,348 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 2.96 cfs @
 12.08 hrs, Volume=
 10,348 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 244.61' @ 12.08 hrs Flood Elev= 250.54'

Device	Routing	Invert	Outlet Devices
#1	Primary	243.50'	12.0" Round Culvert L= 128.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 243.50' / 240.60' S= 0.0227 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			n= 0.010 Conducted E, shootin interior, 1100 Alea- 0.79 Si

Primary OutFlow Max=2.95 cfs @ 12.08 hrs HW=244.61' TW=242.06' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.95 cfs @ 3.76 fps)

Summary for Pond 27P: CB#27

Inflow Area	a =	37,738 sf, 73.20% Impervious, Inflow Depth > 5.33" for 50-YEAR event
Inflow	=	5.14 cfs @ 12.08 hrs, Volume= 16,773 cf
Outflow	=	5.14 cfs @ 12.08 hrs, Volume= 16,773 cf, Atten= 0%, Lag= 0.0 min
Primary	=	5.14 cfs @ 12.08 hrs, Volume= 16,773 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 218.61' @ 12.09 hrs Flood Elev= 218.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	215.93'	15.0" Round Culvert
	-		L= 10.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 215.93' / 215.88' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=5.13 cfs @ 12.08 hrs HW=218.60' TW=217.85' (Dynamic Tailwater) -1=Culvert (Inlet Controls 5.13 cfs @ 4.18 fps)

Summary for Pond 29P: DMH#29

Inflow Area	=	184,783 sf,	1.76% Impervious,	Inflow Depth > 2	2.02" for 50-YEAR event
Inflow	=	4.14 cfs @	12.56 hrs, Volume=	31,162 cf	
Outflow	=	4.14 cfs @	12.56 hrs, Volume=	31,162 cf,	Atten= 0%, Lag= 0.0 min
Primary	=	4.14 cfs @	12.56 hrs, Volume=	31,162 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 239.01' @ 12.56 hrs Flood Elev= 242.00'

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	237.90'	15.0" Round Culvert
			L= 156.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 237.90' / 232.20' S= 0.0365 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=4.14 cfs @ 12.56 hrs HW=239.01' TW=233.92' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 4.14 cfs @ 3.59 fps)

Summary for Pond 30P: DMH#30

Inflow Area =	282,142 sf, 25.55% Impervious,	Inflow Depth > 2.12" for 50-YEAR event
Inflow =	6.52 cfs @ 12.53 hrs, Volume=	49,858 cf
Outflow =	6.52 cfs @ 12.53 hrs, Volume=	49,858 cf, Atten= 0%, Lag= 0.0 min
Primary =	6.52 cfs @ 12.53 hrs, Volume=	49,858 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 233.94' @ 12.53 hrs Flood Elev= 235.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	232.10'	15.0" Round Culvert
			L= 273.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 232.10' / 220.88' S= 0.0411 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.52 cfs @ 12.53 hrs HW=233.94' TW=222.62' (Dynamic Tailwater) -1=Culvert (Inlet Controls 6.52 cfs @ 5.32 fps)

Summary for Pond 32P: DMH#32

Inflow Area =	282,142 sf, 25.55% Impervious,	Inflow Depth > 2.12" for 50-YEAR event
Inflow =	6.52 cfs @ 12.53 hrs, Volume=	49,858 cf
Outflow =	6.52 cfs @ 12.53 hrs, Volume=	49,858 cf, Atten= 0%, Lag= 0.0 min
Primary =	6.52 cfs @ 12.53 hrs, Volume=	49,858 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 222.62' @ 12.53 hrs Flood Elev= 226.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	220.78'	15.0" Round Culvert L= 253.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 220.78' / 212.32' S= 0.0334 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.52 cfs @ 12.53 hrs HW=222.62' TW=214.08' (Dynamic Tailwater) -1=Culvert (Inlet Controls 6.52 cfs @ 5.32 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 33P: DMH#33

 Inflow Area =
 282,142 sf, 25.55% Impervious, Inflow Depth > 2.12" for 50-YEAR event

 Inflow =
 6.52 cfs @
 12.53 hrs, Volume=
 49,858 cf

 Outflow =
 6.52 cfs @
 12.53 hrs, Volume=
 49,858 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 6.52 cfs @
 12.53 hrs, Volume=
 49,858 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 214.08' @ 12.53 hrs Flood Elev= 218.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	212.22'	15.0" Round Culvert L= 17.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 212.22' / 212.00' S= 0.0129 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=6.52 cfs @ 12.53 hrs HW=214.08' TW=0.00' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 6.52 cfs @ 5.32 fps)

Summary for Pond 47P: CB#47

Inflow Area	a =	2,272 sf,100.00% Impervious,	Inflow Depth > 6.48" for 50-YEAR event
Inflow	=	0.34 cfs @ 12.08 hrs, Volume=	1,226 cf
Outflow	=	0.34 cfs @ 12.08 hrs, Volume=	1,226 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.34 cfs @ 12.08 hrs, Volume=	1,226 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 236.78' @ 12.09 hrs Flood Elev= 236.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	236.50'	15.0" Round Culvert
			L= 99.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 236.50' / 235.40' S= 0.0111 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.34 cfs @ 12.08 hrs HW=236.78' TW=235.87' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.34 cfs @ 2.54 fps)

Summary for Pond 101P: CB#101

Inflow Area	=	256,408 sf	, 11.33% Impervious,	Inflow Depth > 1	.23" for 50-YEAR event
Inflow	=	2.45 cfs @	12.09 hrs, Volume=	26,377 cf	
Outflow	=	2.45 cfs @	12.09 hrs, Volume=	26,377 cf,	Atten= 0%, Lag= 0.0 min
Primary	=	2.45 cfs @	12.09 hrs, Volume=	26,377 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 213.47' @ 12.13 hrs Flood Elev= 215.80'

Prepared by KNA

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	212.20'	12.0" Round Culvert
			L= 23.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 212.20' / 212.08' S= 0.0052 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.45 cfs @ 12.09 hrs HW=213.37' TW=212.95' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 2.45 cfs @ 3.12 fps)

Summary for Pond 102P: HW#102

Inflow Area =	243,556 sf, 7.72% Impervious,	Inflow Depth > 1.00" for 50-YEAR event
Inflow =	0.68 cfs @ 16.42 hrs, Volume=	20,380 cf
Outflow =	0.68 cfs @ 16.42 hrs, Volume=	20,380 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.68 cfs @ 16.42 hrs, Volume=	20,380 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 213.67' @ 12.12 hrs Flood Elev= 215.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	213.12'	12.0" Round Culvert
	,		L= 41.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 213.12' / 212.30' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.68 cfs @ 16.42 hrs HW=213.54' TW=212.79' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.68 cfs @ 2.20 fps)

Summary for Pond 108P: CB#108

Inflow Area =	15,217 sf, 47.87% Impervious,	Inflow Depth > 4.29" for 50-YEAR event
Inflow =	1.75 cfs @ 12.09 hrs, Volume=	5,445 cf
Outflow =	1.75 cfs @ 12.09 hrs, Volume=	5,445 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.75 cfs @ 12.09 hrs, Volume=	5,445 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.25' @ 12.09 hrs Flood Elev= 225.98'

Device	Routing	Invert	Outlet Devices
#1	Primary	221.37'	15.0" Round Culvert L= 30.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 221.37' / 220.00' S= 0.0449 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.75 cfs @ 12.09 hrs HW=223.25' TW=223.16' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.75 cfs @ 1.43 fps)

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 112P: CB#112

 Inflow Area =
 7,976 sf, 90.47% Impervious, Inflow Depth > 6.06" for 50-YEAR event

 Inflow =
 1.18 cfs @ 12.08 hrs, Volume=
 4,028 cf

 Outflow =
 1.18 cfs @ 12.08 hrs, Volume=
 4,028 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.18 cfs @ 12.08 hrs, Volume=
 4,028 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 221.55' @ 12.48 hrs Flood Elev= 222.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	217.20'	12.0" Round Culvert L= 20.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 217.20' / 217.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
			6 <i>i i i</i>

Primary OutFlow Max=1.18 cfs @ 12.08 hrs HW=220.56' TW=220.46' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.18 cfs @ 1.50 fps)

Summary for Pond 114P: DMH#114

Inflow Area	ı =	92,418 sf, 25	5.78% Impervious,	Inflow Depth >	3.16"	for 50-YEAR event
Inflow	=	6.05 cfs @ 12.	.13 hrs, Volume=	24,323 cf		
Outflow	=	6.05 cfs @ 12.	.13 hrs, Volume=	24,323 cf	, Atten	= 0%, Lag= 0.0 min
Primary	=	6.05 cfs @ 12.	.13 hrs, Volume=	24,323 cf		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 221.58' @ 12.46 hrs Flood Elev= 226.65'

Device	Routing	Invert	Outlet Devices
#1	Primary	219.19'	24.0" Round Culvert
			L= 79.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 219.19' / 218.00' S= 0.0151 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=6.05 cfs @ 12.13 hrs HW=221.01' TW=220.77' (Dynamic Tailwater) -1=Culvert (Outlet Controls 6.05 cfs @ 2.64 fps)

Summary for Pond 115P: DCB#115

Inflow Area	a =	92,418 sf, 25.78% Impervi	ous, Inflow Depth > 3.16	6" for 50-YEAR event
Inflow	=	6.05 cfs @ 12.13 hrs, Volur	ne= 24,323 cf	
Outflow	=	6.05 cfs @ 12.13 hrs, Volur	ne= 24,323 cf, At	ten= 0%, Lag= 0.0 min
Primary	=	6.05 cfs @ 12.13 hrs, Volur	ne= 24,323 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 224.07' @ 12.13 hrs Flood Elev= 227.54'

Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022 ns LLC Page 177

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	222.81'	18.0" Round Culvert L= 235.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 222.81' / 219.29' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=6.05 cfs @ 12.13 hrs HW=224.07' TW=221.01' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 6.05 cfs @ 3.82 fps)

Summary for Pond 116P: CB#116

Inflow Area =	60,922 sf, 4.24% Impervious,	Inflow Depth > 2.18" for 50-YEAR event
Inflow =	2.65 cfs @ 12.20 hrs, Volume=	11,044 cf
Outflow =	2.65 cfs @ 12.20 hrs, Volume=	11,044 cf, Atten= 0%, Lag= 0.0 min
Primary =	2.65 cfs @ 12.20 hrs, Volume=	11,044 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 228.76' @ 12.20 hrs Flood Elev= 233.82'

Device	Routing	Invert	Outlet Devices
#1	Primary	227.94'	15.0" Round Culvert
	ŗ		L= 125.7' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 227.94' / 222.91' S= 0.0400 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.65 cfs @ 12.20 hrs HW=228.76' TW=223.96' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.65 cfs @ 3.09 fps)

Summary for Pond 119P: CB#119

Inflow Area =	89,050 sf, 56.36% Imperv	vious, Inflow Depth > 4.55" for 50-YEAR event
Inflow =	8.73 cfs @ 12.10 hrs, Volu	Ime= 33,786 cf
Outflow =	8.73 cfs @ 12.10 hrs, Volu	ime= 33,786 cf, Atten= 0%, Lag= 0.0 min
Primary =	8.73 cfs @12.10 hrs, Volu	ime= 33,786 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 221.59' @ 12.45 hrs Flood Elev= 226.18'

Device	Routing	Invert	Outlet Devices
#1	Primary	218.57'	24.0" Round Culvert L= 37.9' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 218.57' / 218.00' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=8.73 cfs @ 12.10 hrs HW=220.93' TW=220.59' (Dynamic Tailwater) -1=Culvert (Inlet Controls 8.73 cfs @ 2.78 fps)

Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022 ons LLC Page 178

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Summary for Pond 120P: DCB#120

 Inflow Area =
 66,796 sf, 42.29% Impervious, Inflow Depth > 3.93" for 50-YEAR event

 Inflow =
 5.53 cfs @ 12.12 hrs, Volume=
 21,891 cf

 Outflow =
 5.53 cfs @ 12.12 hrs, Volume=
 21,891 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 5.53 cfs @ 12.12 hrs, Volume=
 21,891 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.89' @ 12.12 hrs Flood Elev= 227.60'

#1 Primary 222.71' 18.0" Round Culvert L= 269.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 222 71' / 218 67' S= 0.0150 // Cc= 0.900	Device	Routing	Invert	Outlet Devices
n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf		U	222.71'	L= 269.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 222.71' / 218.67' S= 0.0150 '/' Cc= 0.900

Primary OutFlow Max=5.53 cfs @ 12.12 hrs HW=223.89' TW=221.03' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 5.53 cfs @ 3.70 fps)

Summary for Pond 121P: CB#121

Inflow Area	a =	36,429 sf, 14.50% Impervious, Inflow Depth > 2.70" for 50-YEAR event	
Inflow	=	1.98 cfs @ 12.21 hrs, Volume= 8,192 cf	
Outflow	=	1.98 cfs @ 12.21 hrs, Volume= 8,192 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	1.98 cfs @ 12.21 hrs, Volume= 8,192 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 226.75' @ 12.21 hrs Flood Elev= 230.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	226.06'	15.0" Round Culvert
	-		L= 54.2' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 226.06' / 222.81' S= 0.0600 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.98 cfs @ 12.21 hrs HW=226.75' TW=223.75' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.98 cfs @ 2.84 fps)

Summary for Pond B1: INFILTRATION POND 1

Inflow Area =	113,915 sf, 75.64% Impervious,	Inflow Depth > 5.47" for 50-YEAR event
Inflow =	15.32 cfs @ 12.08 hrs, Volume=	51,917 cf
Outflow =	12.04 cfs @ 12.15 hrs, Volume=	44,060 cf, Atten= 21%, Lag= 3.7 min
Discarded =	0.21 cfs @ 12.15 hrs, Volume=	9,140 cf
Primary =	11.83 cfs @ 12.15 hrs, Volume=	34,921 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3

Prepared by KNA

Peak Elev= 217.92' @ 12.15 hrs Surf.Area= 9,102 sf Storage= 16,409 cf Flood Elev= 218.00' Surf.Area= 9,382 sf Storage= 17,174 cf

Plug-Flow detention time= 135.2 min calculated for 44,042 cf (85% of inflow) Center-of-Mass det. time= 70.1 min (838.8 - 768.7)

Volume	Invert	Avail.Sto	rage Storage	e Description	
#1	214.75'	17,17	74 cf Custor	n Stage Data (Pi	rismatic)Listed below (Recalc)
Flavetia		uf Augo	In a Chara	Curre Chara	
Elevatio		rf.Area	Inc.Store	Cum.Store	
(fee	1	(sq-ft)	(cubic-feet)	(cubic-feet)	
214.7	'5	2,279	0	0	
216.0	00	4,499	4,236	4,236	
217.0	00	5,997	5,248	9,484	
218.0	00	9,382	7,690	17,174	
Device	Routing	Invert	Outlet Devic	es	
#1	Primary	214.00'	15.0" Roun	d Culvert	
	2		L= 26.0' CF	PP, square edge h	neadwall, Ke= 0.500
			Inlet / Outlet	Invert= 214.00' /	213.75' S= 0.0096 '/' Cc= 0.900
			n= 0.013, Fl	low Area= 1.23 sf	
#2	Discarded	214.75'	,		Surface area Phase-In= 0.01'
#3	Device 1	216.60'	5.0" W x 13.	2" H Vert. Orific	e/Grate C= 0.600
#4	Device 1	217.90'		" Horiz. Orifice/(
				eir flow at low hea	
#5	Primary	217.40'			road-Crested Rectangular Weir
110	i innery	217.10			0.80 1.00 1.20 1.40 1.60
			· · ·		70 2.69 2.68 2.69 2.67 2.64
			Cool. (Englis	2.40 Z.00 Z.	10 2.00 2.00 2.00 2.01 2.07

Discarded OutFlow Max=0.21 cfs @ 12.15 hrs HW=217.92' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=11.82 cfs @ 12.15 hrs HW=217.92' TW=211.71' (Dynamic Tailwater)

3=Orifice/Grate (Orifice Controls 1.89 cfs @ 4.12 fps)

4=Orifice/Grate (Weir Controls 0.12 cfs @ 0.43 fps)

-5=Broad-Crested Rectangular Weir (Weir Controls 9.82 cfs @ 1.90 fps)

Summary for Pond B2: POCKET POND 1

Inflow Are	a =	97,359 sf	70.69% Impervious,	Inflow Depth > 5.28"	for 50-YEAR event	
Inflow	=	12.55 cfs @	12.08 hrs, Volume=	42,873 cf		
Outflow	=	2.40 cfs @	12.53 hrs, Volume=	18,696 cf, Atter	n= 81%, Lag= 26.5 min	
Primary	=	2.40 cfs @	12.53 hrs, Volume=	18,696 cf		
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3						

Starting Elev= 232.50' Surf.Area= 4,585 sf Storage= 6,096 cf Peak Elev= 236.12' @ 12.53 hrs Surf.Area= 9,495 sf Storage= 31,401 cf (25,304 cf above start) Flood Elev= 237.00' Surf.Area= 10,865 sf Storage= 40,310 cf (34,214 cf above start)

Plug-Flow detention time= 421.1 min calculated for 12,594 cf (29% of inflow)

Center-of-Mass det. time= 145.1 min (912.6 - 767.5)

Prepared by KNA

Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022 ns LLC Page 180

HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Volume Invert Avail.Storage Storage Description #1 229.00' 40,310 cf **Custom Stage Data (Prismatic)**Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet) (cubic-feet) 229.00 550 0 0 1.050 230.00 800 800 232.00 2,480 3,530 4.330 232.50 4,585 1,766 6.096 234.00 6,510 8,321 14,418 236.00 9,300 15,810 30,228 237.00 10,865 10,083 40,310 **Outlet Devices** Device Routing Invert 15.0" Round Culvert #1 Primary 232.50' L= 24.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 232.50' / 232.20' S= 0.0125 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf #2 Device 1 232.50' **1.5" Vert. Orifice/Grate** C= 0.600 48.0" x 48.0" Horiz. Orifice/Grate C= 0.600 #3 Device 1 236.00'

Limited to weir flow at low heads

Primary OutFlow Max=2.39 cfs @ 12.53 hrs HW=236.12' TW=233.94' (Dynamic Tailwater)

-1=Culvert (Passes 2.39 cfs of 8.73 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.09 cfs @ 7.11 fps)

-3=Orifice/Grate (Weir Controls 2.31 cfs @ 1.16 fps)

Summary for Pond B3: DETENTION POND 1

Inflow Area =	184,783 sf, 1.76% Impervious,	Inflow Depth > 2.05" for 50-YEAR event
Inflow =	6.68 cfs @ 12.28 hrs, Volume=	31,549 cf
Outflow =	4.14 cfs @ 12.56 hrs, Volume=	31,162 cf, Atten= 38%, Lag= 17.0 min
Primary =	4.14 cfs @ 12.56 hrs, Volume=	31,162 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 245.70' @ 12.56 hrs Surf.Area= 4,176 sf Storage= 5,075 cf Flood Elev= 248.00' Surf.Area= 8,476 sf Storage= 19,484 cf

Plug-Flow detention time= 21.6 min calculated for 31,149 cf (99% of inflow) Center-of-Mass det. time= 14.9 min (888.9 - 874.0)

Volume	Invert /	Avail.Storage	Storage	Description	
#1	244.00'	19,484 cf	Custom	Stage Data (Pr	ismatic) Listed below (Recalc) x 2
Elevation (feet)	Surf.Ar (sq		.Store c-feet)	Cum.Store (cubic-feet)	
244.00	9	04	0	0	
246.00	2,3	800	3,204	3,204	
248.00	4,2	238	6,538	9,742	

 Type III 24-hr
 50-YEAR Rainfall=6.72"

 Printed
 9/8/2022

 ns LLC
 Page 181

Prepared by KNA			
HydroCAD® 10.00-26	s/n 01045	© 2020 HydroCAD	Software Solutions LL

Device	Routing	Invert	Outlet Devices
#1	Primary	244.00'	12.0" Round Culvert L= 103.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 244.00' / 238.00' S= 0.0583 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf

Primary OutFlow Max=4.14 cfs @ 12.56 hrs HW=245.70' TW=239.01' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 4.14 cfs @ 5.27 fps)

Summary for Pond B4: INFILTRATION POND 2

Inflow Area =	204,461 sf, 39.73% Impervious,	Inflow Depth > 3.83" for 50-YEAR event
Inflow =	16.76 cfs @ 12.11 hrs, Volume=	65,264 cf
Outflow =	6.05 cfs @ 12.48 hrs, Volume=	50,255 cf, Atten= 64%, Lag= 22.4 min
Discarded =	0.21 cfs @ 12.48 hrs, Volume=	9,507 cf
Primary =	5.84 cfs @ 12.48 hrs, Volume=	40,747 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 221.55'@ 12.48 hrs Surf.Area= 8,860 sf Storage= 26,191 cf Flood Elev= 222.00' Surf.Area= 9,536 sf Storage= 30,365 cf

Plug-Flow detention time= 151.6 min calculated for 50,255 cf (77% of inflow) Center-of-Mass det. time= 66.2 min (870.7 - 804.5)

Volume	Invert	Avail.Sto	rage Storage	e Description	
#1	217.00'	30,36	65 cf Custon	n Stage Data (P	Prismatic)Listed below (Recalc)
	-				
Elevatio		urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	<u>)</u>
217.0	00	2,693	0	0	
218.0	00	4,247	3,470	3,470	
220.0	00	6,556	10,803	14,273	
222.0	00	9,536	16,092	30,365	j
Device	Routing	Invert	Outlet Device	es	
#1	Primary	214.44'	12.0" Round	d Culvert	
			L= 22.0' CM	IP, square edge	e headwall, Ke= 0.500
					/ 214.00' S= 0.0200 '/' Cc= 0.900
			n= 0.013 Co	rrugated PE. sm	nooth interior, Flow Area= 0.79 sf
#2	Device 1	220.00'		Drifice X 2.00 C	
#3	Device 1	221.50'		'Horiz. Grate	
			Limited to weir flow at low heads		
#4	Discarded	217.00'			r Surface area Phase-In= 0.01'

Type III 24-hr 50-YEAR Rainfall=6.72" Printed 9/8/2022 ns LLC Page 182

Prepared by KNA HydroCAD® 10.00-26 s/n 01045 © 2020 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.21 cfs @ 12.48 hrs HW=221.55' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=5.84 cfs @ 12.48 hrs HW=221.55' TW=213.30' (Dynamic Tailwater)

1=Culvert (Passes 5.84 cfs of 9.72 cfs potential flow)

2=Orifice (Orifice Controls 5.58 cfs @ 5.12 fps)

-3=Grate (Weir Controls 0.26 cfs @ 0.70 fps)

Summary for Pond B5: BIORETENTION POND 1

Inflow Area =	30,725 sf, 60.33% Impervious,	Inflow Depth > 4.84" for 50-YEAR event
Inflow =	3.73 cfs @ 12.09 hrs, Volume=	12,402 cf
Outflow =	3.69 cfs @ 12.10 hrs, Volume=	12,403 cf, Atten= 1%, Lag= 0.7 min
Primary =	3.69 cfs @ 12.10 hrs, Volume=	12,403 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 223.16'@ 12.10 hrs Surf.Area= 1,349 sf Storage= 1,870 cf Flood Elev= 224.00' Surf.Area= 1,738 sf Storage= 3,165 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 37.7 min (818.9 - 781.1)

Volume	Inve	ert Avail.Sto	rage Storage	e Description	
#1	221.0	0' 3,10	65 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee 221.0 222.0 224.0	20 20 20	Surf.Area (sq-ft) 424 810 1,738	Inc.Store (cubic-feet) 0 617 2,548	Cum.Store (cubic-feet) 0 617 3,165	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	217.55'	12.0" Roun	d Culvert	
#2	Device 1	223.00'	Inlet / Outlet n= 0.013 Co	Invert= 217.55' /	neadwall, Ke= 0.500 217.00' S= 0.0250 '/' Cc= 0.900 ooth interior, Flow Area= 0.79 sf C= 0.600
#3	Device 1	221.00'		eir flow at low hea Exfiltration ove	

Primary OutFlow Max=3.68 cfs @ 12.10 hrs HW=223.16' TW=217.75' (Dynamic Tailwater)

_1=Culvert (Passes 3.68 cfs of 8.55 cfs potential flow)

2=Grate (Weir Controls 3.37 cfs @ 1.31 fps)

3=Exfiltration (Exfiltration Controls 0.31 cfs)

2009212-POST DEVELOPMENT REV3Type IPrepared by KNAHydroCAD® 10.00-26s/n 01045© 2020 HydroCAD Software Solutions LLC

Summary for Pond B6: DETENTION POND 2

Inflow Area =	:	232,259 sf,	8.10% Impervious,	Inflow Depth > 2.37" for 50-YEAR ever	nt
Inflow =		8.95 cfs @	12.24 hrs, Volume=	45,865 cf	
Outflow =		0.65 cfs @	16.52 hrs, Volume=	18,283 cf, Atten= 93%, Lag= 256.9) min
Primary =		0.65 cfs @	16.52 hrs, Volume=	18,283 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs / 3 Peak Elev= 220.63'@ 16.52 hrs Surf.Area= 10,400 sf Storage= 30,893 cf Flood Elev= 222.00' Surf.Area= 11,980 sf Storage= 46,271 cf

Plug-Flow detention time= 390.1 min calculated for 18,283 cf (40% of inflow) Center-of-Mass det. time= 243.1 min (1,103.5 - 860.4)

Volume	Inver	t Avail.Sto	rage Storage	e Description	
#1	217.00)' 46,27	71 cf Custom	n Stage Data (Prismatic)Listed below (Recalc)	x 2
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
217.0	00	3,390	0	0	
218.0	00	3,847	3,619	3,619	
220.0	00	4,840	8,687	12,306	
222.0	00	5,990	10,830	23,136	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	217.00'	12.0" Round	d Culvert	
	5		L= 20.0' CP	P, square edge headwall, Ke= 0.500	
			Inlet / Outlet	Invert= 217.00' / 216.50' S= 0.0250 '/' Cc= 0.9	900
			n= 0.013. Flo	ow Area= 0.79 sf	
#2	Device 1	217.00'	,	rifice C= 0.600	
#3	Device 1	220.00'		rifice C= 0.600	
#4	Device 1	221.50'	24.0" x 24.0"	"Horiz. Grate C= 0.600	
			Limited to we	eir flow at low heads	
Drimany		Max-0 65 cfc (@ 16.52 hrs. ∐	N/-220 63' TN/-220 12' (Dynamic Tailwater)	

Primary OutFlow Max=0.65 cfs @ 16.52 hrs HW=220.63' TW=220.12' (Dynamic Tailwater)

-1=Culvert (Passes 0.65 cfs of 2.68 cfs potential flow)

2=Orifice (Orifice Controls 0.07 cfs @ 3.41 fps)

-3=Orifice (Orifice Controls 0.58 cfs @ 2.95 fps)

-4=Grate (Controls 0.00 cfs)

Summary for Link A: CHASE BROOK

Inflow Are	a =	1,196,864 sf, 23.33% Impervious, Inflow Depth > 2.13" for 50-YEAR even	nt
Inflow	=	33.13 cfs @ 12.20 hrs, Volume= 212,035 cf	
Primary	=	33.13 cfs @ 12.20 hrs, Volume= 212,035 cf, Atten= 0%, Lag= 0.0 mir	n

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.010 hrs

18. RIP RAP APRON CALCULATIONS

RIP RAP OUTLET PROTECTION APRON CALCULATIONS

4/6/2021

The purpose of this spreadsheet is to calculate the dimensions of rip rap required to help prevent soil loss for the 25 year storm event.

Required input to the spreadsheet is

peak flow in CFS	diameter in feet of outlet or width of channel	tail water at end of apron	
σ	Ъ	Tw	

Depending on the tail water conditions either column 1 or column 2 is used for calculations Column One where Tw<1/2Do

La = 3*Q/Do^3/2+7Do	
Length of Apron La = (1.8Q/Do ^r 3/2)+7Do	Width of Apron at outfail

W1=3*Do	W2=3Do+0.4*La		
W1=3*Do	W2 = 3Do + La	If defined channel use channel width for W1 and W2	Rock Rip Rap

	$d50 = (0.02^{\circ}O^{\circ}4/3)/(Tw^{*}Do)$			Same								RIF	RIRAP GRADATION ENVELOPE	VDATION	I ENVEL	OPE			
											d100		d85		d50		d15	_	
Input to Chart	it				Calculated Output	itput	W2			USE	FROM	TO FR	FROM T	TO FR	FROM TO	O FROM	M TO	depth	USE depth
Description (Optional)	(Optional)	Q 25 (cfs)	Do (ft)	Tw (ft)	La	W1	no channel	d50, ft	d50 in	d50 in.	,E	.u	i	i I	in	Li	.E	.5	in.
HW#1	Headwall #1 outlet	4.79	1.25	0.83	19	4	11	0.2	1.87	10	15	20	13 1	18 1	10 15	3	Ω	25	25
HW#8	Headwall #8 outlet	2.96	1.25	4.39	15	4	10	0.0	0.19	10	15	20	13 1	18 1	10 1:	15 3	2 2	25	25
HW#10	Headwall #10 outlet	6.11	2.00	2.93	20	9	14	0.0	0.46	10	15	20	13 1	18 1	10 1	15 3	5	25	25
HW#15	Headwall #15 outlet	5.94	2.00	2.93	20	9	14	0.0	0.44	10	15	20	13 1	18 1	10 15	3	2	25	25
HW#20	Headwall #20 outlet	1.92	1.25	4.30	13	4	6	0.0	0.11	4	9	8	ŝ	-	4	-	2	9	10
HW#22	Headwall #22 outlet	2.13	1.25	4.30	13	4	6	0.0	0.12	10	15	20	13 1	18 1	10 15	с С	2	33	25
HW#24	Headwall #24 outlet	3.84	2.00	4.30	18	9	13	0.0	0.17	10	15	20	13 1	18 1	10 1	15 3	5	55	25
HW#27	Headwall #27 outlet	3.53	1.25	0.83	16	4	10	0.1	1.24	10	15	20	13 1	18 1	10 15	а 2	Ω	55	25
HW#30	Headwall #30 outlet	1.56	1.25	1.34	12	4	6	0.0	0.26	10	15	20	13 1	18 1	10 15	9 2	2	55	25
HW#32	HW#32 Headwall #32 outlet	6.37	2.00	1.34	21	9	14	0.1	1.06	4	9	8	2		4 6	1	7	10	10
HW#37	Headwall #37 outlet	6.35	2.00	1.34	21	9	14	0.1	1.05	10	15	50	13	18	10 15	3	Ω	25	25
HW#45	Headwall #45 outlet	1.55	1.00	0.42	10	8	13	0.1	1.03	10	15	20	13	18	10 15	с С	2	55	25
HW#46	Headwail #46 outlet	0.40	1.00	0.70	8	3	9	0.0	0.10	10	15	20	13 1	18 1	10	15 3	2	55	25
HW#47	Headwall #47 outlet	0.37	1.00	0.95	80	8	9	0.0	0.07	10	15	50	13 13	18	10 15	с г	0	25	25
HW#49	Headwall #49 outlet	1.40	1.25	1.34	12	4	80	0.0	0.22	4	9	æ	5		4	-	7	9	10
HW#51	HW#51 Headwall #51 outlet	1.99	1.00	0.89	13	3	8	0.1	0.67	10	15	20	13	18	10	15 3	S.	25	25

19. SITE SPECIFIC SOIL REPORT

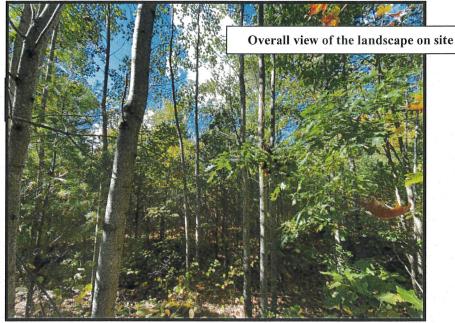
October 9, 2020

Mr Paul Chisholm Keach-Nordstrom Assoc., Inc. 10 Commerce Park, Suite 3 Bedford, NH 03110

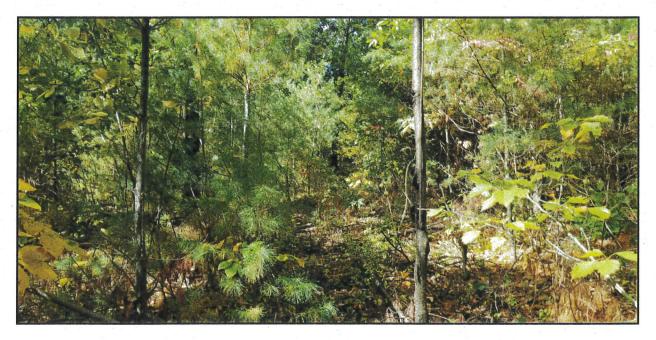
RE: Noury Investments, LLC Tax Map 105, Lot 17 Hudson, New Hampshire

SUBJECT: Site-Specific Soil Map Report

Dear Mr. Chisholm,


The purpose of this soil report and accompanying map is to document the soil characteristics for the project location referenced above.

This soil map was prepared by Stoney Ridge Environmental (SRE) by utilizing the Site-Specific Soil Mapping Standards for New Hampshire and Vermont (SSSMS), SSSNNE Special Publication No. 3, Version 5, December 2017. The soil map units were identified using the New Hampshire State-Wide Numerical Soils Legend, Issue #10, January 2011. The Site-Specific Standards apply the latest up to date knowledge of soils and provide the public with the most advanced soil resource information available today. The Site-Specific Standards are based on a universally recognized taxonomic system of soil classification and are supported by national soil mapping standards established by the USDA National Cooperative Soil Survey. They allow for the development of multi-purpose soil map products, which are carefully controlled and monitored through a state, regional, and national quality assessment program. The Site-Specific Standards have been developed by the Society of Soil Scientists of Northern New England in cooperation with the USDA Natural Resources Conservation Service in response to the need to provide regulatory agencies, local officials, and land use planners with consistent high quality large scale soil resource information.


The accompanying soil map was developed on a base map of $1^{"} = 60^{"}$, with contour intervals of 2' with the area to be mapped as proposed lots, 17-2, 17-3 and 17-4. The base existing conditions plan was supplied by Keach-Nordstrom Associates, Inc. (KNA). The soils fieldwork for the Site-Specific Soils Map was performed on September 22 & 30, 2020 and included conducting soil test pits and augering to classify and map soils. The final drafting of the soil map took place on October 1, 2020. All field work and soil mapping was completed by Cynthia M. Balcius CSS, CWS, CPESC, Justin Sherman and Diane DeVries of SRE.

Location Description

The site is located off Robinson Road in Hudson, New Hampshire. This parcel is a wooded lot, with no existing structures. The site is surrounded by both residential homes and commercial developments. There is one wetland system mapped on the southern edge of proposed lot 17-4. The soil survey did not extend into the wetland area of the lots. The overall site conditions features soils developed in glacial till materials and glacial till

materials over ledge. The site was previously cut and as a result dense shrubs and saplings dominated the landscape. While on site SRE observed stone foundations, stone walls and an old log landing.

Another view of the dense shrubs and saplings that dominate the site.

Site Soil Description

Canton sandy loam (42 A,B,C,D): Canton soils are well drained with fine sandy loam soils in the upper horizons over coarse sandy glacial till material. These soils do not feature a pan, and have a seasonal high water table greater than 40 inches from the soil surface. This soil type was mapped in the south/southwestern portion of the site along Robinson Road. The K_{sat} rates for this soil type range from 2.0 to 6.0 inches per hour in the upper horizon and 6.0 to 20 inches per hour in the lower substratum.

Charlton fine sandy loam (62

A,B,C,D): Charlton soils are well drained soils formed in loamy glacial till. On this site the Charlton series did find some ledge deeper than 40 inches in depth. The seasonal high water table for these Charlton soils is found greater than 40 inches from the soil surface. Charlton soil was mapped through the majority of the site making up the central portions of all three lots. The K_{sat} rates for this soil type range from 0.6 to 6 inches per hour in the upper horizon and 0.6 to 6 inches per hour in the lower horizons.

Charlton-Chatfield Complex 60-40 (178 B, C, D, E): The Charlton-Chatfield Complex mapped on site consists of 60% Charlton soils, and 40% Chatfield soils. Like Charlton soil, Chatfield is also a well drained, fine sandy loam formed in glacial till over shallow bedrock. This soil type was mapped in the highest elevations in the northern corner of the site. The K_{sat} rates for the Charlton soils making up 60% of the complex range from 0.6 to 6 inches per hour in upper horizons and 0.6 to 6 inches per hour in the lower horizons. K_{sat} rates for the Chatfield soils making up the remaining 40% of the complex also range from 0.6 to 6 inches per hour in the upper horizons and 0.6-6 inches per hour in lower horizons. There was no observed seasonal high water table in these soils.

Newfields fine sandy loam (444 A,B,C,D): Newfields soils are moderately well drained fine sandy loam soils, underlain by sandy glacial till. Depth to bedrock is greater than 60 inches, and the seasonal high water table on site was found between 20 to 35 inches from the soil surface. This soil type was mapped along the southern portion of the site adjacent to the delineated wetland. K_{sat} rates for this soil type range from 0.6 to 2 inches per hour in the upper horizon and 0.6 to 2 inches per hour in the lower horizon.

A Site-Specific Soil Map Unit legend for the site-specific soil map symbols used in the preparation of this map is attached to this report.

This completes the narrative report that accompanies the site-specific soil map prepared for the Noury Investments site located in Hudson, New Hampshire, Tax Map 105, Lot 17. If there are any questions regarding the soil map or the report, please feel free to contact me at 776-5825.

Sincerely, Stoney Ridge Epvinonmental LLC QYNTHIA M BALCIUS Cynthia M. Balcius ESC GS884 Senior Soil & Wetland Scientis

Justin Sherman Assistant Project Manager

20. INFILTRATION FEASIBILITY REPORT

INFILTRATION FEASIBILITY REPORT

S.L. Chasse Steel

Map 105; Lots 17-2 & 17-3 Robinson Road Hudson, New Hampshire

June 7, 2022

TABLE OF CONTENTS:

- I. Location of Infiltration Practices
- II. Existing Topography
- III. Test Pit Locations
- IV. Seasonal High Water Table Elevation Summaries
- V. Infiltration Rate Summary
- VI. Profile Descriptions

I. Location of Practice

Two (2) infiltration practices are proposed for this project. One infiltration pond is proposed on the western side of lot 17-3 along Robinson Road and will collect, treat and recharge storm water. The second infiltration pond is proposed is on the western side of lot 17-2 and will also collect, treat and recharge storm water.

II. Existing Topography

The existing topography within the area of both proposed infiltration ponds is moderately flat with grades ranging between 3% and 10%.

III. Test Pit Locations

Data from a test pits (TP#1, TP#2 on lot 17-3) and (Tp#1 & TP#3 on lot 17-2) performed within the area of the proposed infiltration basin was used to determine infiltration rates and depth to seasonal high-water table.

IV. Seasonal High Water Table Elevation Summaries

The results from the test pit performed on 17-3 is as follows:

Test Pit #1 The existing elevation of the ground Distance to SHWT Elevation of SHWT Lowest Elevation of Test Pit	= 215 (approx. original grade) = 60" (5' bottom of pit) = 210 = 210
In area of Practice (adjacent to TP#1) The existing elevation of the ground Distance to SHWT (same as TP#1) Elevation of SHWT Lowest Elevation of Test Pit	= 215 = 60" (5') = 210 = 210
Test Pit #2 The existing elevation of the ground Distance to SHWT Elevation of SHWT Lowest Elevation of Test Pit	= 215 (approx. original grade) = 64" (5.3' bottom of pit) = 209.7 = 209.7
In area of Practice (adjacent to TP#2) The existing elevation of the ground Distance to SHWT (same as TP#2) Elevation of SHWT Lowest Elevation of Test Pit	= 214 = 64" (5.3') = 208.7 = 208.7

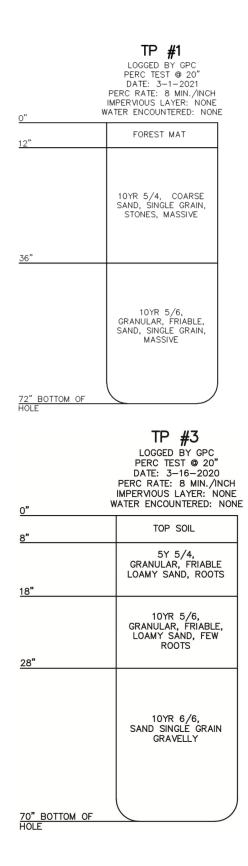
The results from the test pit performed on 17-2 is as follows:

Test Pit #1 The existing elevation of the ground Distance to SHWT Elevation of SHWT Lowest Elevation of Test Pit	= 216 (approx. original grade) = 72" (6' bottom of pit) = 210 = 210
In area of Practice (adjacent to TP#1) The existing elevation of the ground Distance to SHWT (same as TP#1) Elevation of SHWT Lowest Elevation of Test Pit	= 214 = 72" (6') = 208 = 208
Test Pit #3 The existing elevation of the ground Distance to SHWT Elevation of SHWT Lowest Elevation of Test Pit	= 218.5 (approx. original grade) = 70" (5.83' bottom of pit) = 212.66 = 212.66

V. Infiltration Rate Summary

Soils in the area of the infiltration practice on lot 17-3 were determined to be Canton, sandy loam. Canton soils are classified as having a Ksat value of 2.0 inches/hour by the <u>New Hampshire Stormwater Manual; Volume 2</u> dated December, 2008. By applying a 50% factor of safety, as required, a rate of 1.0 inches/hour was used in the analysis.

Soils in the area of the infiltration practice on lot 17-2 were determined to be Canton, sandy loam. Canton soils are classified as having a Ksat value of 2.0 inches/hour by the <u>New Hampshire Stormwater Manual; Volume 2</u> dated December, 2008. By applying a 50% factor of safety, as required, a rate of 1.0 inches/hour was used in the analysis.


VI. Profile Descriptions

Profile descriptions are provided as follows.

17-3 Test Pit Logs

TP #1 LOGGED BY GPC PERC TEST © 20" DATE: 10-22-2020 PERC RATE: 8 MIN./INCH IMPERVIOUS LAYER: NONE WATER ENCOUNTERED: NONE <u>0"</u> FOREST MAT <u>6"</u> 10YR 6/6, GRANULAR, FRIABLE FINE LOAMY SAND, ROOTS <u>16"</u> 10YR 5/4, GRANULAR, FRIABLE, SAND COARSE, FEW ROOTS <u>48"</u> E.S.H.W.T. 10YR 6/3, FIRM, SAND, W/ REDOX FEATURES 60" BOTTOM OF TP #2 LOGGED BY GPC PERC TEST ● 20" DATE: 10-22-2020 PERC RATE: 8 MIN./INCH IMPERVIOUS LAYER: NONE WATER ENCOUNTERED: NONE <u>0"</u> FOREST MAT <u>10"</u> 10YR 6/4, GRANULAR, FRIABLE, SAND COARSE, FEW ROOTS <u>24"</u> 10YR 7/3, SAND 64" BOTTOM OF

17-2 Test Pit

21. OPERATION AND MAINTENANCE PLAN WITH CHECKLISTS

STORMWATER

OPERATION & MAINTENANCE PLAN

S.L. Chasse Steel Robinson Road Hudson, New Hampshire

Map 105; Lots 17-2 & 17-3

June 7, 2022

TABLE OF CONTENTS:

I. General

Introduction General Maintenance Requirements

II. Supporting Documents

Annual Inspection & Maintenance Reporting Form Long-Term Inspection & Maintenance Plan Checklist Long-Term Inspection & Maintenance Log Anti-Icing Route Data Form

III. Control of Invasive Plants

Invasive Plant Guide

IV. Stormwater Practice Location Plan

11"x17" "Stormwater BMP Plan" 11"x17" "Roadway Plan"

I. General

Introduction

The project owner or their assigned heirs will maintain the stormwater treatment facilities after construction is completed. The Applicant of the project is Steel Properties, LLC located at 8 Christine Drive Hudson, NH.

The subject properties are referenced on Map 105; Lots 17-2 & 17-3 in Hudson, New Hampshire. Any transfer of responsibility for inspection and maintenance activities or transfer of ownership shall be documented to the New Hampshire Department of Environmental Services and Hudson in writing. The contract documents will require the contractor to designate a person responsible for maintenance of the sedimentation control features during construction. Longterm operation and maintenance for the stormwater management facilities are presented below.

Maintenance will be performed as described and required in the Alteration of Terrain Permit unless and until the system is formally accepted by a municipality or quasi-municipal district or is placed under the jurisdiction of a legally created association that will be responsible for the maintenance of the system.

Post Construction:

The following standards will be met after construction is complete:

Documentation:

A maintenance log will be kept summarizing inspections, maintenance, and any corrective actions taken. The log will include the date on which each inspection or maintenance task was performed, a description of the inspector findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. If a maintenance task requires the clean out of any sediments or debris, the location where the sediment and debris was disposed after removal will be indicated. The log will be made accessible to department and/or Hudson staff and a copy provided upon request.

Maintenance Requirements

Detention Basins:

• The bottoms, interior and exterior side slopes, and crest of earthen detention basins should be mowed, and the vegetation maintained in healthy condition, as appropriate to the function of the facility and type of vegetation.

- Vegetated embankments that serve as "berms" or "dams" that impound water should be mowed at least once annually to prevent the establishment of woody vegetation.
- Embankments should be inspected at least annually by a qualified professional for settlement, erosion, seepage, animal burrows, woody vegetation, and other conditions that could degrade the embankment and reduce its stability for impounding water. Immediate corrective action should be implemented if any such conditions are found.
- Inlet and outlet pipes/structures, energy dissipation structures/practices, and other structural appurtenances should be inspected at least annually by a qualified professional, and corrective action (e.g. maintenance, repairs or replacement) implemented as indicated by such inspection.
- Trash and debris should be removed at each inspection.
- Accumulated sediment should be removed when it significantly affects basin capacity.

Infiltration Ponds:

- Systems should be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24-hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Trash and debris should be removed at each inspection.
- Inspection of pre-treatment measures at least twice annually and removal of accumulated sediment as warranted by inspection, but no less than once annually.
- At least once annually, the system should be inspected for drawdown time. If the pond does not drain within 72-hours following a rainfall event, a qualified professional should assess the condition of the facility to determine measures required to restore filtration function or infiltration function (as applicable), including but not limited to the removal of accumulated sediments or reconstruction of the basin bottom.

Sediment Forebays:

- Forebays help reduce the sediment load to downstream BMP's, and will therefore require more frequent cleaning.
- Systems should be inspected at least annually.
- Conduct periodic mowing of embankments (generally two times per year) to control growth of woody vegetation.
- Trash and debris should be removed at each inspection.
- Accumulated sediment should be removed as warranted by such inspection.
- Install and maintain a staff gage or other measuring device, to indicate depth of sediment accumulation and level at which clean-out is required.

Treatment Swale:

- Systems should be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24-hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Conduct periodic mowing of embankments (generally two times per year) to control growth of woody vegetation.
- Trash and debris should be removed at each inspection.
- Accumulated sediment should be removed as warranted by such inspection.
- Install and maintain a staff gage or other measuring device, to indicate depth of sediment accumulation and level at which clean-out is required.

Bioretention Systems:

- Systems should be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24-hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Pre-treatment measures should be inspected at least twice annually, and cleaned of accumulated sediment as warranted by inspection, but no less than once annually.
- Trash and debris should be removed at each inspection.
- At least once annually, the system should be inspected for drawdown time. If the pond does not drain within 72-hours following a rainfall event, a qualified professional should assess the condition of the facility to determine measures required to restore filtration function or infiltration function (as applicable), including but not limited to the removal of accumulated sediments or reconstruction of the filter media.
- Vegetation should be inspected at least annually, and maintained in healthy condition, including pruning, removal and replacement of dead or diseased vegetation, and removal of invasive species.

Catch Basins and Closed Drainage Network:

- Catch basins may require frequent maintenance. This may require several cleanings of the sumps each year. At a minimum, it is recommended that catch basins be inspected at least twice annually.
- Sediment should be removed when it approaches half of the sump depth.
- If floating hydrocarbons are observed during an inspection, the material should be removed immediately by skimming, absorbent materials, or other methods and disposed in conformance with the applicable state and federal regulations.

Outlet Protection:

• Inspect the outlet protection annually for damage and deterioration. Repair damages immediately.

General:

- If any invasive species begin to grow in the stormwater management practices the species shall be disposed of in an appropriate manner that will not allow the pest to survive or spread. The disposal of such species shall be witnessed or approved by a state inspector. Methods for disposal may include, but not be limited to:
 - Encapsulating the plant(s) in plastic bags and disposing of the plant material in one of the following ways:
 - Trash pickup;
 - Discarding;
 - Open burning;
 - Incineration; or
 - Burial of infested nursery.

Annual Inspection and Maintenance Reporting Form for S.L. Chasse Steel Hudson, New Hampshire

Date: _____

To: Steel Properties, LLC

Re: Certification of Inspection and Maintenance; Submittal of Forms

Property Name: _____

Property Address: 199 & 201 Robinson Road, Hudson, NH

Contact Name: <u>Stephen Chasse</u>

Contact Phone #: (603) 886-3436

Contact Email Address: <u>schasse@slchassesteelfab.com</u>

I verify that the required stormwater facility inspections and required maintenance have been completed in accordance with the <u>Operation & Maintenance Plan</u> associated with the above referenced property.

The required Long-Term Inspection & Maintenance Plan Checklist is attached to this form.

Name of Party Responsible for Inspection & Maintenance

Property Owner

Authorized Signature

Signature

Long-Term Inspection & Maintenance Plan Checklist S.L. Chasse Steel – Hudson, NH

Current Owner Name:			C	ate:		
Business Address:	SS:		Ir	Inspector:		
Weather:			•			
Date of Last Rainfall:			A	mount:	Inches:	
Best Management Practice						
Detention Basins			F	Reason for	Inspection	
	Sprii	ng		Fall/Yearly	/ 🔲 After Major Storm 🛛	
Maintenance Required? Corrective Action Needed & Notes:	Yes		No			
Sideslopes & berms need repair? Clean inlet & outlet structures?	Yes Yes		No No			
Stormwater Ponds			F	Reason for Inspection		
	Sprii	ng		Fall/Yearly	/ 🔲 After Major Storm 🛛	
Maintenance Required? Corrective Action Needed & Notes:	Yes		No			
Sideslopes & berms need repair? Clean inlet & outlet structures?	Yes Yes		No No			
Infiltration Ponds	Reason for Inspection					
	Sprin	ng		Fall/Yearly	/ 🔲 After Major Storm 🛾	
Maintenance Required? Corrective Action Needed & Notes:	Yes		No			
Visual Inspection of vegetation? Maintenance Required? Corrective Action Needed & Notes:	Yes Yes		Nc Nc			
Visual inspection of drawdown time?	Yes		No			

Drawdown time less than 72 hours? (if no, call a qualified professional for insp	Yes ection)		N	o 🗌			
Sediment Forebays				Reasor	for Ins	pection	
	Sprin	g		Fall/Ye	arly 🗌	After Major	Storm
Maintenance Required? Corrective Action Needed & Notes:	Yes		N	o 🗆			
Bioretention Systems				Reasor	for Ins	pection	
	Sprin	g		Fall/Ye	arly 🗌	After Major	Storm
Maintenance Required? Corrective Action Needed & Notes:	Yes		N	o 🗆			
1	Yes Yes ection)		N N				
Treatment Swale				Reasor	n for Ins	pection	
	Sprin	g		Fall/Ye	arly□	After Major	Storm 🗌
Maintenance Required? Corrective Action Needed & Notes:	Yes		N	o 🗆			
Catch Basins & Closed Drainage				Reasor	for Ins	pection	
Network	Sprin	g		Fall/Ye	arly 🗋	After Major	Storm
Maintenance Required? Corrective Action Needed & Notes:	Yes		N	o 🗆			
Outlet Protection				Reasor	for Ins	pection	
	Sprin	g		Fall/Ye	arly 🗌	After Major	Storm
Maintenance Required? Corrective Action Needed & Notes:	Yes		N	o 🗆			
General				Reasor	for Ins	pection	

	Sprir	ng		Fall/Yearly	After Majo	or Storm 🗌
Maintenance Required? Corrective Action Needed & Notes:	Yes		No			

Long-Term Inspection & Maintenance Log S.L. Chasse Steel – Hudson, NH

Date	Inspection (Yes or No)	Maintenance (Yes or No)	List BMPs Inspected and/or Provide Comments	Inspected By:

Anti-icing Route Data Form S.L. Chasse Steel – Hudson, NH

Truck Station:				
Date:				
Temperature:	Pavement Temperature:	Relative Humidity:	Dew Point:	Sky:
Reason For Ap	plying:			
Route:				
Chemical:				
Application Tin	าย:			
Application Am	iount:			
Observation (fi	rst day):			
Observation (a	fter event):			
	efore next application):			
Name:				

III. Control of Invasive Plants

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some Exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

During maintenance activities, check for the presence of invasive plants and suitably remove according to the methods provided in the table below. The following table, based on the "Control of Invasive Plants" published by the New Hampshire Department of Agriculture, describes the most common invasive plants in this region and proper methods of disposal.

Name	Description	Invasive Qualities	Control Methods
		Incontraction Trace	
		Invasive Trees	
Norway Maple	 Large leaves Will exude milky white sap when leaves are broken Leaves turn color in Late October (fall foliage is yellow) 	 Suppresses growth of grass, garden plants, and forest understory Wind-borne seeds can germinate and grow in deep shade 	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out plants, including the root systems. Use a forked spade or weed wrench. Cut down the tree. Grind out the stump, or clip off re-growth. Girdle¹ Frill² Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray with glyphosate ^{3*} (mid-October to early November).
Tree of Heaven	 Long compound leaves with 11-25 lance shaped leaflets Smell like peanut butter or burnt coffee when crushed 	 Tough, can grow in poor conditions Produces large quantities of wind-borne seeds Grows rapidly Secretes a toxin that kills other plants Cannot be removed by mechanical means alone 	 Pull seedlings when soil is moist. Frill² (no more than 1" gap between cuts). Use Garlon 3a herbicide. Cut stem/ cut stump with Garlon 3a. Follow label directions for cut stump application. Clip off sucker sprouts or paint with Garlon 3a.* Foliar spray^{3*} (on regrowth) Paint bottom 12" of bark with Garlon 4 Ultra (February/March). Use maximum strength specified on label for all herbicide applications.

	Invasive Shrubs						
Autumn Olive	- Formerly recommended for erosion control and wildlife value	- Highly invasive, diminishes the overall quality of wildlife habitat	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs (up to 4" diameter trunks). Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Bury stump Do not mow 				

Invasive Shrubs (continued)					
Multiflora Rose	 Formerly recommended for erosion control, hedges, and wildlife habitat Covered in white flowers in June Very hard, curved thorns Fringed edge to leaf stalk 	 Huge shrub that chokes out all other vegetation Too dense for most birds to nest in Grows up trees like a vine in Shade 	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems (at least 6" from the crown and 6" down). Use a forked spade or weed wrench for trees or shrubs. Controlled burning⁴ (on extensive infestations) Cut stem/ cut stump with glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*} (mix Rodeo with extra sticker-spreader, or use Roundup Sure Shot Foam on small plants) Herbicide may be applied in winter when other plants are dormant. 		
Bush Honeysuckles	- Includes Belle, Amur, Morrow's, and Tatarian Honeysuckle	- Creates dense shade reducing plant diversity and eliminating nest sites in forest interior spaces	 Deadhead to prevent spread of seeds (on ornamentals). Cut off seeds or fruits before they ripen. Bag and burn, or send to a landfill. Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year (on shady sites only, brush cut in early spring and fall). Controlled burning⁴ (during growing season) Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate (late in the growing season). Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* 		

Invasive Shrubs (continued)						
Blunt-Leaved Privet	 Medium sized shrub Simple, oblong, dark green leaves 1-2" in length Fragrant white flowers (spring) Blackish-purple fruit (late summer) 	- Toxic to mammals - Loss of valuable habitat	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers Do not cut back or mow 			
Burning Bush, Winged Euonymus	- Wide, corky wings on the Branches - Brilliant red autumn leaves - Fruit	- High seed production	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers 			
Japanese Barberry	- Spiny deciduous shrub - Small leaves	- Very dense, displaces native plants - Can change chemistry of soil	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Cut down the tree. Grind out the stump, or clip off re-growth. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Trim off all flowers 			

Invasive Woody Vines						
Japanese Honeysuckle	- Gold and White flowers - Heavy scent and sweet nectar in June	 Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle Rampant grower Spirals around trees, often strangling them 	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*} (fall or early spring when native vegetation is dormant) Plan to re-treat repeatedly 			
Oriental Bittersweet	- Bright orange seed capsules in clusters all along the stem - Flowers	- Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle	 Pull seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs. Keep ornamental plants cut back, remove all fruits as soon as they open, and bag or burn fruits. Cut stem/ cut stump with Garlon 3a. Follow label directions for cut stump application. Clip off sucker sprouts or paint with Garlon 3a.* 			
Japanese Knotweed, Mexican Bamboo	 The stems have knotty joints, similar to bamboo Grows 6-10' tall Large, pointed oval or triangular leaves 	 Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle Can grow in shade 	 Cut stem/ cut stump with Glyphosate (at least 3 times each during growing season). Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*} Treat with Rodeo In gardens, heavy mulch or dense shade may kill it. 			

Invasive Herbaceous Plants				
Garlic Mustard	 White-flowered biennial Rough scalloped leaves (kidney, heart, or arrow shaped) Garlic smell, mustard taste when its leaves are crushed 	 Shade shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle Rampant grower Spirals around trees, often strangling them 	 Pull seedlings and small or shallow-rooted plants when soil is moist (before it flowers in spring). Dig out larger plants, including the crown and root systems. Use a forked spade or weed wrench for trees or shrubs. Tamp down soil afterwards. Deadhead to prevent spread of seeds. Cut off seeds or fruits before they ripen. Bag and burn or send to a landfill. Foliar spray^{3*} (may be appropriate in some settings) 	
Japanese Stilt Grass	- Lime green color - Line of silvery hairs down the middle of the 2-3" long blade	 Tolerates sun or dense shade Quickly invades areas left bare or disturbed by tilling or flooding Builds a large seed bank in the soil 	 Pull seedlings and small or shallow-rooted plants when soil is moist (pulled easily in early to mid- summer).Dig out larger plants, including root systems. Use a forked spade or weed wrench for trees or shrubs. Be sure to pull before it goes to seed. If seeds have formed, bag and burn or send to a landfill. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Mowing weekly or when it has just begun to flower may prevent it from setting seed. Foliar spray^{3*} (use glyphosate or herbicidal soap on large infestations. Use a corn-based pre-emergence herbicide on annual weeds (spring). This product is also an organic fertilizer, i.e., it can stimulate growth of existing plants, including weeds, so it is appropriate for lawns and gardens but may not be appropriate in woodlands. 	

Invasive Herbaceous Plants (continued)				
Mile-A-Minute Vine, Devil's Tail Tearthumb	- Triangular leaves - Barbed stems - Turquoise berries	- Rapid growth - Quickly covers and shades out herbaceous plants	 Pull seedlings and small or shallow-rooted plants when soil is moist (pulled easily in early to mid- summer).Dig out larger plants, including root systems. Use a forked spade or weed wrench for trees or shrubs. Be sure to pull before it goes to seed. If seeds have formed, bag and burn or send to a landfill. Mow or cutting at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year. Mowing weekly or when it has just begun to flower may prevent it from setting seed. Foliar spray^{3*} (use glyphosate or herbicidal soap on large infestations. Use a corn-based pre-emergence herbicide on annual weeds (spring). This product is also an organic fertilizer, i.e., it can stimulate growth of existing plants, including weeds, so it is appropriate for lawns and gardens but may not be appropriate in woodlands. 	
Spotted Knapweed	- Thistle-like flowers	- Dense, crowds out native species	 Do not pull unless the plant is young and the ground is very soft. The root will break and produce several new plants. Wear sturdy gloves Deadhead to prevent spread of seeds. Cut off seeds or fruits before they ripen. Bag and burn, or send to a landfill. In lawns, spot treat with broad-leaf weed killer. Good lawn care practices (test soil; use lime and fertilizer only when soil test shows a need; mow high and frequently; leave clippings on lawn) reduce weed infestations. Cut stem/ cut stump with Glyphosate. Follow label directions for cut stump application. Clip off sucker sprouts or paint with glyphosate.* Foliar spray^{3*} 	

<u>¹Girdle:</u> Cut through the bark and growing layer all around the trunk, about 6" above the ground. Girdling is most effective in spring (when the sap is rising) & middle-late summer (when the tree is sending food to the roots). Clip off sucker sprouts.

²<u>Frill:</u> Using a machete, hatchet, or similar device, hack scars (several holes in larger trees) downward into the growing layer, and squirt in glyphosate (or triclopyr if specified in table). Follow label directions for injection and frill applications. This is most effective from middle to late summer. Clip off any sucker sprouts or treat with glyphosate.

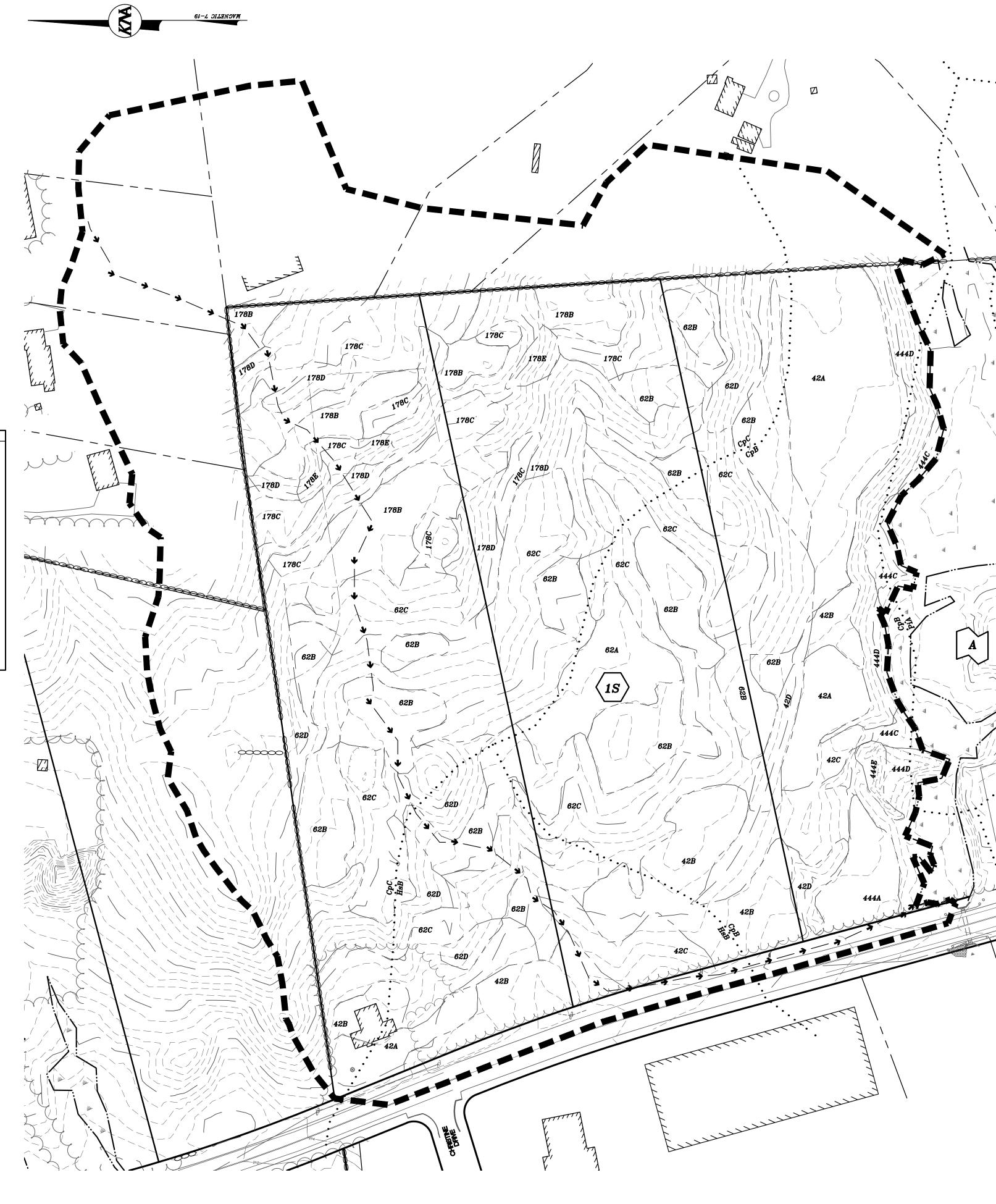
³Foliar Spray: Use a backpack or garden sprayer or mist blower, following label directions. Avoid overspray and/or dripping onto non-target plants, because glyphosate kills most plants except moss. If it rolls off waxy or grass-like foliage, use additional sticker-spreader. Deciduous trees, shrubs, and perennials move nutrients down to the roots in late summer. Glyphosate is particularly effective at this time and when plants have just gone out of flowering. Several invasive species retain their foliage after native plants have lost theirs, and resume growth earlier in spring than most natives. This allows you to treat them without harming the natives. However, the plant must be actively growing for the herbicide to work. Retreatments may be necessary the following year if suckering occurs or the plant hasn't been entirely killed.

⁴<u>Controlled Burning</u>: Burning during the spring (repeated over several years) will allow native vegetation to compete more effectively with the invasive species. This requires a permit. Spot treatment with glyphosate in late fall can be used to make this method more effective

<u>*Herbicides:</u> It is highly recommended that small populations try to be controlled using nonchemical methods where feasible. However, for large infestations, and for a few plants herbicide use is essential. Apply herbicides carefully to avoid non-target plants, glyphosate is the least environmentally damaging herbicide in most cases. Add food coloring for visibility, and a soapbased sticker such as Cide-Kick. Glyphosate is ineffective on some plants; for these, triclopyr or Garlon 3a may be indicated. When using herbicides read the entire label and observe all precautions listed, including proper disposal. If in doubt, call your local Cooperative Extension Service.

22. PLANS

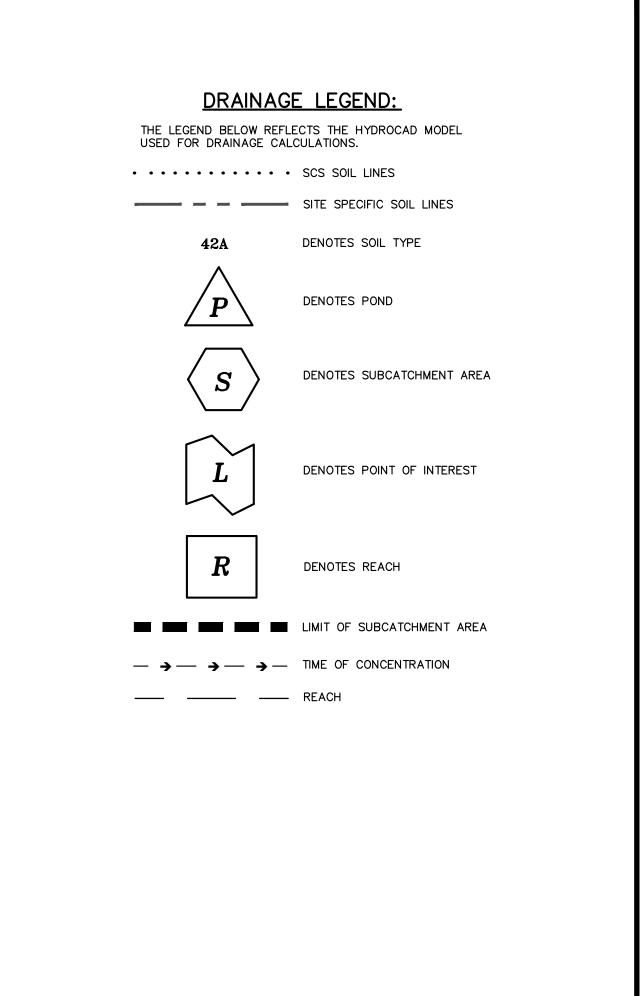
NON-RESIDENTIAL SITE PLAN SET (22" X 34") PRE-DEVELOPMENT DRAINAGE AREAS PLAN (22" X 34") POST-DEVELOPMENT DRAINAGE AREAS PLANS (22" X 34") PRE-DEVELOPMENT DRAINAGE AREAS PLAN (22" X 34" – COLOR) POST-DEVELOPMENT DRAINAGE AREAS PLANS (22" X 34" – COLOR)

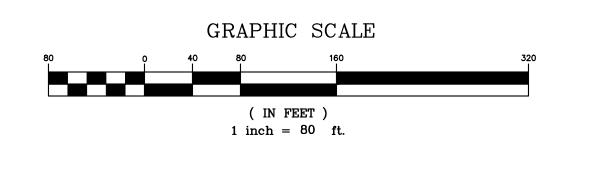

SITE SPECIFIC SOIL MAP UNIT KEY

SYMBOL	MAP UNIT	SLOPE CLASS	DRAINAGE CLASS	HSG
42A	CANTON SANDY LOAM	0-3%	WELL DRAINED	В
42B	CANTON SANDY LOAM	3-8%	WELL DRAINED	В
42C	CANTON SANDY LOAM	8-15%	WELL DRAINED	В
42D	CANTON SANDY LOAM	15-25%	WELL DRAINED	В
62A	CHARLTON FINE SANDY LOAM	0-3%	WELL DRAINED	В
62B	CHARLTON FINE SANDY LOAM	3-8%	WELL DRAINED	В
62C	CHARLTON FINE SANDY LOAM	8-15%	WELL DRAINED	В
62D	CHARLTON FINE SANDY LOAM	15-25%	WELL DRAINED	В
178B	CHARLTON-CHATFIELD COMPLEX (60-40)) 3–8%	WELL DRAINED	В
178C	CHARLTON-CHATFIELD COMPLEX (60-40)) 8–15%	WELL DRAINED	В
178D	CHARLTON-CHATFIELD COMPLEX (60-40)) 15-25%	WELL DRAINED	В
178E	CHARLTON-CHATFIELD COMPLEX (60-40)) 25–50%	WELL DRAINED	В
444A	NEWFIELDS FINE SANDY LOAM	0-3%	MODERATELY WELL DRAINE	D B
444B	NEWFIELDS FINE SANDY LOAM	3-8%	MODERATELY WELL DRAINE	D B
444C	NEWFIELDS FINE SANDY LOAM	8-15%	MODERATELY WELL DRAINE	D B
444D	NEWFIELDS FINE SANDY LOAM	15-25%	MODERATELY WELL DRAINE	D B
A SPECIAL PUR		SOIL SCIENTIST, A		HE

SCS SOIL MAP UNIT KEY

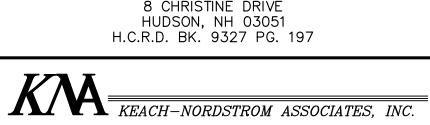
SYMBO	_ MAP UNIT	SLOPE CLASS
СрВ	CHATFIELD-HOLLIS-CANTON	3-8%
CpC	CHATFIELD-HOLLIS-CANTON	8–15%
HsB	HINCLKEY LOAMY SAND	3-8%
PiA	PIPESTONE LOAMY SAND	0-3%
	SOURCE: WEB SOIL SURVEY, WWW.WEBSOILSURVEY.SC.EGOV.USD	A.GOV

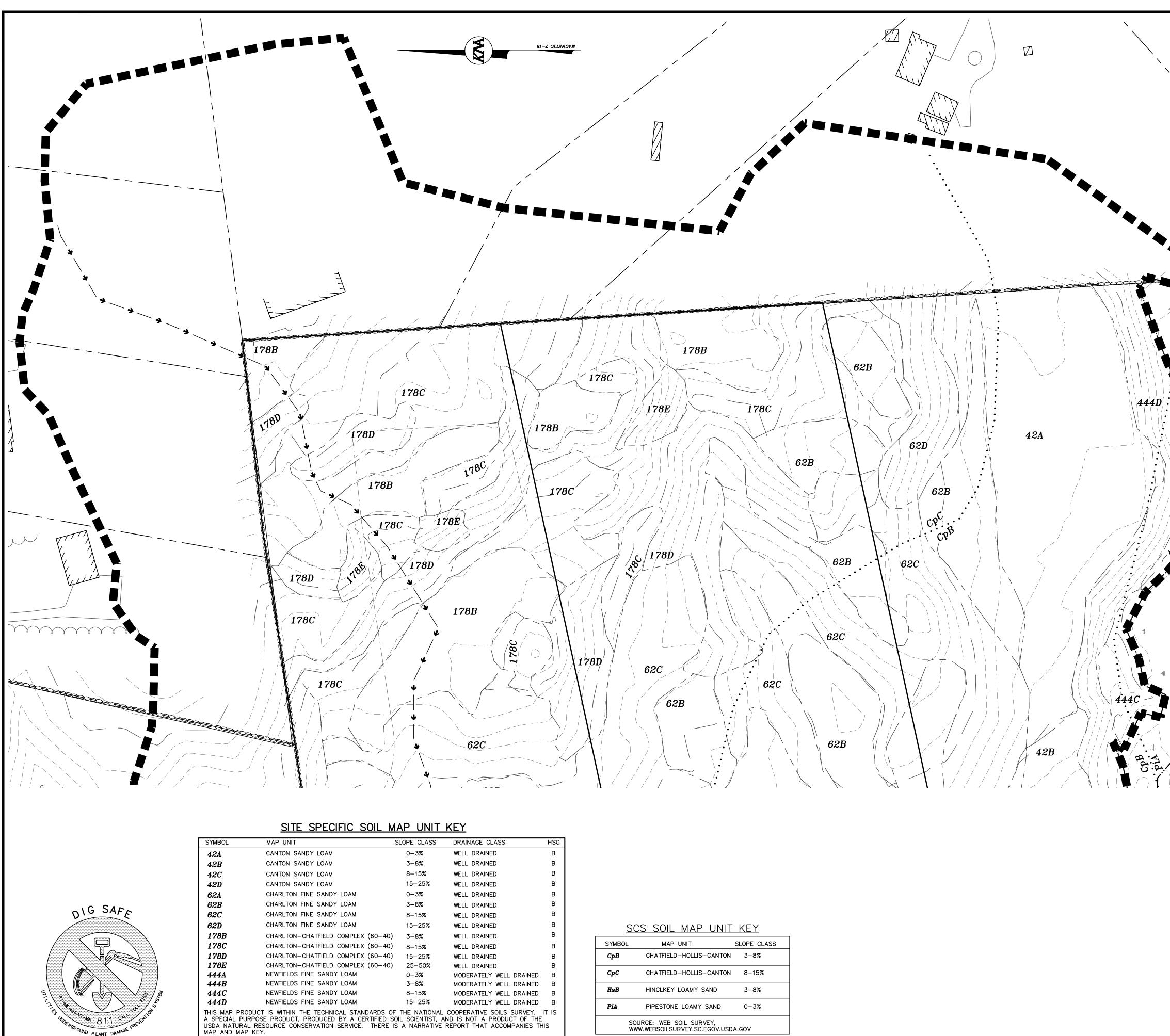




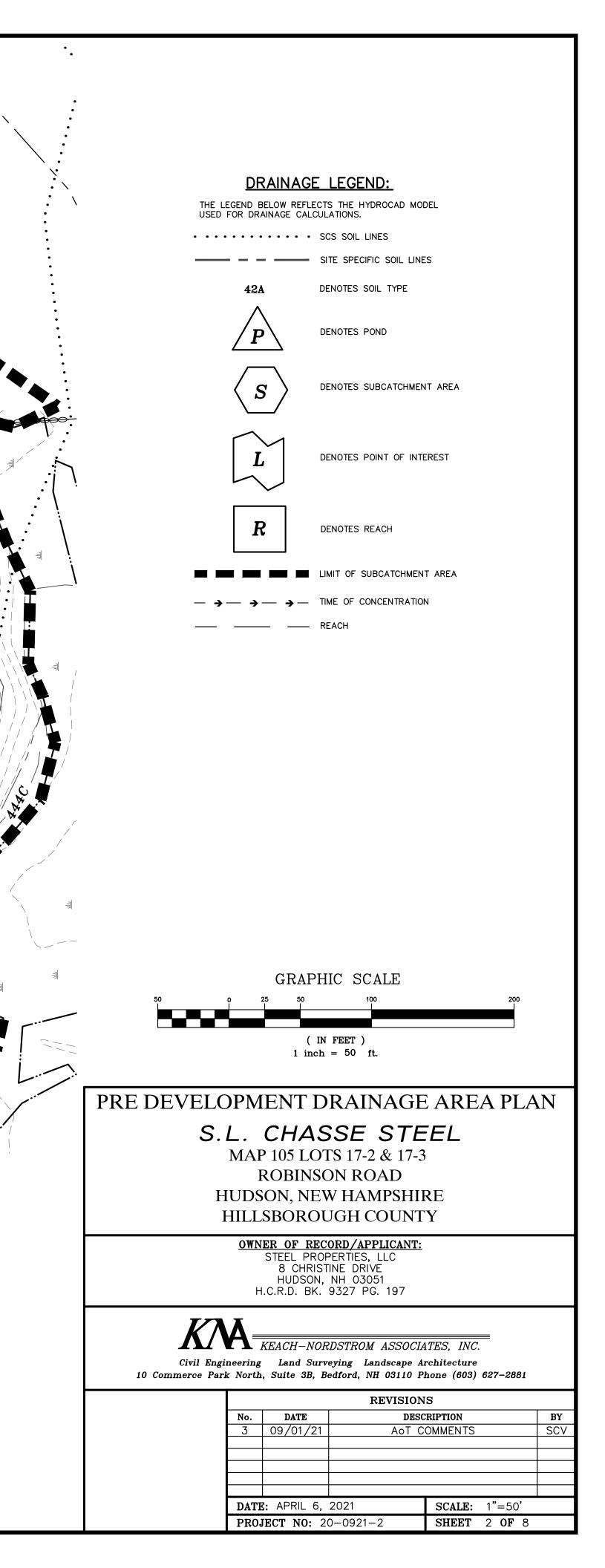
NOTES: 1. THE PURPOSE OF THIS PLAN IS TO DEPICT THE VARIOUS STORMWATER SUBCATCHMENT AREAS, CORRESPONDING TIMES OF CONCENTRATION, PONDS, AND REACHES ASSOCIATED WITH THE PARCELS 17-2 & 17-3.

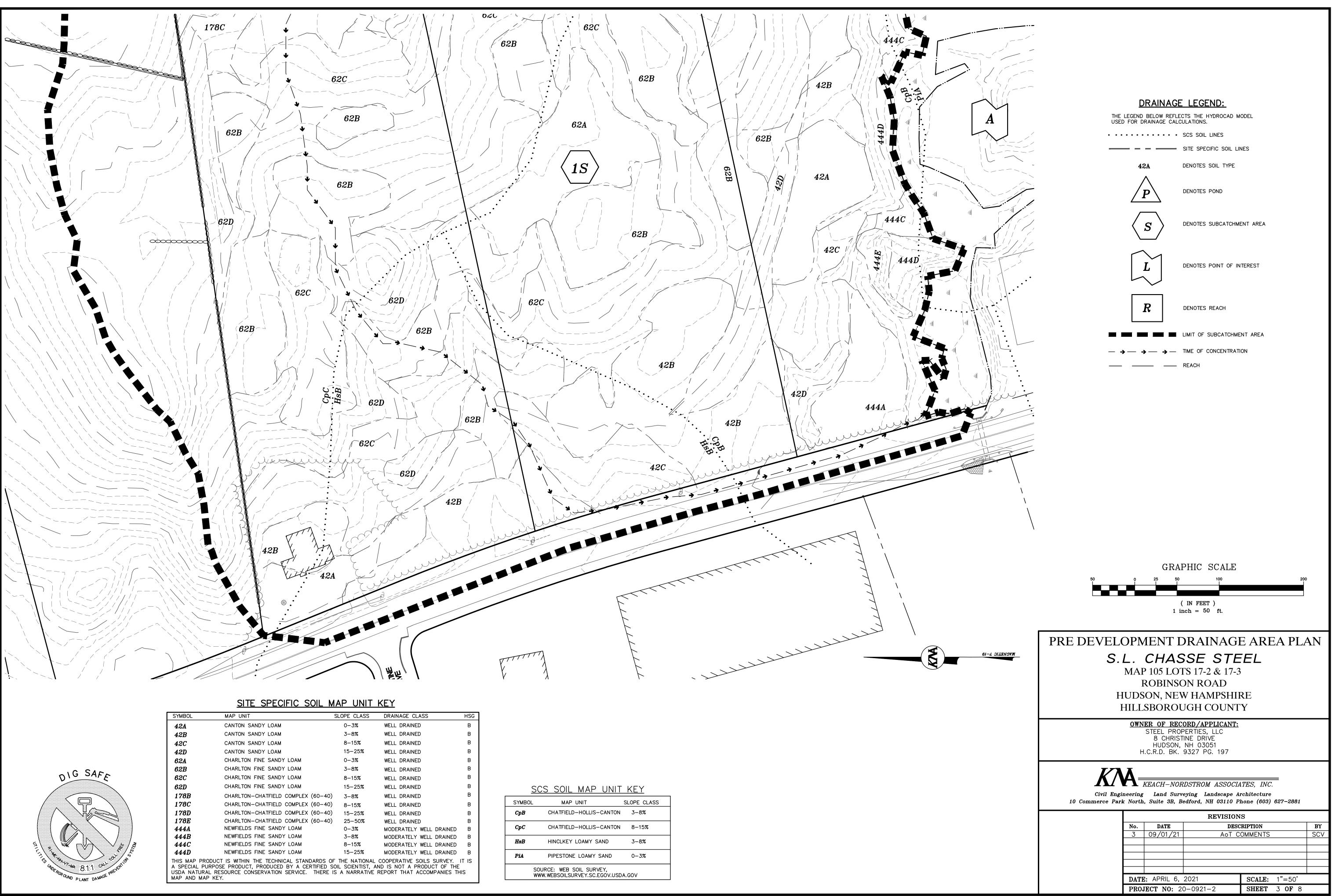
••••


A


PRE DEVELOPMENT DRAINAGE AREA PLAN
S.L. CHASSE STEEL
MAP 105 LOTS 17-2 & 17-3
ROBINSON ROAD
HUDSON, NEW HAMPSHIRE
HILLSBOROUGH COUNTY

OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197


Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881

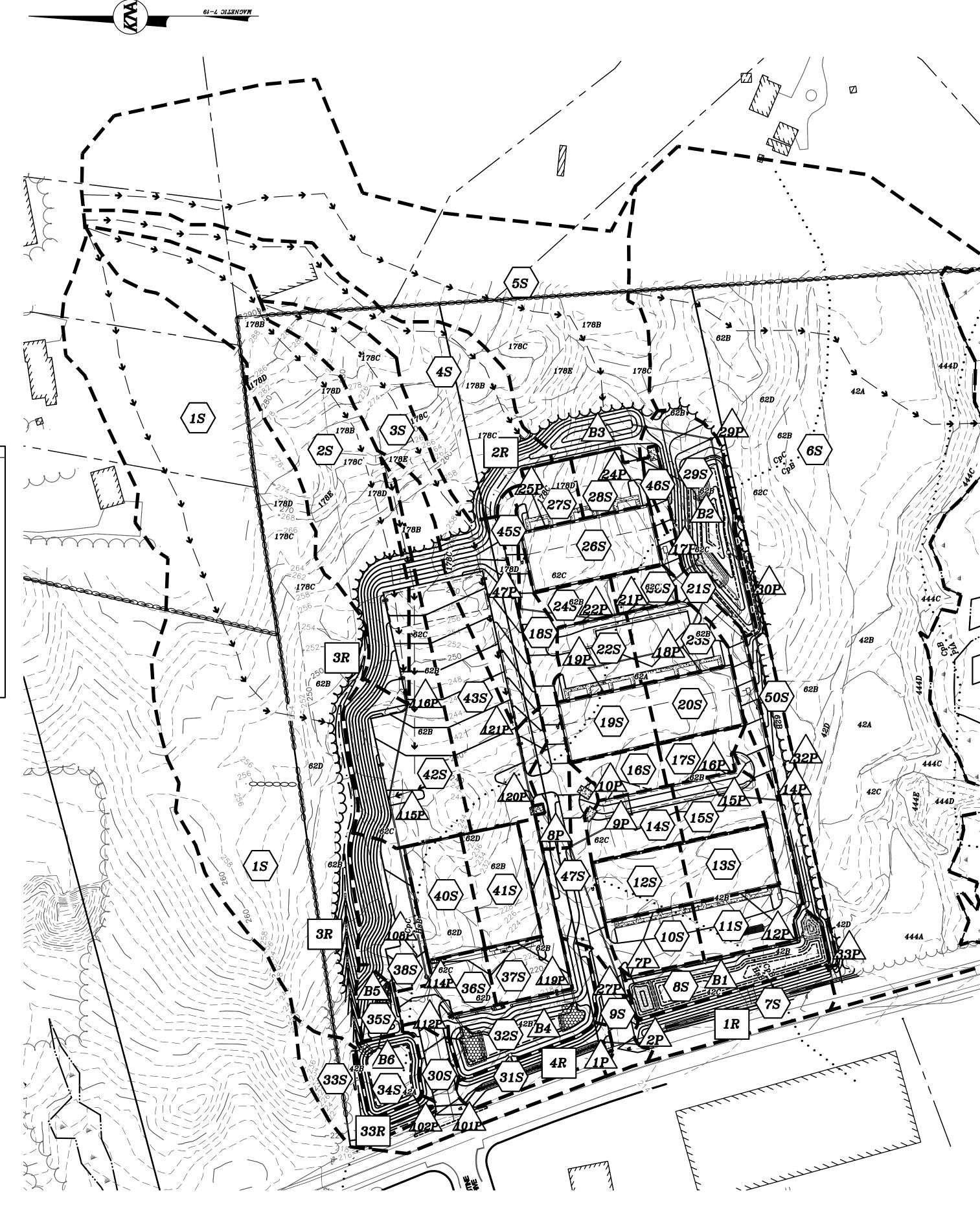

REVISIONS					
No.	DATE	DESC	CRIPTION	BY	
3	09/01/21	AoT C	AOT COMMENTS		
			-		
DATE	: APRIL 6,	2021	SCALE: 1"=80'		
PROJ	ECT NO: 20	0-0921-2	SHEET 1 OF 8		

		<u>SCS</u>	SOIL	MAP	UNIT
	SYMBO	L	MAP	UNIT	S
	СрВ	C	HATFIELD	-HOLLIS-	-CANTON
	CpC	C	HATFIELD	-HOLLIS-	-CANTON
	HsB	F	IINCLKEY	LOAMY S	AND
PIA PIPESTONE		LOAMY	SAND		
				SOIL SURV RVEY.SC.E	ÆY, EGOV.USDA.

PLANT

	В
	В
	В
	В
	в
	В
	В
	В
	В
	В
	В
	В
INED	В
/EY. IT F THE	IS
f the Es this	

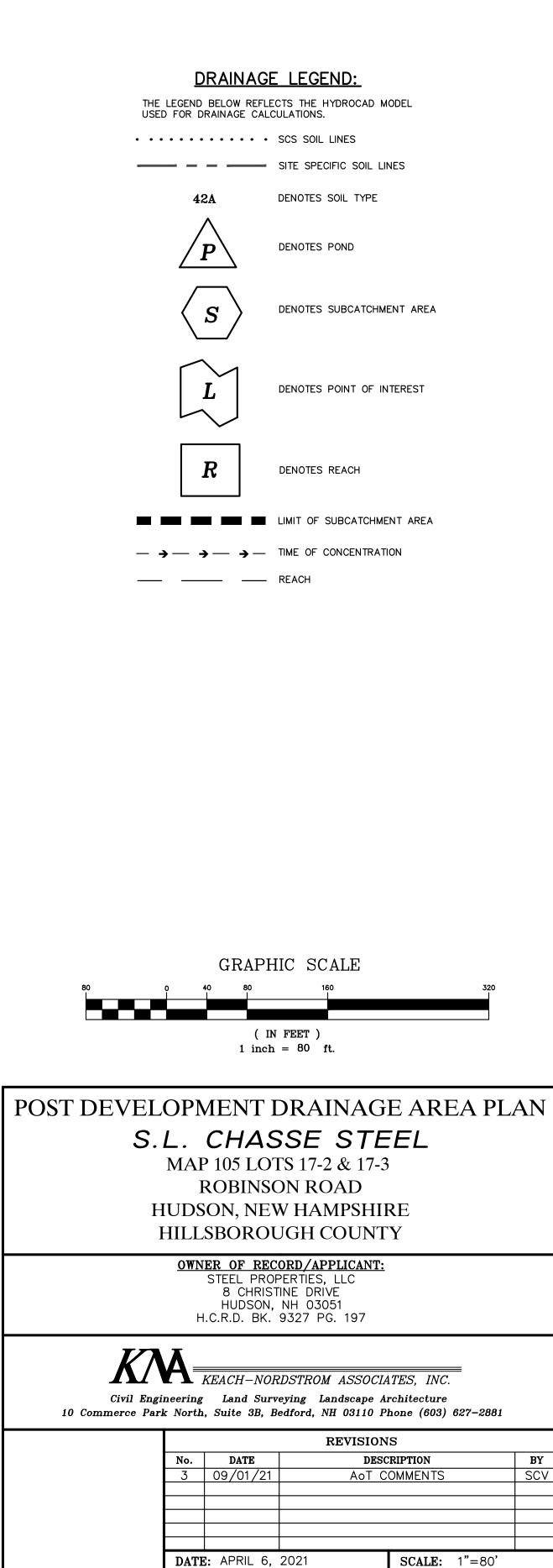
SYMBO	L MAP UNIT	SLOPE CLASS	
СрВ	CHATFIELD-HOLLIS-CANTON	3-8%	
СрС	CHATFIELD-HOLLIS-CANTON	8-15%	
HsB	HINCLKEY LOAMY SAND	3-8%	
PiA	PIPESTONE LOAMY SAND	0-3%	
	SOURCE: WEB SOIL SURVEY, WWW WEBSOIL SURVEY SC EGOV USD	A GOV	


SITE SPECIFIC SOIL MAP UNIT KEY

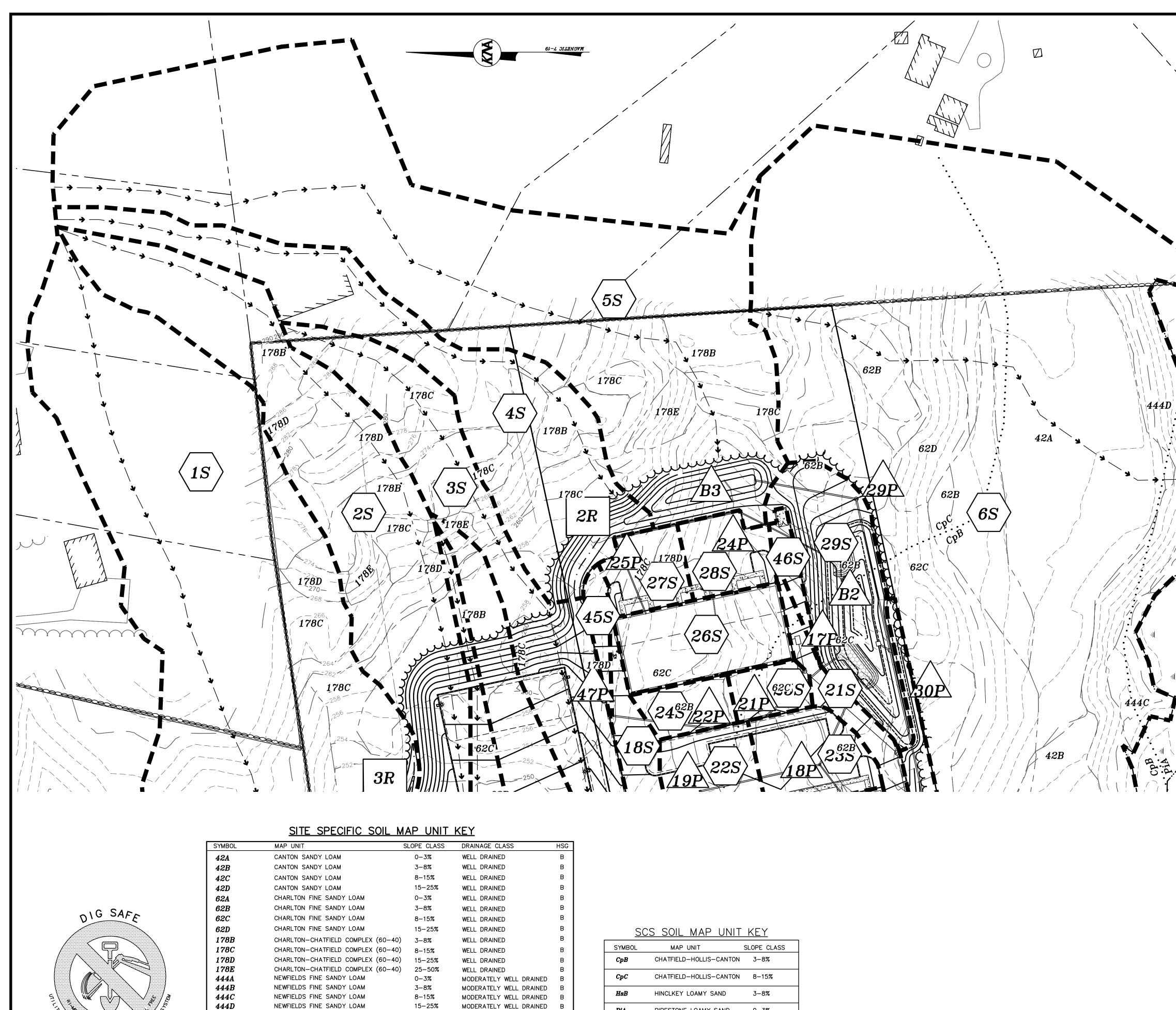
SYMBOL	MAP UNIT	SLOPE CLASS	DRAINAGE CLASS	HSG
42A	CANTON SANDY LOAM	0-3%	WELL DRAINED	В
42B	CANTON SANDY LOAM	3-8%	WELL DRAINED	В
42C	CANTON SANDY LOAM	8-15%	WELL DRAINED	В
42D	CANTON SANDY LOAM	15-25%	WELL DRAINED	В
62A	CHARLTON FINE SANDY LOAM	0-3%	WELL DRAINED	В
62B	CHARLTON FINE SANDY LOAM	3-8%	WELL DRAINED	В
62C	CHARLTON FINE SANDY LOAM	8-15%	WELL DRAINED	В
62D	CHARLTON FINE SANDY LOAM	15-25%	WELL DRAINED	В
178B	CHARLTON-CHATFIELD COMPLEX (60-40)) 3–8%	WELL DRAINED	В
178C	CHARLTON-CHATFIELD COMPLEX (60-40)) 8–15%	WELL DRAINED	В
178D	CHARLTON-CHATFIELD COMPLEX (60-40)) 15-25%	WELL DRAINED	В
178E	CHARLTON-CHATFIELD COMPLEX (60-40)) 25–50%	WELL DRAINED	В
444A	NEWFIELDS FINE SANDY LOAM	0-3%	MODERATELY WELL DRAINED	В
444B	NEWFIELDS FINE SANDY LOAM	3-8%	MODERATELY WELL DRAINED	В
444C	NEWFIELDS FINE SANDY LOAM	8-15%	MODERATELY WELL DRAINED	В
444D	NEWFIELDS FINE SANDY LOAM	15-25%	MODERATELY WELL DRAINED	В
A SPECIAL PUR		SOIL SCIENTIST, A		

202	SUI	MAD	UNIT		
363	JUL			NLI	

	SOS SOL MIA ONT	
SYMBO	L MAP UNIT	SLOPE CLASS
СрВ	CHATFIELD-HOLLIS-CANTON	3-8%
CpC	CHATFIELD-HOLLIS-CANTON	8–15%
HsB	HINCLKEY LOAMY SAND	3–8%
PiA	PIPESTONE LOAMY SAND	0-3%
	SOURCE: WEB SOIL SURVEY, WWW.WEBSOILSURVEY.SC.EGOV.USD	A.GOV



' • • .


NOTES: 1. THE PURPOSE OF THIS PLAN IS TO DEPICT THE VARIOUS STORMWATER SUBCATCHMENT AREAS, CORRESPONDING TIMES OF CONCENTRATION, PONDS, AND REACHES ASSOCIATED WITH THE THE PARCELS 17-2 & 17-3 AFTER DEVELOPMENT.

2. PROPOSED FEATURES DEPICTED ON THIS PLAN WERE TAKEN FROM "GRADING & DRAINAGE PLAN, S.L. CHASSE STEEL, PREPARED BY KEACH-NORDSTROM ASSOCIATES, INC. DATED APRIL 6, 2021".

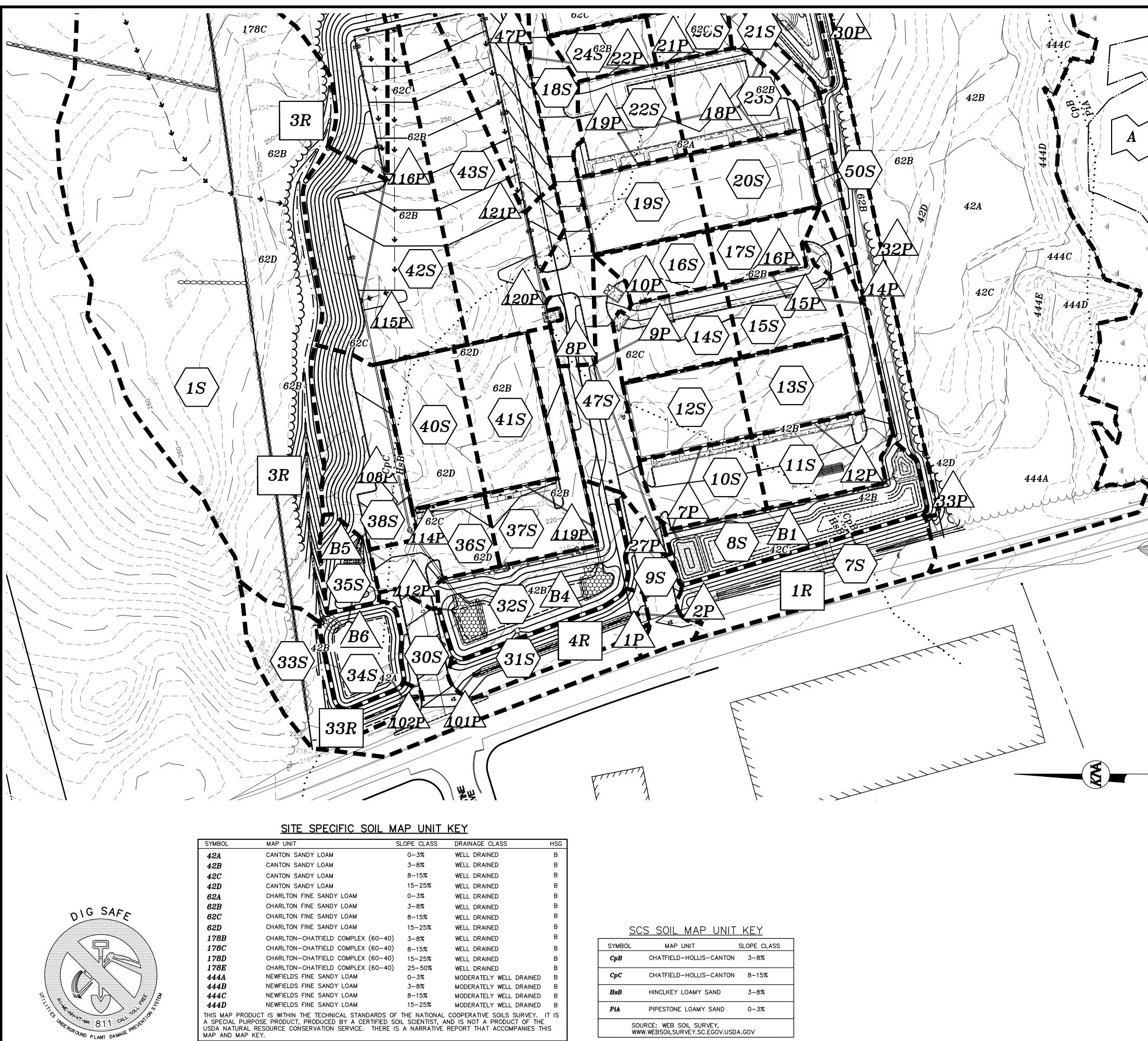
PROJECT NO: 20-0921-2

SHEET 4 OF 8

444D NEWFIELDS FINE SANDY LOAM

ND PLANT DA

THIS MAP PRODUCT IS WITHIN THE TECHNICAL STANDARDS OF THE NATIONAL COOPERATIVE SOILS SURVEY A SPECIAL PURPOSE PRODUCT, PRODUCED BY A CERTIFIED SOIL SCIENTIST, AND IS NOT A PRODUCT OF USDA NATURAL RESOURCE CONSERVATION SERVICE. THERE IS A NARRATIVE REPORT THAT ACCOMPANIES MAP AND MAP KEY.


	в
	в
	в
	в
	в
	в
	в
	в
	в
	в
	в
	В
INED	в
VEY. IT F THE IES THIS	IS

SCS SOIL MAP UNIT KEY

SYMBOL	_ MAP UNIT	SLOPE CLASS	
СрВ	CHATFIELD-HOLLIS-CANTON	3-8%	
СрС	CHATFIELD-HOLLIS-CANTON	8–15%	
HsB	HINCLKEY LOAMY SAND	3–8%	
PiA	PIPESTONE LOAMY SAND	0-3%	
SOURCE: WEB SOIL SURVEY, WWW.WEBSOILSURVEY.SC.EGOV.USDA.GOV			

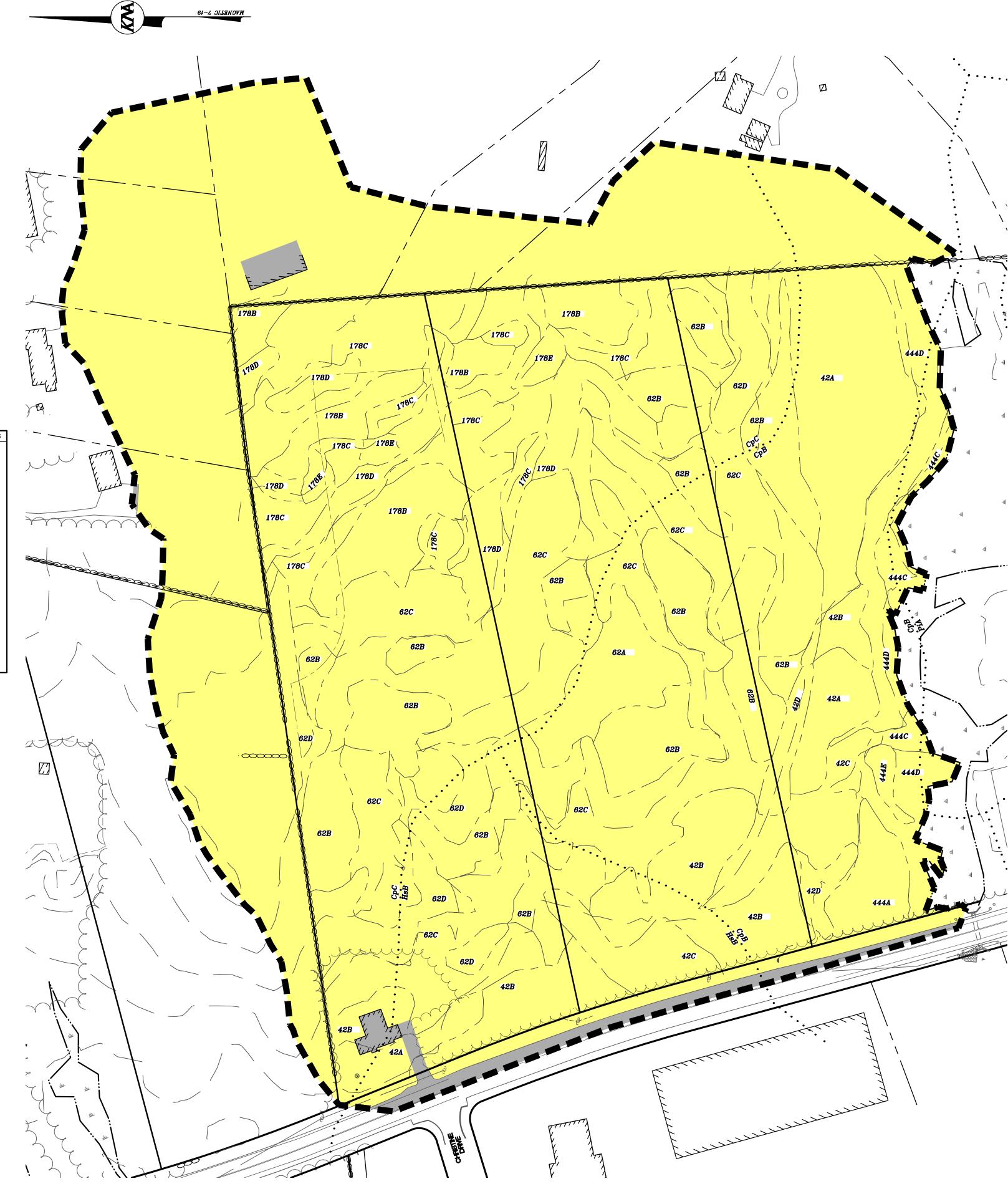
•						
•	DRAINAGE LEGEND: THE LEGEND BELOW REFLECTS THE HYDROCAD MODEL					
	USED FOR DRAINAGE CALCULATIONS.					
	••••••••••••••••• SCS SOIL LINES					
	42A DENOTES SOIL TYPE					
: ``						
•	P DENOTES POND					
•						
• •	$\left< \; S \; \right>$ denotes subcatchment area					
• •						
• • •						
	L DENOTES POINT OF INTEREST					
	R DENOTES REACH					
	LIMIT OF SUBCATCHMENT AREA					
	$\rightarrow \rightarrow $					
	REACH					
\ ⊐ 						
71	GRAPHIC SCALE 50 0 25 50 100 200					
	(IN FEET $)1 inch = 50 ft.$					
	POST DEVELOPMENT DRAINAGE AREA PLA	N				
	S.L. CHASSE STEEL MAP 105 LOTS 17-2 & 17-3					
	ROBINSON ROAD					
	HUDSON, NEW HAMPSHIRE					
	HILLSBOROUGH COUNTY					
	OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE					
	8 CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197					
	KAA KEACH-NORDSTROM ASSOCIATES, INC.					
	Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627–2881					
	REVISIONS					
	No. DATE DESCRIPTION	BY SCV				
		· · ·				
	DATE: APRIL 6, 2021 SCALE: 1"=50'					
	PROJECT NO: 20-0921-2 SHEET 5 OF 8					

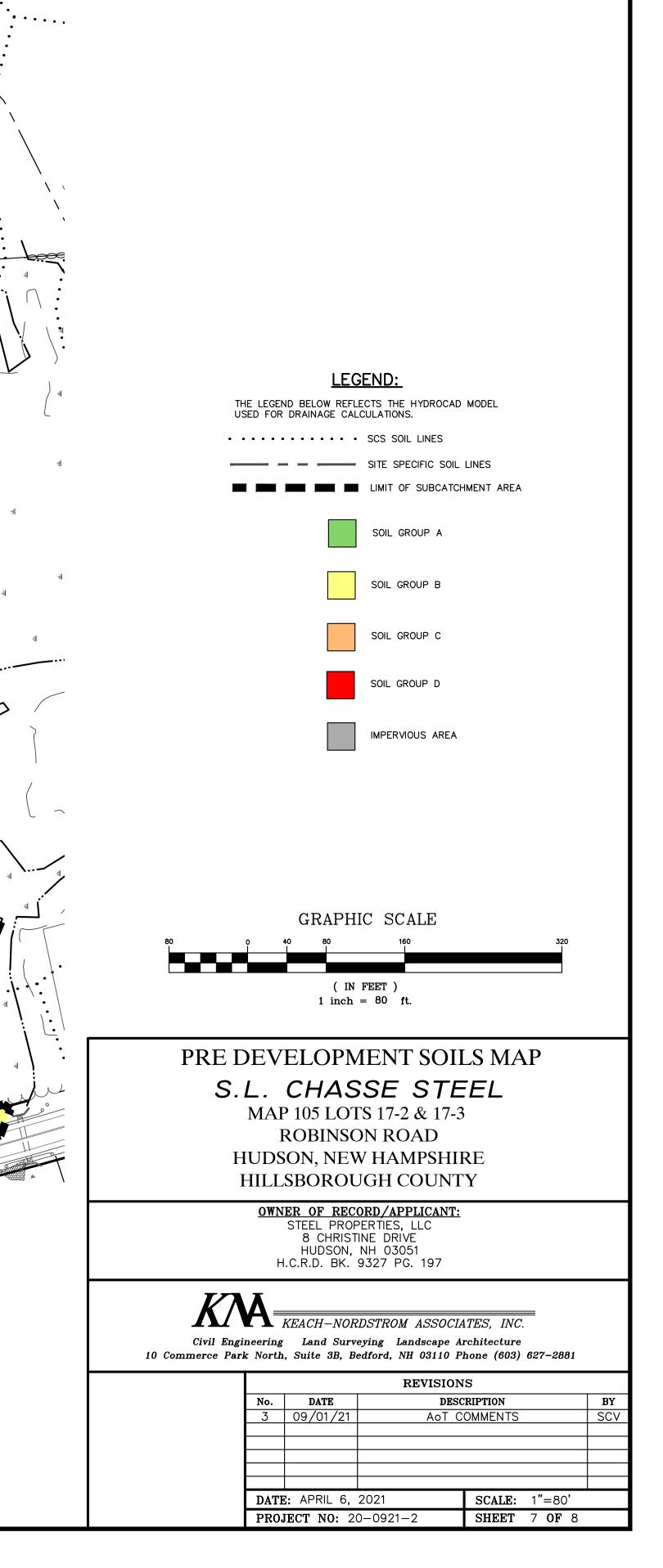
`∄

	SCS	SOIL	MAP	UNIT	KEY
--	-----	------	-----	------	-----

SYMBOL	_ MAP UNIT	SLOPE CLASS	
СрВ	CHATFIELD-HOLLIS-CANTON	3–8%	
СрС	CHATFIELD-HOLLIS-CANTON	8–15%	
HsB	HINCLKEY LOAMY SAND	3-8%	
PiA	PIPESTONE LOAMY SAND	0-3%	
SOURCE: WEB SOIL SURVEY, WWW.WEBSOILSURVEY.SC.EGOV.USDA.GOV			

CLAPHIC SCALE CLAPHIC SCALE CLAPHIC SCALE CLAPHIC SCALE CLAPHIC SCALE CLAPHIC SCALE CLAPHIC SCALE CLAPHIC SCALE CLAPHIC SCALE CLAPHIC SCALE CLAPHIC SCALE		THE LI USED	EGEND BELOW REFLE	CTS THE HYDROCAD MO	DDEL	
44 DUCUE SUL ITVI	•	• • • •				
					ES	
CONTRACTOR OF THE ACTION AND A DECISION OF THE ACTION AND A DECISION AND A DECIS			42A	DENOTES SOIL TYPE		
CRAPHIC SCALE			P	DENOTES POND		
CHAPTER SEACH R CONTROLOGIONAL READ CONTROLOGIONAL CONTRO			$\langle s \rangle$	DENOTES SUBCATCHME	NT AREA	
CRAPHIC SCALE			L	DENOTES POINT OF IN	FEREST	
GRAPHIC SCALE			R	DENOTES REACH		
CRAPHIC SCALE CRAPHIC SCALE				LIMIT OF SUBCATCHMEN	NT AREA	
CRAPHIC SCALE		- >	— → — → -	TIME OF CONCENTRATIO	N	
CRAPHIC SCALE				REACH		
CRAPHIC SCALE						
CRAPHIC SCALE						
CRAPHIC SCALE						
CRAPHIC SCALE						
() IN FEET): i meh = 50 ft.						
() IN FEET): i meh = 50 ft.						
() IN FEET): i meh = 50 ft.						
() IN FEET): i meh = 50 ft.	Hal a					
() IN FEET): i meh = 50 ft.						
() IN FEET): i meh = 50 ft.	o o o					
() IN FEET): i meh = 50 ft.						
() IN FEET): i meh = 50 ft.	\ \					
() IN FEET): i meh = 50 ft.	Ň					
() IN FEET): i meh = 50 ft.						
() IN FEET): i meh = 50 ft.	١					
() IN FEET): i meh = 50 ft.						
() IN FEET): i meh = 50 ft.		GRAPHIC SCALE				
BI-2 JURNOVY BI-2 JURNOVY BI-2 JURNOVY BI-2 JURNOVY BIOST DEVELOPMENT DRAINAGE AREA PLAN S.L. CHASSE STEEL MAP 105 LOTS 17-2 & 17-3 ROBINSON ROAD HUDSON, NEW HAMPSHIRE HILLSBOROUGH COUNTY DIVER OF RECORD/APPLICANT: STEEL PROPERTIES, LIC B CHRISTNE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197 KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2861 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AOT COMMENTS SCV DATE: APRIL 6, 2021 SCALE: 1"=50'						
BI-2 JURNOVY BI-2 JURNOVY BI-2 JURNOVY BI-2 JURNOVY BIOST DEVELOPMENT DRAINAGE AREA PLAN S.L. CHASSE STEEL MAP 105 LOTS 17-2 & 17-3 ROBINSON ROAD HUDSON, NEW HAMPSHIRE HILLSBOROUGH COUNTY DIVER OF RECORD/APPLICANT: STEEL PROPERTIES, LIC B CHRISTNE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197 KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2861 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AOT COMMENTS SCV DATE: APRIL 6, 2021 SCALE: 1"=50'						
S. L. CHASSE STEEL MAP 105 LOTS 17-2 & 17-3 ROBINSON ROAD HUDSON, NEW HAMPSHIRE HILLSBOROUGH COUNTY OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC & CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197 KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (803) 627-2861 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AOT COMMENTS SCV						
S. L. CHASSE STEEL MAP 105 LOTS 17-2 & 17-3 ROBINSON ROAD HUDSON, NEW HAMPSHIRE HILLSBOROUGH COUNTY OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC & CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197 KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (803) 627-2861 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AOT COMMENTS SCV						
S. L. CHASSE STEEL MAP 105 LOTS 17-2 & 17-3 ROBINSON ROAD HUDSON, NEW HAMPSHIRE HILLSBOROUGH COUNTY OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197 KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2861 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AoT COMMENTS SCV		POST DEVEL	OPMENT	DRAINAG	E AREA PL	AN
MAP 105 LOTS 17-2 & 17-3 ROBINSON ROAD HUDSON, NEW HAMPSHIRE HULSBOROUGH COUNTY OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197 KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AoT COMMENTS SCV DATE: APRIL 6, 2021 SCALE: 1"=50'	MVGNELIC 1-10					
HUDSON, NEW HAMPSHIRE HILLSBOROUGH COUNTY OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197 KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AoT COMMENTS SCV DATE: APRIL 6, 2021 SCALE: 1"=50'						
HILLSBOROUGH COUNTY OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197 KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (803) 627-2881 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AoT COMMENTS SCV DATE: APRIL 6, 2021 SCALE: 1"=50'						
OWNER OF RECORD/APPLICANT: STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197 KEACH-NORDSTROM ASSOCIATES, INC. Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AoT COMMENTS SCV DATE: APRIL 6, 2021 SCALE: 1"=50'						
STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197						
HUDSON, NH 03051 H.C.R.D. BK. 9327 PG. 197		STEEL PROPERTIES, LLC 8 CHRISTINE DRIVE				
Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AoT COMMENTS SCV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		HUDSON, NH 03051				
Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AoT COMMENTS SCV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TT T				
Civil Engineering Land Surveying Landscape Architecture 10 Commerce Park North, Suite 3B, Bedford, NH 03110 Phone (603) 627-2881 REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AoT COMMENTS SCV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		KA	A KEACH-NO	ORDSTROM ASSOCI	ATES, INC.	
REVISIONS No. DATE DESCRIPTION BY 3 09/01/21 AoT COMMENTS SCV - - - - - - - - - - - - - - - - - - - - - - - - - - - - DATE: APRIL 6, 2021 SCALE: 1"=50'			neering Land Su	rveying Landscape A	rchitecture	
No.DATEDESCRIPTIONBY309/01/21Aot commentsSCVDATE: APRIL 6, 2021SCALE: 1"=50'						
DATE: APRIL 6, 2021 SCALE: 1"=50'				DESC	CRIPTION	


SITE SPECIFIC SOIL MAP UNIT KEY


SYMBOL	MAP UNIT	SLOPE CLASS	DRAINAGE CLASS	HSG
42A	CANTON SANDY LOAM	0-3%	WELL DRAINED	В
42B	CANTON SANDY LOAM	3-8%	WELL DRAINED	В
42C	CANTON SANDY LOAM	8-15%	WELL DRAINED	В
42D	CANTON SANDY LOAM	15-25%	WELL DRAINED	В
62A	CHARLTON FINE SANDY LOAM	0-3%	WELL DRAINED	В
62B	CHARLTON FINE SANDY LOAM	3-8%	WELL DRAINED	В
62C	CHARLTON FINE SANDY LOAM	8-15%	WELL DRAINED	В
62D	CHARLTON FINE SANDY LOAM	15-25%	WELL DRAINED	В
178B	CHARLTON-CHATFIELD COMPLEX (60-40)) 3–8%	WELL DRAINED	В
178C	CHARLTON-CHATFIELD COMPLEX (60-40)) 8–15%	WELL DRAINED	В
178D	CHARLTON-CHATFIELD COMPLEX (60-40)) 15-25%	WELL DRAINED	В
178E	CHARLTON-CHATFIELD COMPLEX (60-40)) 25–50%	WELL DRAINED	В
444A	NEWFIELDS FINE SANDY LOAM	0-3%	MODERATELY WELL DRAINE	ED B
444B	NEWFIELDS FINE SANDY LOAM	3-8%	MODERATELY WELL DRAINE	ED B
444C	NEWFIELDS FINE SANDY LOAM	8-15%	MODERATELY WELL DRAINE	ED B
444D	NEWFIELDS FINE SANDY LOAM	15-25%	MODERATELY WELL DRAINE	ED B
THIS MAP PRODUCT IS WITHIN THE TECHNICAL STANDARDS OF THE NATIONAL COOPERATIVE SOILS SURVEY. IT IS A SPECIAL PURPOSE PRODUCT, PRODUCED BY A CERTIFIED SOIL SCIENTIST, AND IS NOT A PRODUCT OF THE USDA NATURAL RESOURCE CONSERVATION SERVICE. THERE IS A NARRATIVE REPORT THAT ACCOMPANIES THIS MAP AND MAP KEY.				

<u>SCS SOIL MAP UNIT KEY</u>

SYMBO	L MAP UNIT	SLOPE CLASS
СрВ	CHATFIELD-HOLLIS-CANTON	3–8%
CpC	CHATFIELD-HOLLIS-CANTON	8–15%
HsB	HINCLKEY LOAMY SAND	3–8%
PiA	PIPESTONE LOAMY SAND	0-3%
	SOURCE: WEB SOIL SURVEY, WWW.WEBSOILSURVEY.SC.EGOV.USD	A.GOV

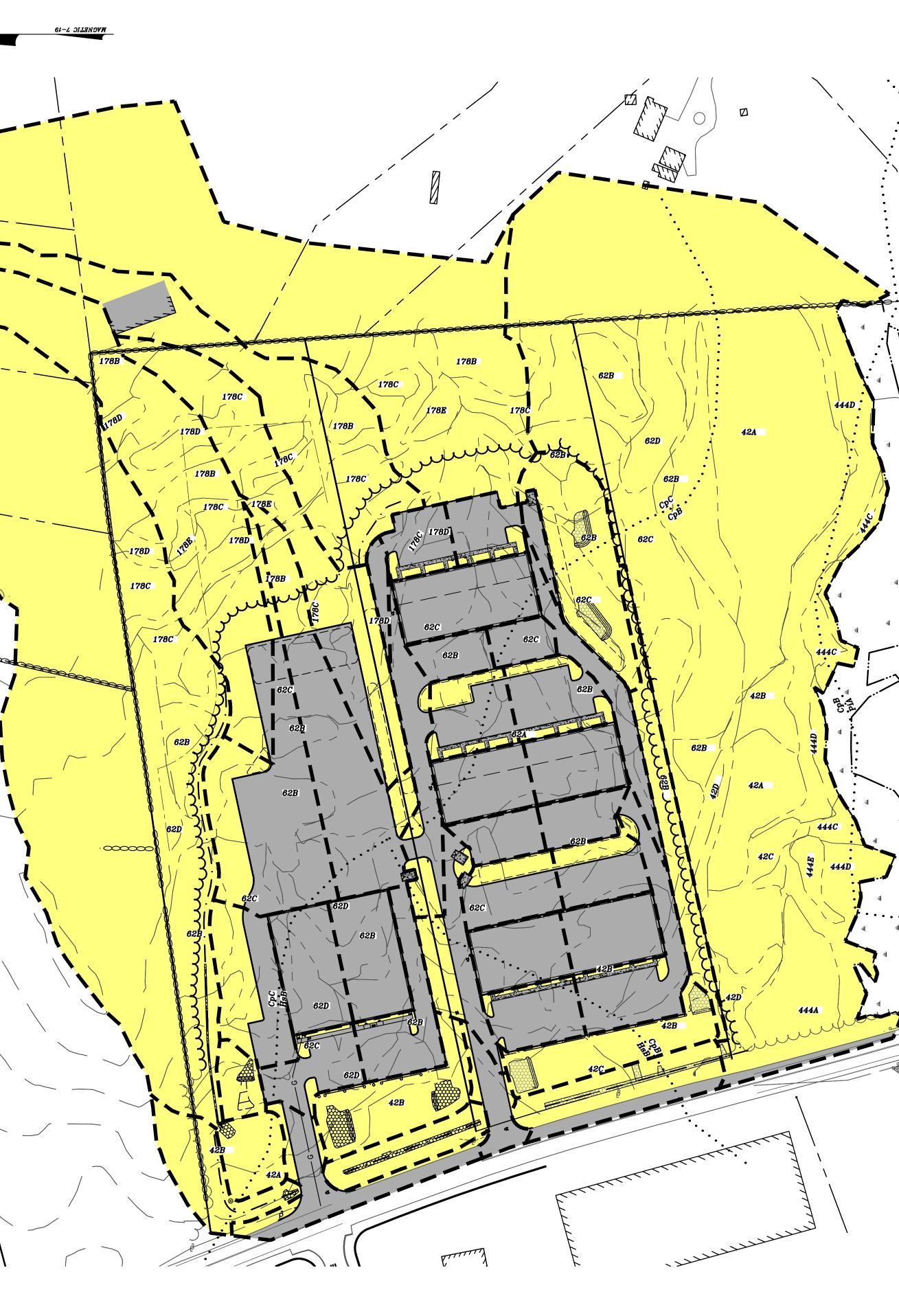
SITE SPECIFIC SOIL MAP UNIT KEY

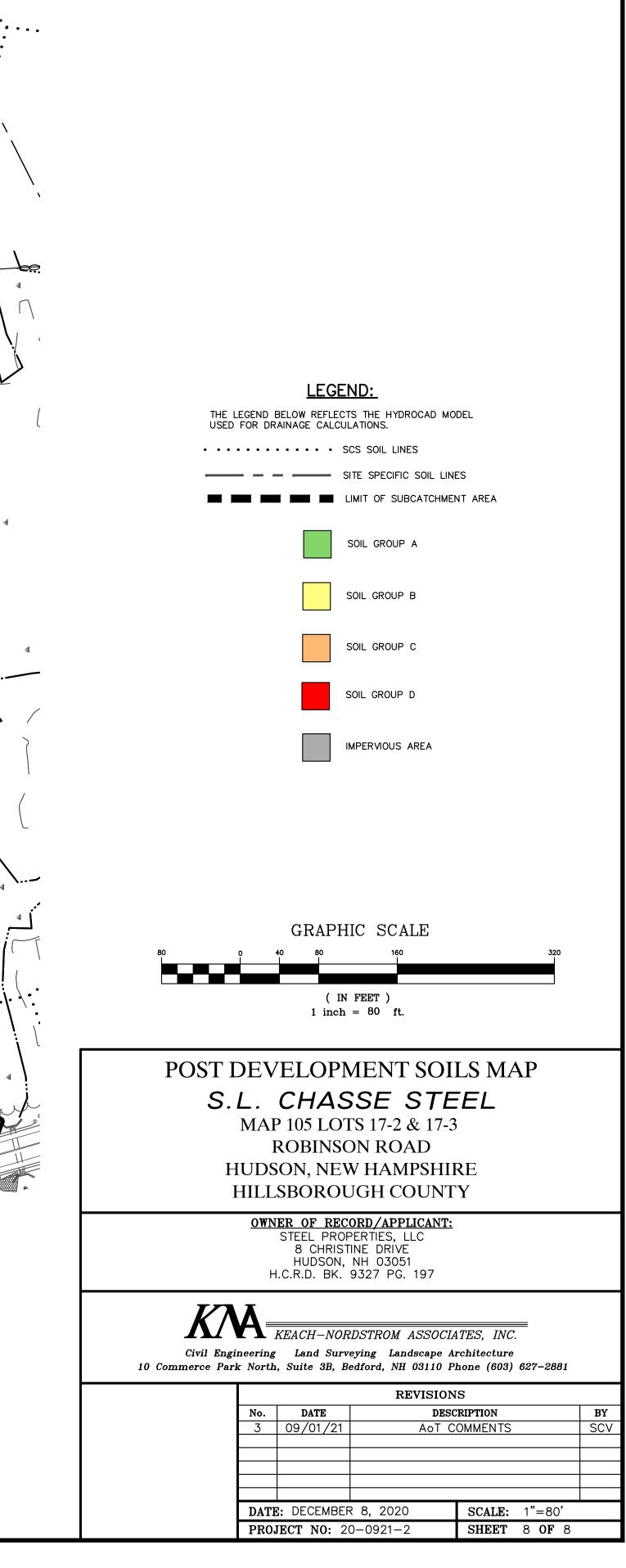
広じ

 Δ

 \sim

75


YYYYYY


SYMBOL	MAP UNIT	SLOPE CLASS	DRAINAGE CLASS	HSG
42A	CANTON SANDY LOAM	0-3%	WELL DRAINED	В
42B	CANTON SANDY LOAM	3-8%	WELL DRAINED	В
42C	CANTON SANDY LOAM	8-15%	WELL DRAINED	В
42D	CANTON SANDY LOAM	15-25%	WELL DRAINED	В
62A	CHARLTON FINE SANDY LOAM	0-3%	WELL DRAINED	В
62B	CHARLTON FINE SANDY LOAM	3-8%	WELL DRAINED	В
62C	CHARLTON FINE SANDY LOAM	8-15%	WELL DRAINED	В
62D	CHARLTON FINE SANDY LOAM	15-25%	WELL DRAINED	В
178B	CHARLTON-CHATFIELD COMPLEX (60-40) 3–8%	WELL DRAINED	В
178C	CHARLTON-CHATFIELD COMPLEX (60-40) 8–15%	WELL DRAINED	В
178D	CHARLTON-CHATFIELD COMPLEX (60-40) 15–25%	WELL DRAINED	В
178E	CHARLTON-CHATFIELD COMPLEX (60-40) 25–50%	WELL DRAINED	В
444A	NEWFIELDS FINE SANDY LOAM	0-3%	MODERATELY WELL DRAIN	ED B
444B	NEWFIELDS FINE SANDY LOAM	3-8%	MODERATELY WELL DRAIN	ED B
444C	NEWFIELDS FINE SANDY LOAM	8-15%	MODERATELY WELL DRAIN	ED B
444D	NEWFIELDS FINE SANDY LOAM	15-25%	MODERATELY WELL DRAIN	ED B
A SPECIAL PUF	DUCT IS WITHIN THE TECHNICAL STANDARDS O POSE PRODUCT, PRODUCED BY A CERTIFIED RESOURCE CONSERVATION SERVICE. THERE KEY.	SOIL SCIENTIST, A	ND IS NOT A PRODUCT OF	THE

<u>SCS SOIL MAP UNIT KEY</u>

•		
SYMBOL	_ MAP UNIT	SLOPE CLASS
СрВ	CHATFIELD-HOLLIS-CANTON	3-8%
CpC	CHATFIELD-HOLLIS-CANTON	8–15%
HsB	HINCLKEY LOAMY SAND	3-8%
PiA	PIPESTONE LOAMY SAND	0-3%
SOURCE: WEB SOIL SURVEY, WWW.WEBSOILSURVEY.SC.EGOV.USDA.GOV		

