Storm Water Management Report

84 LUMBER COMPANY

(NON-RESIDENTIAL SITE PLAN)

Project Location: Tax Map 145, Lot 15 3 Sullivan Road Hudson, NH

<u>Prepared for:</u> 84 Lumber Company 1019 Route 519, Building 4 Eighty Four, PA 15330

Date:August 2, 2022Revised:January 6, 2023

Surveying ϕ Engineering ϕ Land Planning ϕ Permitting ϕ Septic Designs

Index

- Narrative with Summary Tables
- Web Soil Survey
- USGS Locus Map
- Northeast Regional Climate Center Precipitation Data
- BMP Worksheet
- Groundwater Recharge Volume Calculation
- Forebay Storage Table
- Infiltration Feasibility Report
- Pipe Summary (with Velocity)

Drainage Analysis / Storm Water Management Report:

Section 1.1	Existing Conditions –	2, 25, 50 Year Storm Node List
Section 1.2	Existing Conditions –	10 Year Storm Full Summary
Section 2.1	Proposed Conditions –	2, 25, 50 Year Storm Node List
Section 2.2	Proposed Conditions –	10 Year Storm Full Summary

Supplemental Data & Reports:

- Section 3.1 Inspection and Maintenance Manual
- Section 3.2 Test Pit Data
- Section 3.3 Drainage Area Plan

Surveying + Engineering Land Planning + Septic Designs

LAND CONSULTANTS, PLLC 206 Elm Street, Milford, NH 03055 - Phone: 603-672-5456 - Fax: 603-413-5456

www.FieldstoneLandConsultants.com

STORM WATER MANAGEMENT REPORT 84 LUMBER COMPANY MAP 145, LOT 15 – 3 SULLIVAN ROAD HUDSON, NEW HAMPSHIRE

DSTONF

Prepared for: 84 Lumber Company Revised: December 28, 2022

I) INTRODUCTION

Meeting Date: 1/25/23

W -

Е

The following are storm water drainage calculations for a proposed Site Plan Development for a lumber yard off Sullivan Street in Hudson, NH. The project area is bordered by single family residential to the north, east, and south and a vacant lot to the west. The project involves a single tax parcel (145-3) totaling 30.962 acres. The proposed development will consist of constructing 55,500 square feet, over two phases of construction. The terrain alteration associated with the proposed buildings and infrastructure is 435,000± square feet. The increase in impervious area, including the roadway, driveways, sidewalks and roof area is 342,000± square feet.

The proposed lumber sales use of the site requires large areas of impervious areas for truck maneuvering, building access, and storage. The infiltration basin providing a net reduction in storm water runoff and landscaped islands in the parking area to disconnect impervious areas are the proposed low impact development strategies used for this project.

The purpose of this report is to analyze the qualitative and quantitative impacts of the proposed development. The objective of the proposed storm water management system for this project is to mitigate any increases resulting from the proposed development and to meet the drainage guidelines set forth in the Town of Hudson's storm water regulations.

II) SITE DESCRIPTION

The project consists of an existing 30.962-acre single family residential lot at the corner of Sullivan Road and Central Street with two curb cuts on Sullivan Road. The site is relatively level on the northern section of the lot where the existing house and curb cuts are located. A large wetland crosses the center of the lot, flowing west to east. At the south side of the lot the site is wooded and steeper with 8 to 15% grades. There is a few trails through the wooded area and a 50' gas easement. The area north of the wetlands, where all the proposed improvements are located, consists of Windsor Loamy Sand with a hydrologic soil group (HSG) rating "A".

84 Lumber Company – Storm Water Management Report

Page 2

There are two (2) observation points for the project. A small section of the northwest corner of the site drains into the closed drainage system in the Town right-of-way (OP1). The majority of the site drains south towards the wetlands in the center of the site (OP1).

NRCS soil survey maps indicated that the dominate soils present on the site consist of well-drained Windsor loamy sand. This is a Hydrologic Soil Group (HSG) "A" soil. There are no wetland or wetland buffer impacts proposed on the project. There will an increase of approximately 7.85± acres of impervious area as a result of the proposed development.

III) METHODOLOGY

The quantity of runoff and the conveyance of that flow through the site are determined using the software package HydroCAD r 10.0 by HydroCAD Software Solutions, LLC. HydroCAD is a computer aided design program for modeling storm water hydrology based on the Soil Conservation Service (SCS) TR-20 method combined with standard hydraulics calculations.

Storm water management systems and erosion control outlet protection aprons (riprap aprons) are designed in accordance with the methodology for the "Best Management Practices" (BMP's), as outlined in the New Hampshire Storm Water Manual, Volume 2.

IV) DRAINAGE DESIGN

In accordance with the Town of Hudson Storm water Regulations require that the two (2), ten (10), twenty-five (25) and fifty (50) year frequency storm events also be evaluated. These design storms have therefore been analyzed to compare the pre and post-development peak flow rates for the site (see attached comparison tables).

Pre-Development Drainage Conditions:

As can be seen on the Pre-Development Drainage Plan, approximately 90% of project area drains southerly to wetlands on-site (OP1). The remaining 10% of the site drains northwesterly to one of two catch basins in the Central Street right-of-way.

Post-Development Drainage Conditions:

As can be seen on the Post-Development Drainage Plans, the drainage for the proposed improvements flows to the east end of the site and is collected in a large stormwater basin. Subcatchments S301 to S313 are captures in catch basins, outlet into sediment forebays for pretreatment, and then into the infiltration basin where runoff is treated and recharged to the groundwater. The front of the site subcatchments S101 and S201 remain largely unchanged from predevelopment conditions.

The net result is that all new paved areas will receive qualitative treatment and, due to the detention capability of the stormwater basin, there will be a reduction of peak rates of runoff leaving this site for all storm events.

84 Lumber Company – Storm Water Management Report

Page 3

V) SUMMARY

The intent of the storm water management system for this project is to address the qualitative and quantitative aspects of the storm water runoff so that there are no downstream adverse impacts created by the project. Due to the proposed stormwater management system there are no increases in storm water runoff resulting from the proposed development.

The storm water management design for this project therefore complies with the stormwater standards set forth in the Town of Hudson and the Alteration of Terrain regulations.

The following tables are a summary of the attached calculations and show a comparison of the peak flow rates at the outlet point for the site. The values presented are based on pre- and post-development conditions.

STORM FREQUENCY	PRE-DEVELOPMENT (CFS/AF)	POST-DEVELOPMENT (CFS/AF)	CHANGE (CFS/AF)
2-YEAR	0.03/0.011	0.03/0.008	0.00/-0.003
10-YEAR	0.52/0.056	0.41/0.044	-0.11/-0.012
25-YEAR	1.36/0.108	1.07/0.085	-0.29/-0.023
50-YEAR	2.30/0.168	1.81/0.132	-0.49/-0.036

Table 1: Peak flow rates to OP1

Table 2: Peak flow rates to OP2

STORM FREQUENCY	PRE-DEVELOPMENT (CFS/AF)	POST-DEVELOPMENT (CFS/AF)	CHANGE (CFS/AF)
2-YEAR	0.00/0.000	0.00/0.000	0.00/0.000
10-YEAR	0.16/0.072	0.08/0.031	-0.08/-0.041
25-YEAR	1.02/0.304	0.71/0.303	-0.31/-0.001
50-YEAR	3.37/0.640	2.86/0.849	-0.51/0.209

SP #09-22 - 84 Lumber Site Plan - Attachment H

Meeting Date: 1/25/23

7/19/2022 Page 2 of 5

> Web Soil Survey National Cooperative Soil Survey

> > **Conservation Service**

Natural Resources

NSDA

Hydrologic Soil Group—Hillsborough County, New Hampshire, Eastern Part; and Rockingham County, New Hampshire

Hydrologic Soil Group—Hillsborough County, New Hampshire, Eastern Part; and Rockingham County, New Hampshire

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CmC	Canton fine sandy loam, 8 to 15 percent slopes, very stony	В	32.1	32.5%
CsC	Chatfield-Hollis complex, 8 to 15 percent slopes, rocky	В	5.1	5.1%
CtD	Chatfield-Hollis-Rock outcrop complex, 15 to 35 percent slopes	D	2.5	2.5%
DeB	Deerfield loamy fine sand, 3 to 8 percent slopes	A	0.3	0.3%
Pu	Pootatuck fine sandy loam	В	0.4	0.4%
Rp	Rippowam fine sandy Ioam	A/D	6.3	6.4%
W	Water (less than 40 acres)		0.2	0.2%
WdB	Windsor loamy sand, 3 to 8 percent slopes	A	47.4	48.0%
WdD	Windsor loamy sand, 15 to 35 percent slopes	A	4.3	4.3%
Subtotals for Soil Surve	y Area		98.6	99.8%
Totals for Area of Interes	st		98.8	100.0%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
305	Lim-Pootatuck complex	B/D	0.2	0.2%
Subtotals for Soil Surv	vey Area		0.2	0.2%
Totals for Area of Inter	est		98.8	100.0%

Hydrologic Soil Group—Hillsborough County, New Hampshire, Eastern Part; and Rockingham County, New Hampshire

Description

Meeting Date: 1/25/23

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	71.370 degrees West
Latitude	42.788 degrees North
Elevation	0 feet
Date/Time	Tue, 19 Jul 2022 11:15:00 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.42	0.52	0.68	0.85	1.07	1yr	0.73	1.01	1.23	1.55	1.96	2.48	2.71	1yr	2.19	2.60	3.03	3.71	4.33	1yr
2yr	0.33	0.51	0.63	0.84	1.05	1.32	2yr	0.91	1.21	1.53	1.91	2.38	2.97	3.29	2yr	2.63	3.16	3.67	4.39	4.99	2yr
5yr	0.39	0.61	0.76	1.02	1.31	1.66	5yr	1.13	1.51	1.93	2.42	3.02	3.76	4.19	5yr	3.33	4.03	4.66	5.52	6.25	5yr
10yr	0.44	0.69	0.88	1.19	1.55	1.99	10yr	1.34	1.79	2.31	2.90	3.62	4.50	5.04	10yr	3.98	4.85	5.58	6.56	7.41	10yr
25yr	0.52	0.83	1.06	1.46	1.93	2.50	25yr	1.67	2.24	2.92	3.68	4.60	5.70	6.43	25yr	5.04	6.18	7.09	8.26	9.28	25yr
50yr	0.59	0.94	1.21	1.70	2.29	3.00	50yr	1.98	2.66	3.52	4.44	5.53	6.82	7.74	50yr	6.04	7.44	8.50	9.83	11.02	50yr
100yr	0.68	1.09	1.41	1.99	2.72	3.57	100yr	2.35	3.15	4.20	5.31	6.62	8.17	9.31	100yr	7.23	8.96	10.19	11.71	13.08	100yr
200yr	0.77	1.25	1.63	2.33	3.22	4.27	200yr	2.78	3.74	5.04	6.38	7.95	9.79	11.22	200yr	8.67	10.79	12.23	13.95	15.53	200yr
500yr	0.92	1.52	1.98	2.88	4.05	5.40	500yr	3.49	4.70	6.39	8.11	10.11	12.45	14.35	500yr	11.02	13.80	15.56	17.59	19.51	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.35	0.43	0.58	0.71	0.82	1yr	0.61	0.80	1.08	1.31	1.67	2.20	2.54	1yr	1.95	2.44	2.70	3.03	3.87	1yr
2yr	0.31	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.17	1.37	1.79	2.30	2.84	3.17	2yr	2.52	3.05	3.55	4.24	4.82	2yr
5yr	0.36	0.55	0.69	0.94	1.20	1.42	5yr	1.03	1.39	1.62	2.10	2.68	3.52	3.78	5yr	3.11	3.64	4.22	5.06	5.73	5yr
10yr	0.39	0.61	0.75	1.05	1.36	1.61	10yr	1.17	1.58	1.83	2.37	3.02	4.07	4.31	10yr	3.60	4.14	4.83	5.77	6.49	10yr
25yr	0.45	0.68	0.85	1.21	1.60	1.89	25yr	1.38	1.85	2.16	2.79	3.51	4.92	5.12	25yr	4.36	4.93	5.77	6.91	7.58	25yr
50yr	0.49	0.75	0.93	1.33	1.80	2.15	50yr	1.55	2.10	2.46	3.17	3.95	5.70	5.86	50yr	5.04	5.64	6.64	7.92	8.50	50yr
100yr	0.54	0.82	1.02	1.48	2.03	2.43	100yr	1.75	2.38	2.79	3.60	4.44	5.75	6.72	100yr	5.09	6.46	7.66	9.11	9.54	100yr
200yr	0.60	0.90	1.14	1.65	2.30	2.76	200yr	1.98	2.70	3.14	4.10	5.02	6.49	7.71	200yr	5.74	7.41	8.86	10.49	10.68	200yr
500yr	0.68	1.02	1.31	1.90	2.70	3.28	500yr	2.33	3.21	3.72	4.87	5.92	7.59	9.33	500yr	6.72	8.97	10.77	12.69	12.42	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.31	0.47	0.58	0.77	0.95	1.11	1yr	0.82	1.09	1.26	1.64	2.08	2.72	2.87	1yr	2.41	2.76	3.40	4.13	4.83	lyr
2yr	0.35	0.54	0.66	0.90	1.11	1.30	2yr	0.96	1.27	1.48	1.92	2.46	3.12	3.49	2yr	2.76	3.35	3.84	4.58	5.27	2yr
5yr	0.43	0.67	0.83	1.14	1.45	1.66	5yr	1.25	1.62	1.89	2.43	3.05	4.04	4.66	5yr	3.58	4.48	5.10	6.03	6.79	5yr
10yr	0.53	0.81	1.00	1.40	1.81	2.02	10yr	1.56	1.97	2.28	2.91	3.63	5.01	5.84	10yr	4.43	5.62	6.34	7.45	8.35	10yr
25yr	0.68	1.04	1.29	1.84	2.42	2.61	25yr	2.09	2.56	2.94	3.69	4.53	6.65	7.89	25yr	5.89	7.59	8.45	9.82	11.02	25yr
50yr	0.83	1.26	1.57	2.25	3.03	3.19	50yr	2.61	3.12	3.57	4.42	5.36	8.25	9.92	50yr	7.30	9.54	10.48	12.08	13.59	50yr
100yr	1.01	1.53	1.91	2.76	3.79	3.89	100yr	3.27	3.80	4.34	5.30	6.36	11.36	12.46	100yr	10.06	11.98	12.99	14.89	16.79	100yr
200yr	1.23	1.86	2.35	3.40	4.75	4.74	200yr	4.10	4.63	5.26	6.34	7.54	14.33	15.61	200yr	12.68	15.01	16.08	18.34	20.74	200yr
500yr	1.62	2.40	3.09	4.49	6.39	6.15	500yr	5.51	6.01	6.81	8.05	9.45	19.50	21.05	500yr	17.26	20.24	21.33	24.15	27.44	500yr

Meeting Date: 1/25/23

SP #09-22 - 84 Lumber Site Plan - Attachment H

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name:

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

	Have you reviewed Env-Wg 1508 06(a) to ensure that infiltration is allowed?	← ves
7.45 ac	$\Lambda = \Lambda$ readraining to the practice	. ,
5.89 ac	$A_1 = $ Impervious area draining to the practice	
0.79 decimal	I = Percent impervious area draining to the practice, in decimal form	
0.76 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
5.67 ac-in	$WOV = 1'' \times Rv \times A$	
20.595 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
5,149 cf	25% x WQV (check calc for sediment forebay volume)	
f	Method of pretreatment? (not required for clean or roof runoff)	
5,407 cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
55,500 cf	V = Volume ¹ (attach a stage-storage table)	<u>></u> WQV
23,950 sf	A _{SA} = Surface area of the bottom of the pond	
6.00 iph	Ksat _{DESIGN} = Design infiltration rate ²	
1.7 hours	$I_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
181.00 feet	E _{BTM} = Elevation of the bottom of the basin	
178.00 feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	pit)
178.00 feet	E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	t pit)
3.00 feet	D _{SHWT} = Separation from SHWT	≥ * ³
3.0 feet	D _{ROCK} = Separation from bedrock	≥ * ³
ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	<u>≥</u> 24"
ft	D _T = Depth of trench, if trench proposed	4 - 10 ft
Yes/No	If a trench or underground system is proposed, has observation well been provid	led? ←yes
	If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements. ⁴	← yes
Y Yes/No	If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
3.0 :1	If a basin is proposed, pond side slopes.	<u>></u> 3:1
183.43 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
184.81 ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
186.00 ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES	10 peak elevation \leq Elevation of the top of the trench?	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

3.66	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.40	inches	Rd = Weighted groundwater recharge depth	
1.463	ac-in	GRV = AI * Rd	
5,311	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

The above calculation only represents 1/2 the proposed area of HSG A soil that was replaced with

impervious cover. The total GRV required is 10,622 cubic feet. The proposed infiltration basin has a storage of 55,700 cubic feet below the lowest invert out of the basin. All that stormwater will be infiltrated back into the ground

infiltrated back into the ground.

3184.01_POST_DEVELOPMENT_A

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 12/28/2022

 is LLC
 Page 1

Summary for Pond 15P: FOREBAY 3

Volume	Invert	Avai	I.Storage	Storage	e Description	
#1	181.50'		2,116 cf	Custon	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (feet)	Surf. (!	Area sq-ft)	Inc (cubi	.Store c-feet)	Cum.Store (cubic-feet)	
181.50		340		0	0	
182.00		510		213	213	
184.00		888		1,398	1,611	
184.50	1	,132		505	2,116	

Summary for Pond 16P: FOREBAY 2

Volume	Invert	Avai	I.Storage	Storage	Description	
#1	181.50'		2,134 cf	Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (feet)	Surf./ (s	Area sq-ft)	Inc (cubio	.Store c-feet)	Cum.Store (cubic-feet)	
181.50		35		0	0	
182.00		485		130	130	
184.00		955		1,440	1,570	
184.50	1	.299		564	2,134	

Summary for Pond 17P: FOREBAY 1

Volume	Invert	Avai	.Storage	Storage	Description	
#1	181.50'		1,744 cf	Custom	Stage Data (Pr	ismatic) Listed below (Recalc)
Elevation (feet)	Surf. (Area sq-ft)	Inc (cubio	.Store c-feet)	Cum.Store (cubic-feet)	
181.50 182.00		270 410		0 170	0 170	
184.00 184.50		740 955		1,150 424	1,320 1,744	

The project proposes one system that incorporates an infiltration component. This system is identified on the plans as Infiltration Basins 1 (IB1).

I. Location of the practice

Infiltration Basin 1 – this practice is located in southeast end of the lot. This is a basin that receives runoff from the proposed buildings and impervious surfaces. This basin discharges approximately 100 feet from the on-site wetlands in the center of the lot. The discharge from the closed drainage system (CB6, 9, and 12) is being pre-treated with forebays upstream of the practice.

II. Existing topography at the location of the practices

Infiltration Basins 1 (IB1) - This infiltration basin is situated at the lower end of the site in nearly flat area. The site currently slopes gently towards this area at a 3-8% grade. This area is at the low point between the subject parcel and abutting property. The low point also slopes west towards the wetlands on site. The area is mostly cleared with some areas of vegetation.

III. Test pit or boring locations

In accordance with Env-Wq 1504.13(c), several test pits have been performed on-site.

Infiltration Basin 1 (IB1) – this basin has a bottom area of 17,800 square feet in area and therefore a minimum of three test pits are required in the location of the proposed practice. Four (4) test pits were performed in this location and are identified as TP-3, TP-4, TP-5, and TP-6 on the attached plans.

IV. Seasonal high-water table (SHWT) and bedrock elevations

The following test pit data was collected on October 13, 2022.

Infiltration Basin 1 (IB1) – Bottom of Pond Elevation = 181.0'

TP-3: Existing Surface Elevation of TP = 183.2' SHWT => 176.8' BEDROCK=> 176.8' Deepest Elevation of TP = 176.8'

84 Lumber, Hudson, Commercial Development Infiltration Feasibility Report

Page 2

Infiltration Basin 2 (IB2) – Bottom of Pond Elevation = 188.0'

- TP-4: Existing Surface Elevation of TP = 183.8 SHWT =>178.0' BEDROCK=> 178.0' Deepest Elevation of TP = 178.0'
- TP-5: Existing Surface Elevation of TP = 183.4SHWT =>176.7' BEDROCK=> 176.7' Deepest Elevation of TP = 176.7'
- TP-6: Existing Surface Elevation of TP = 182.8SHWT =>177.1' BEDROCK=> 177.1' Deepest Elevation of TP = 177.1'
- V. Profile descriptions

Test Pit #3

0-12"- 10YR 3/3 dark brown, loamy sand, granular, friable12-24"- 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose24-76"- 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, looseESHWT = NoneObserved Water = NoneLedge/Boulders = 76"Roots = None

Test Pit #4

0-12"- 10YR 3/3 dark brown, loamy sand, granular, friable
12-24"- 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose
24-70"- 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose
ESHWT = None Observed Water = None Ledge/Boulders = 70" Roots = None

Test Pit #5

0-12"- 10YR 3/3 dark brown, loamy sand, granular, friable 12-24"- 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose 24-80"- 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose ESHWT = None Observed Water = None Ledge/Boulders = None Roots = 6" 84 Lumber, Hudson, Commercial Development Infiltration Feasibility Report

Test Pit #6

0-15" - 10YR 3/3 dark brown, loamy sand, granular, friable
15-24" - 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose
24-68" - 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose
ESHWT = None Observed Water = None Ledge/Boulders = 68" Roots = None

VI. Soil plan in the area of the proposed practice(s)

See attached plan sheets.

VII. Summary of Field-Testing data used to determine the infiltration rate

Infiltration Basins 1 – the infiltration rate was determined using the Default Values method described in Env-Wq 1504.14.

The basins are located within native material identified in the Soil Series Survey as Windsor loamy sand.

Using Ksat Values for New Hampshire Soils, Society of Soil Scientist of Northern New England, Special Publication No.5, September 2009, the weighted value under the basin floor elevation is: <u>6 inch per hour</u>.

After applying a factor of safety, the design rate used in the drainage analysis is <u>3 inches per hour</u>.

Page 3

Summary for Reach 2R: CB1

Inflow Area = 0.348 ac, 61.78% Impervious, Inflow Depth > 2.82" for 25-Year event Inflow = 1.21 cfs @ 12.09 hrs, Volume= 0.082 af Outflow = 1.21 cfs @ 12.10 hrs, Volume= 0.082 af, Atten= 0%, Lag= 0.6 min Routed to Reach 3R : CB2

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.10 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.60 fps, Avg. Travel Time= 2.1 min

Peak Storage= 59 cf @ 12.10 hrs Average Depth at Peak Storage= 0.40', Surface Width= 0.98' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.56 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 200.0' Slope= 0.0100 '/' Inlet Invert= 192.90', Outlet Invert= 190.90'

Summary for Reach 3R: CB2

 Inflow Area =
 0.609 ac, 66.83% Impervious, Inflow Depth > 3.10"
 for 25-Year event

 Inflow =
 2.31 cfs @
 12.10 hrs, Volume=
 0.157 af

 Outflow =
 2.30 cfs @
 12.10 hrs, Volume=
 0.157 af, Atten= 0%, Lag= 0.4 min

 Routed to Reach 4R : CB3
 Content of the con

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.82 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.80 fps, Avg. Travel Time= 1.3 min

Peak Storage= 67 cf @ 12.10 hrs Average Depth at Peak Storage= 0.59', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.56 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 140.0' Slope= 0.0100 '/' Inlet Invert= 190.80', Outlet Invert= 189.40'

Summary for Reach 4R: CB3

 Inflow Area =
 1.060 ac, 67.83% Impervious, Inflow Depth > 3.18" for 25-Year event

 Inflow =
 4.11 cfs @
 12.10 hrs, Volume=
 0.281 af

 Outflow =
 3.59 cfs @
 12.13 hrs, Volume=
 0.281 af, Atten= 13%, Lag= 1.6 min

 Routed to Reach 5R : CB4
 CB4
 0.281 af, Atten= 13%, Lag= 1.6 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 5.16 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.13 fps, Avg. Travel Time= 1.2 min

Peak Storage= 120 cf @ 12.13 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.56 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 150.0' Slope= 0.0100 '/' Inlet Invert= 189.30', Outlet Invert= 187.80'

Summary for Reach 5R: CB4

 Inflow Area =
 1.313 ac, 74.03% Impervious, Inflow Depth > 3.54" for 25-Year event

 Inflow =
 4.93 cfs @
 12.10 hrs, Volume=
 0.387 af

 Outflow =
 5.00 cfs @
 12.11 hrs, Volume=
 0.387 af, Atten= 0%, Lag= 0.3 min

 Routed to Reach 6R : CB5
 CB5
 CB5
 CB5

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 5.81 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.26 fps, Avg. Travel Time= 1.1 min

Peak Storage= 129 cf @ 12.11 hrs Average Depth at Peak Storage= 0.83', Surface Width= 1.18' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 6.46 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 150.0' Slope= 0.0100 '/' Inlet Invert= 187.70', Outlet Invert= 186.20'

Summary for Reach 6R: CB5

 Inflow Area =
 1.935 ac, 82.38% Impervious, Inflow Depth > 4.03" for 25-Year event

 Inflow =
 8.36 cfs @
 12.10 hrs, Volume=
 0.649 af

 Outflow =
 8.38 cfs @
 12.11 hrs, Volume=
 0.649 af, Atten= 0%, Lag= 0.6 min

 Routed to Reach 7R : CB6
 12.11 hrs, Volume=
 0.649 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.60 fps, Min. Travel Time= 0.7 min Avg. Velocity = 2.65 fps, Avg. Travel Time= 1.8 min

Peak Storage= 368 cf @ 12.11 hrs Average Depth at Peak Storage= 1.01', Surface Width= 1.41' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 10.50 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 290.0' Slope= 0.0100 '/' Inlet Invert= 186.10', Outlet Invert= 183.20'

Summary for Reach 7R: CB6

 Inflow Area =
 2.447 ac, 86.06% Impervious, Inflow Depth > 4.24"
 for 25-Year event

 Inflow =
 11.13 cfs @
 12.10 hrs, Volume=
 0.865 af

 Outflow =
 11.13 cfs @
 12.10 hrs, Volume=
 0.865 af, Atten= 0%, Lag= 0.0 min

 Routed to Pond 13P : IB1
 Image: Routed to Pond 13P : Image: Routed to Po

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.17 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.80 fps, Avg. Travel Time= 0.1 min

Peak Storage= 31 cf @ 12.10 hrs Average Depth at Peak Storage= 0.99', Surface Width= 2.00' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 22.62 cfs

24.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 20.0' Slope= 0.0100 '/' Inlet Invert= 183.10', Outlet Invert= 182.90'

Summary for Reach 8R: CB7

 Inflow Area =
 0.052 ac,100.00% Impervious, Inflow Depth > 5.06" for 25-Year event

 Inflow =
 0.28 cfs @
 12.09 hrs, Volume=
 0.022 af

 Outflow =
 0.28 cfs @
 12.10 hrs, Volume=
 0.022 af, Atten= 1%, Lag= 0.9 min

 Routed to Reach 9R : CB8
 Comparison
 Comparison
 Comparison

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.12 fps, Min. Travel Time= 1.2 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 3.1 min

Peak Storage= 20 cf @ 12.10 hrs Average Depth at Peak Storage= 0.17', Surface Width= 0.75' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.36 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 220.0' Slope= 0.0150 '/' Inlet Invert= 189.00', Outlet Invert= 185.70'

Summary for Reach 9R: CB8

 Inflow Area =
 0.841 ac,100.00% Impervious, Inflow Depth > 5.06"
 for 25-Year event

 Inflow =
 4.58 cfs @
 12.09 hrs, Volume=
 0.354 af

 Outflow =
 4.56 cfs @
 12.10 hrs, Volume=
 0.354 af, Atten= 0%, Lag= 0.7 min

 Routed to Reach 10R : CB9
 CB9
 Control of the state of the s

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 5.71 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.31 fps, Avg. Travel Time= 2.2 min

Peak Storage= 240 cf @ 12.10 hrs Average Depth at Peak Storage= 0.77' , Surface Width= 1.21' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 6.46 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 300.0' Slope= 0.0100 '/' Inlet Invert= 185.60', Outlet Invert= 182.60'

Summary for Reach 10R: CB9

 Inflow Area =
 2.006 ac,100.00% Impervious, Inflow Depth >
 5.05" for 25-Year event

 Inflow =
 10.88 cfs @
 12.09 hrs, Volume=
 0.845 af

 Outflow =
 10.89 cfs @
 12.09 hrs, Volume=
 0.845 af, Atten= 0%, Lag= 0.0 min

 Routed to Pond 13P : IB1
 Image: Note that the second secon

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.76 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.92 fps, Avg. Travel Time= 0.1 min

Peak Storage= 32 cf @ 12.09 hrs Average Depth at Peak Storage= 1.28', Surface Width= 1.06' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 10.50 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 20.0' Slope= 0.0100 '/' Inlet Invert= 182.50', Outlet Invert= 182.30'

Summary for Reach 11R: CB10

 Inflow Area =
 0.401 ac, 69.58% Impervious, Inflow Depth > 3.29" for 25-Year event

 Inflow =
 1.61 cfs @
 12.09 hrs, Volume=
 0.110 af

 Outflow =
 1.61 cfs @
 12.10 hrs, Volume=
 0.110 af, Atten= 0%, Lag= 0.7 min

 Routed to Reach 12R : CB11
 0.110 af
 0.110 af
 0.110 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 5.70 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.14 fps, Avg. Travel Time= 2.3 min

Peak Storage= 85 cf @ 12.10 hrs Average Depth at Peak Storage= 0.39' , Surface Width= 0.97' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.04 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 300.0' Slope= 0.0200 '/' Inlet Invert= 191.50', Outlet Invert= 185.50'

Summary for Reach 12R: CB11

 Inflow Area =
 1.576 ac, 91.31% Impervious, Inflow Depth > 4.55" for 25-Year event

 Inflow =
 7.96 cfs @
 12.09 hrs, Volume=
 0.598 af

 Outflow =
 7.93 cfs @
 12.10 hrs, Volume=
 0.597 af, Atten= 0%, Lag= 0.6 min

 Routed to Reach 13R : CB12
 CB12
 CB12
 CB12

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.53 fps, Min. Travel Time= 0.8 min Avg. Velocity = 2.61 fps, Avg. Travel Time= 1.9 min

Peak Storage= 364 cf @ 12.10 hrs Average Depth at Peak Storage= 0.97', Surface Width= 1.43' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 10.50 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 300.0' Slope= 0.0100 '/' Inlet Invert= 185.40', Outlet Invert= 182.40'

Summary for Reach 13R: CB12

 Inflow Area =
 2.729 ac, 87.65% Impervious, Inflow Depth > 4.36" for 25-Year event

 Inflow =
 13.46 cfs @
 12.10 hrs, Volume=
 0.991 af

 Outflow =
 13.46 cfs @
 12.10 hrs, Volume=
 0.991 af, Atten= 0%, Lag= 0.0 min

 Routed to Pond 13P : IB1
 IB1
 13.46 cfs @
 12.10 hrs, Volume=

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.51 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.89 fps, Avg. Travel Time= 0.1 min

Peak Storage= 36 cf @ 12.10 hrs Average Depth at Peak Storage= 1.11', Surface Width= 1.99' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 22.62 cfs

24.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 20.0' Slope= 0.0100 '/' Inlet Invert= 182.30', Outlet Invert= 182.10'

Section 1.1

Existing Conditions 2, 25, 50 Year Storm Node List

3184.01_PRE_DEVELOPMENT

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC Printed 8/2/2022 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
10.519	39	>75% Grass cover, Good, HSG A (E1S, E2S, E3S)
0.106	76	Gravel roads, HSG A (E1S, E3S)
0.643	98	Paved parking, HSG A (E1S, E2S, E3S)
4.388	30	Woods, Good, HSG A (E1S, E2S, E3S)
15.656	39	TOTAL AREA

3184.01_PRE_DEVELOPMENT

Prepared by {enter vo	our company name here}	Printed 8/2/2022
HydroCAD® 10.10-7b s/	n 06037 © 2022 HydroCAD Software Solutions LLC	Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
15.656	HSG A	E1S, E2S, E3S
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
15.656		TOTAL AREA

3184.01 PRE_DEVELOPMENT

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC Printed 8/2/2022 Page 4

Ground Covers (all nodes)									
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers		
 10.519	0.000	0.000	0.000	0.000	10.519	>75% Grass cover, Good	E1S, E2S, E3S		
0.106	0.000	0.000	0.000	0.000	0.106	Gravel roads	E1S, E3S		
0.643	0.000	0.000	0.000	0.000	0.643	Paved parking	E1S, E2S, E3S		
4.388	0.000	0.000	0.000	0.000	4.388	Woods, Good	E1S, E2S, E3S		
15.656	0.000	0.000	0.000	0.000	15.656	TOTAL AREA			

Ground Covers (all nodes)

3184.01_PRE_DEVELOPMENT Prepared by {enter your company name HydroCAD® 10.10-7b s/n 06037 © 2022 Hydr	Type III 24-hr 2-Year Rainfall=2.97" here} Printed 8/2/2022 oCAD Software Solutions LLC Page 5
Time span=5.00 Runoff by SCS TF Reach routing by Dyn-Stor-Inc	0-20.00 hrs, dt=0.05 hrs, 301 points R-20 method, UH=SCS, Weighted-CN I method - Pond routing by Dyn-Stor-Ind method
Subcatchment E1S: TO EXIST. CB	Runoff Area=0.670 ac 25.97% Impervious Runoff Depth>0.13" Tc=6.0 min CN=54 Runoff=0.03 cfs 0.007 af
SubcatchmentE2S: TO EX. CB	Runoff Area=0.603 ac 19.40% Impervious Runoff Depth>0.07" Tc=6.0 min CN=50 Runoff=0.01 cfs 0.003 af
Subcatchment E3S: TO WETLANDS	Runoff Area=14.383 ac 2.45% Impervious Runoff Depth=0.00" Flow Length=750' Tc=25.6 min CN=38 Runoff=0.00 cfs 0.000 af
Link OP1: OFFSITE CLOSED DRAINAGE	Inflow=0.03 cfs 0.011 af Primary=0.03 cfs 0.011 af
Link OP2: STREAM	Inflow=0.00 cfs_0.000 af Primary=0.00 cfs_0.000 af

Total Runoff Area = 15.656 acRunoff Volume = 0.011 afAverage Runoff Depth = 0.01"95.89% Pervious = 15.013 ac4.11% Impervious = 0.643 ac

3184.01_PRE_DEVELOPMENT Prepared by {enter your company name HydroCAD® 10.10-7b s/n 06037 © 2022 Hydr	Type III 24-hr 25-Year Rainfall=5.70" here} Printed 8/2/2022 oCAD Software Solutions LLC Page 6						
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method , Pond routing by Dyn-Stor-Ind method							
Subcatchment E1S: TO EXIST. CB	Runoff Area=0.670 ac 25.97% Impervious Runoff Depth>1.14" Tc=6.0 min CN=54 Runoff=0.84 cfs 0.064 af						
SubcatchmentE2S: TO EX. CB	Runoff Area=0.603 ac 19.40% Impervious Runoff Depth>0.88" Tc=6.0 min CN=50 Runoff=0.52 cfs 0.044 af						
SubcatchmentE3S: TO WETLANDS	Runoff Area=14.383 ac 2.45% Impervious Runoff Depth>0.25" Flow Length=750' Tc=25.6 min CN=38 Runoff=1.02 cfs 0.304 af						
Link OP1: OFFSITE CLOSED DRAINAGE	Inflow=1.36 cfs 0.108 af Primary=1.36 cfs 0.108 af						
Link OP2: STREAM	Inflow=1.02 cfs 0.304 af Primary=1.02 cfs 0.304 af						

Total Runoff Area = 15.656 acRunoff Volume = 0.412 afAverage Runoff Depth = 0.32"95.89% Pervious = 15.013 ac4.11% Impervious = 0.643 ac

3184.01_PRE_DEVELOPMENT Prepared by {enter your company name h HydroCAD® 10.10-7b s/n 06037 © 2022 HydroC	Type III 24-hr 50-Year Rainfall=6.82" here} Printed 8/2/2022 CAD Software Solutions LLC Page 7
Time span=5.00-2 Runoff by SCS TR-2 Reach routing by Dyn-Stor-Ind r	20.00 hrs, dt=0.05 hrs, 301 points 20 method, UH=SCS, Weighted-CN nethod - Pond routing by Dyn-Stor-Ind method
Subcatchment E1S: TO EXIST. CB	Runoff Area=0.670 ac 25.97% Impervious Runoff Depth>1.74" Tc=6.0 min CN=54 Runoff=1.36 cfs 0.097 af
Subcatchment E2S: TO EX. CB	Runoff Area=0.603 ac 19.40% Impervious Runoff Depth>1.41" Tc=6.0 min CN=50 Runoff=0.94 cfs 0.071 af
Subcatchment E3S: TO WETLANDS	Runoff Area=14.383 ac 2.45% Impervious Runoff Depth>0.53" ow Length=750' Tc=25.6 min CN=38 Runoff=3.37 cfs 0.640 af
Link OP1: OFFSITE CLOSED DRAINAGE	Inflow=2.30 cfs 0.168 af Primary=2.30 cfs 0.168 af
Link OP2: STREAM	Inflow=3.37 cfs 0.640 af Primary=3.37 cfs 0.640 af

Total Runoff Area = 15.656 acRunoff Volume = 0.808 afAverage Runoff Depth = 0.62"95.89% Pervious = 15.013 ac4.11% Impervious = 0.643 ac

Section 1.2

Existing Conditions 10 Year Storm Full Summary

Page 1

Type III 24-hr 10-Year Rainfall=4.50" 3184.01 PRE DEVELOPMENT Printed 8/2/2022 Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Summary for Subcatchment E1S: TO EXIST. CB

0.034 af, Depth> 0.61" 0.37 cfs @ 12.12 hrs, Volume= Runoff Ξ Routed to Link OP1 : OFFSITE CLOSED DRAINAGE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Are	a (ac)	CN	Desc	ription			
	0.131	30	Woo	ds, Good,	HSG A		
	0.029	76	Grav	el roads, l	HSG A		
	0.174	98	Pave	ed parking,	, HSG A		
	0,336	39	>75%	<u>6 Grass co</u>	over, Good,	I, HSG A	
	0.670	54	Weig	hted Aver	age		
	0.496		74.0	3% Pervio	us Area		
	0.174		25.97	7% Imperv	ious Area		
T	c Leng	ith	Slope	Velocity	Capacity	Description	
<u>(min</u>	<u>) (tee</u>	∋t)	<u>(ft/ft)</u>	(ft/sec)	(CfS)		
6.0)					Direct Entry,	

Summary for Subcatchment E2S: TO EX. CB

0.022 af, Depth> 0.43" 0.17 cfs @ 12.16 hrs, Volume= Runoff -Routed to Link OP1 : OFFSITE CLOSED DRAINAGE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area ((ac)	CN	Desc	ription			
0.0	050	30	Woo	ds, Good,	HSG A		
0.1	117	98	Pave	d parking,	HSG A		
0.4	436	39	>75%	6 Grass co	over, Good,	HSG A	
0.0	603	50	Weig	hted Aver	age		
0.4	486		80.6	0% Pervio	us Area		
0.1	117		19.40	0% Imperv	rious Area		
Tc (min)	Leng (fee	th : t)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0						Direct Entry,	

Summary for Subcatchment E3S: TO WETLANDS

0.072 af, Depth> 0.06" 0.16 cfs @ 15.29 hrs, Volume= Runoff = Routed to Link OP2 : STREAM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

3184.01_PRE_DEVELOPMENT

Type III 24-hr 10-Year Rainfall=4.50" Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC Printed 8/2/2022 Page 2

Area	(ac) (N Des	cription					
4.207 30		30 Woo	ds, Good,	HSG A				
0.	0.077 76		Gravel roads, HSG A					
0.352		98 Pave	Paved parking, HSG A					
9.	747	39 >75	% Ġrass co	over, Good,	HSG A			
14.	383	38 Wei	ahted Aver	age				
14.	031	97.5	97.55% Pervious Area					
0.	0.352		% Impervi	ous Area				
			•					
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
19.5	85	0.0200	0.07		Sheet Flow, A-B			
					Woods: Light underbrush n= 0.400 P2= 3.00"			
5.4	390	0.0300	1.21		Shallow Concentrated Flow, B-C			
					Short Grass Pasture Kv= 7.0 fps			
0.7	275	0.0500	6.60	13.20	Parabolic Channel, C-D			
					W=4.00' D=0.75' Area=2.0 sf Perim=4.3'			
					n= 0.030 Earth, grassed & winding			

25.6 750 Total

Summary for Link OP1: OFFSITE CLOSED DRAINAGE

Inflow Area	a =	1.273 ac, 1	22.86% Imp	ervious,	Inflow Dep	th > 0.5	52" for 10-	Year event
Inflow	=	0.52 cfs @	12.13 hrs,	Volume	= 0).056 af		
Primary	=	0.52 cfs @	12.13 hrs,	Volume	= 0).056 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link OP2: STREAM

Inflow /	Area	=	14.383 ac,	2.45% Impervious,	Inflow Depth >	0.06	6" for 10-	Year event
Inflow		=	0.16 cfs @	15.29 hrs, Volume	e= 0.072	af		
Primar	У	=	0.16 cfs @	15.29 hrs, Volume	e= 0.072	af, /	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Section 2.1

Proposed Conditions 2, 25, 50 Year Storm Node List

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC Printed 1/11/2023 Page 2

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
5.854	39	>75% Grass cover, Good, HSG A (S101, S201, S301, S302, S303, S310, S311, S312, S313, S314)
0.052	76	Gravel roads, HSG A (S101, S314)
6.567	98	Paved parking, HSG A (S101, S201, S301, S302, S303, S304, S305, S306, S307, S308, S309, S310, S311, S312, S313, S314)
1.445	98	Roofs, HSG A (S301, S302, S303, S304, S305, S306, S307, S308, S309, S311, S312, S313)
1.738 15.656	30 68	Woods, Good, HSG A (S101, S201, S314) TOTAL AREA

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Printed 1/11/2023 Page 3

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
15.656	HSG A	S101, S201, S301, S302, S303, S304, S305, S306, S307, S308, S309, S310,
		S311, S312, S313, S314
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
15.656		TOTAL AREA

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Printed 1/11/2023 Page 4

HSG	-A H	SG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acre	s) (a	acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
5.8	54	0.000	0.000	0.000	0.000	5.854	>75% Grass cover, Good	S101,
								S201,
								S301,
								S302,
								S303,
								S310,
								S311,
								S312,
								S313,
								S314
0.0	52	0.000	0.000	0.000	0.000	0.052	Gravel roads	S101,
								S314
6.5	67	0.000	0.000	0.000	0.000	6.567	Paved parking	S101,
								S201,
								S301,
								S302,
								S303,
								S304,
								S305,
								S306,
								S307,
								S308,
								S309,
								S310,
								S311,
								S312,
								S313,
								S314
1.44	45	0.000	0.000	0.000	0.000	1.445	Roofs	S301,
								S302,
								S303,
								S304,
								S305,
								S306,
								S307,
								S308,
								S309,
								S311,
								S312,
								S313
1.73	38	0.000	0.000	0.000	0.000	1.738	Woods, Good	S101,
								S201,
								S314

Ground Covers (selected nodes)

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Printed 1/11/2023 Page 5

Ground Covers	(selected nodes)	(continued)
---------------	------------------	-------------

15.656	0.000	0.000	0.000	0.000	15.656	TOTAL AREA	
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment

3184.01_POST_DEVELOPMENT_A Prepared by {enter your company name I HydroCAD® 10.10-7b s/n 06037 © 2022 Hydro	Type III 24-hr 2-Year Rainfall=2.97" nere} Printed 1/11/2023 CAD Software Solutions LLC Page 6
-Time span=5.00 Runoff by SCS TR Reach routing by Dyn-Stor-Ind	20.00 hrs, dt=0.05 hrs, 301 points 20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
SubcatchmentS101: TO EXIST. CB	Runoff Area=0.523 ac 26.00% Impervious Runoff Depth>0.13" Tc=6.0 min CN=54 Runoff=0.03 cfs 0.006 af
Subcatchment S201: TO EX. CB	Runoff Area=0.479 ac 19.42% Impervious Runoff Depth>0.07" Tc=6.0 min CN=50 Runoff=0.01 cfs 0.003 af
SubcatchmentS301: TO CB 1	Runoff Area=0.348 ac 61.78% Impervious Runoff Depth>0.86" Tc=6.0 min CN=75 Runoff=0.36 cfs 0.025 af
Subcatchment S302: TO CB 2	Runoff Area=0.261 ac 73.56% Impervious Runoff Depth>1.25" Tc=6.0 min CN=82 Runoff=0.40 cfs 0.027 af
Subcatchment S303: TO CB 3	Runoff Area=0.451 ac 69.18% Impervious Runoff Depth>1.13" Tc=6.0 min CN=80 Runoff=0.63 cfs 0.043 af
Subcatchment S304: TO CB 4	Runoff Area=0.253 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=0.71 cfs 0.054 af
Subcatchment S305: TO CB 5	Runoff Area=0.622 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=1.75 cfs 0.133 af
Subcatchment S306: TO CB 6	Runoff Area=0.512 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=1.44 cfs 0.109 af
SubcatchmentS307: TO CB 7	Runoff Area=0.052 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=0.15 cfs 0.011 af
Subcatchment S308: TO CB 8	Runoff Area=0.789 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=2.22 cfs 0.168 af
Subcatchment S309: TO CB 9	Runoff Area=1.165 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=3.27 cfs 0.249 af
Subcatchment S310: TO CB 10	Runoff Area=0.401 ac 69.58% Impervious Runoff Depth>1.13" Tc=6.0 min CN=80 Runoff=0.56 cfs 0.038 af
Subcatchment S311: TO CB 11	Runoff Area=1.175 ac 98.72% Impervious Runoff Depth>2.47" Tc=6.0 min CN=97 Runoff=3.25 cfs 0.242 af
Subcatchment S312: TO CB 12	Runoff Area=1.153 ac 82.65% Impervious Runoff Depth>1.68" Tc=6.0 min CN=88 Runoff=2.37 cfs 0.161 af
Subcatchment S313: TO IB1	Runoff Area=2.020 ac 56.73% Impervious Runoff Depth>0.71" Tc=6.0 min CN=72 Runoff=1.67 cfs 0.120 af
SubcatchmentS314: TO WETLANDS	Runoff Area=5.452 ac 2.44% Impervious Runoff Depth=0.00" low Length=750' Tc=25.6 min CN=38 Runoff=0.00 cfs 0.000 af

3184.01_POST_DEVI Prepared by {enter your	ELOPMENT_A company name here}	Type III 24-hr	2-Year Rainfa Printed 1/	//=2.97" 11/2023
11ydrocade 10.10-70 s/110	0037 @ 2022 Hydrocad Soltware St			Faye I
Pond 1P: CB1	12.0" Round Culvert n=0.013	Peak Elev=193.23 L=200.0' S=0.0100 '/'	' Inflow=0.36 cfs Outflow=0.36 cfs	0.025 af 0.025 af
Pond 2P: CB2	12.0" Round Culvert n=0.013	Peak Elev=190.42 L=140.0' S=0.0029 '/'	' Inflow=0.76 cfs Outflow=0.76 cfs	0.052 af 0.052 af
Pond 3P: CB3	12.0" Round Culvert n=0.013	Peak Elev=190.02 L=150.0' S=0.0100 '/'	' Inflow=1.39 cfs Outflow=1.39 cfs	0.095 af 0.095 af
Pond 4P: CB4	15.0" Round Culvert n=0.013	Peak Elev=188.52 L=150.0' S=0.0100 '/'	' Inflow=2.10 cfs Outflow=2.10 cfs	0.149 af 0.149 af
Pond 5P: CB5	18.0" Round Culvert n=0.013	Peak Elev=187.19 L=290.0' S=0.0100 '/'	' Inflow=3.84 cfs Outflow=3.84 cfs	0.282 af 0.282 af
Pond 6P: CB6	24.0" Round Culvert n=0.013	Peak Elev=184.30 3 L=20.0' S=0.0100 '/'	' Inflow=5.28 cfs Outflow=5.28 cfs	0.391 af 0.391 af
Pond 7P: CB7	12.0" Round Culvert n=0.013	Peak Elev=189.21 L=220.0' S=0.0150 '/'	' Inflow=0.15 cfs Outflow=0.15 cfs	0.011 af 0.011 af
Pond 8P: CB8	15.0" Round Culvert n=0.013	Peak Elev=186.49 L=300.0' S=0.0100 '/'	' Inflow=2.36 cfs Outflow=2.36 cfs	0.180 af 0.180 af
Pond 9P: CB9	18.0" Round Culvert n=0.013	Peak Elev=183.96 3 L=20.0' S=0.0100 '/'	' Inflow=5.64 cfs Outflow=5.64 cfs	0.428 af 0.428 af
Pond 10P: CB10	12.0" Round Culvert n=0.013	Peak Elev=191.93 L=300.0' S=0.0200 '/'	' Inflow=0.56 cfs Outflow=0.56 cfs	0.038 af 0.038 af
Pond 11P: CB11	18.0" Round Culvert n=0.013	Peak Elev=186.48 L=300.0' S=0.0100 '/'	' Inflow=3.80 cfs Outflow=3.80 cfs	0.280 af 0.280 af
Pond 12P: CB12	24.0" Round Culvert n=0.013	Peak Elev=183.62 3 L=20.0' S=0.0100 '/'	' Inflow=6.17 cfs Outflow=6.17 cfs	0.441 af 0.441 af
Pond 13P: IB1	Peak Elev=182. Discarded=1.39 cfs 1.120 af Prim	.73' Storage=27,723 cf nary=0.00 cfs 0.000 af	Inflow=18.73 cfs Outflow=1.39 cfs	1.381 af 1.120 af
Link OP1: OFFSITE CLO	SED DRAINAGE		Inflow=0.03 cfs Primary=0.03 cfs	0.008 af 0.008 af
Link OP2: STREAM			Inflow=0.00 cfs Primary=0.00 cfs	0.000 af 0.000 af
Total Runo	ff Area = 15.656 ac Runoff Volເ	ume = 1.389 af Aver	age Runoff Dep	oth = 1.06

noff Area = 15.656 ac Runoff Volume = 1.389 af Average Runoff Depth = 1.06" 48.82% Pervious = 7.644 ac 51.18% Impervious = 8.012 ac

3184.01_POST_DEVELOPMENT_A Prepared by {enter your company name HydroCAD® 10.10-7b s/n 06037 © 2022 Hydro	Type III 24-hr 25-Year Rainfall=5.70" nere} Printed 1/11/2023 CAD Software Solutions LLC Page 8
Time span=5.00- Runoff by SCS TR- Reach routing by Dyn-Stor-Ind	20.00 hrs, dt=0.05 hrs, 301 points 20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
SubcatchmentS101: TO EXIST. CB	Runoff Area=0.523 ac 26.00% Impervious Runoff Depth>1.14" Tc=6.0 min CN=54 Runoff=0.66 cfs 0.050 af
Subcatchment S201: TO EX. CB	Runoff Area=0.479 ac 19.42% Impervious Runoff Depth>0.88" Tc=6.0 min CN=50 Runoff=0.42 cfs 0.035 af
SubcatchmentS301: TO CB 1	Runoff Area=0.348 ac 61.78% Impervious Runoff Depth>2.82" Tc=6.0 min CN=75 Runoff=1.21 cfs 0.082 af
SubcatchmentS302: TO CB 2	Runoff Area=0.261 ac 73.56% Impervious Runoff Depth>3.48" Tc=6.0 min CN=82 Runoff=1.10 cfs 0.076 af
Subcatchment S303: TO CB 3	Runoff Area=0.451 ac 69.18% Impervious Runoff Depth>3.29" Tc=6.0 min CN=80 Runoff=1.81 cfs 0.124 af
Subcatchment S304: TO CB 4	Runoff Area=0.253 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=1.38 cfs 0.107 af
Subcatchment S305: TO CB 5	Runoff Area=0.622 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=3.39 cfs 0.262 af
Subcatchment S306: TO CB 6	Runoff Area=0.512 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=2.79 cfs 0.216 af
SubcatchmentS307: TO CB 7	Runoff Area=0.052 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=0.28 cfs 0.022 af
SubcatchmentS308: TO CB 8	Runoff Area=0.789 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=4.30 cfs 0.332 af
SubcatchmentS309: TO CB 9	Runoff Area=1.165 ac 100.00% Impervious Runoff Depth>5.06"
SubcatchmentS310: TO CB 10	Runoff Area=0.401 ac 69.58% Impervious Runoff Depth>3.29"
SubcatchmentS311: TO CB 11	Runoff Area=1.175 ac 98.72% Impervious Runoff Depth>4.98"
SubcatchmentS312: TO CB 12	Runoff Area=1.153 ac 82.65% Impervious Runoff Depth>4.10"
SubcatchmentS313: TO IB1	Runoff Area=2.020 ac 56.73% Impervious Runoff Depth>2.55"
SubcatchmentS314: TO WETLANDS	Runoff Area=5.452 ac 2.44% Impervious Runoff Depth>0.25" low Length=750' Tc=25.6 min CN=38 Runoff=0.39 cfs 0.115 af

3184.01_POST_DEVE Prepared by {enter your HydroCAD® 10 10-7b s/n 0	ELOPMENT_A company name here} 6037_© 2022 HydroCAD Software S	Type III 24-hr 25-Year Rainfall=5.70" Printed 1/11/2023			
Pond 1P: CB1	12.0" Round Culvert n=0.013	Peak Elev=193.56' Inflow=1.21 cfs 0.082 af L=200.0' S=0.0100 '/' Outflow=1.21 cfs 0.082 af			
Pond 2P: CB2	12.0" Round Culvert n=0.013	Peak Elev=192.84' Inflow=2.32 cfs 0.158 af L=140.0' S=0.0029 '/' Outflow=2.32 cfs 0.158 af			
Pond 3P: CB3	12.0" Round Culvert n=0.013	Peak Elev=192.31' Inflow=4.13 cfs 0.281 af L=150.0' S=0.0100 '/' Outflow=4.13 cfs 0.281 af			
Pond 4P: CB4	15.0" Round Culvert n=0.013	Peak Elev=189.99' Inflow=5.51 cfs 0.388 af L=150.0' S=0.0100 '/' Outflow=5.51 cfs 0.388 af			
Pond 5P: CB5	18.0" Round Culvert n=0.013	Peak Elev=188.60' Inflow=8.90 cfs 0.650 af L=290.0' S=0.0100 '/' Outflow=8.90 cfs 0.650 af			
Pond 6P: CB6	24.0" Round Culvert n=0.013	Peak Elev=185.09' Inflow=11.69 cfs 0.866 af L=20.0' S=0.0100 '/' Outflow=11.69 cfs 0.866 af			
Pond 7P: CB7	12.0" Round Culvert n=0.013	Peak Elev=189.30' Inflow=0.28 cfs 0.022 af L=220.0' S=0.0150 '/' Outflow=0.28 cfs 0.022 af			
Pond 8P: CB8	15.0" Round Culvert n=0.013	Peak Elev=187.42' Inflow=4.59 cfs 0.354 af L=300.0' S=0.0100 '/' Outflow=4.59 cfs 0.354 af			
Pond 9P: CB9	18.0" Round Culvert n=0.013	Peak Elev=185.88' Inflow=10.94 cfs 0.845 af L=20.0' S=0.0100 '/' Outflow=10.94 cfs 0.845 af			
Pond 10P: CB10	12.0" Round Culvert n=0.013	Peak Elev=192.30' Inflow=1.61 cfs 0.110 af L=300.0' S=0.0200 '/' Outflow=1.61 cfs 0.110 af			
Pond 11P: CB11	18.0" Round Culvert n=0.013	Peak Elev=187.56' Inflow=7.98 cfs 0.598 af L=300.0' S=0.0100 '/' Outflow=7.98 cfs 0.598 af			
Pond 12P: CB12	24.0" Round Culvert n=0.013	Peak Elev=184.84' Inflow=13.54 cfs 0.991 af L=20.0' S=0.0100 '/' Outflow=13.54 cfs 0.991 af			
Pond 13P: IB1	Peak Elev=184 Discarded=1.93 cfs 1.625 af Prir	.84' Storage=77,248 cf Inflow=42.51 cfs 3.131 af nary=0.39 cfs 0.188 af Outflow=2.33 cfs 1.813 af			
Link OP1: OFFSITE CLO	SED DRAINAGE	Inflow=1.07 cfs 0.085 af Primary=1.07 cfs 0.085 af			
Link OP2: STREAM		Inflow=0.71 cfs 0.303 af Primary=0.71 cfs 0.303 af			
Total Runo	ff Area = 15.656 ac Runoff Vol	ume = 3.332 af Average Runoff Depth = 2.55			

Inoff Area = 15.656 ac Runoff Volume = 3.332 af Average Runoff Depth = 2.55" 48.82% Pervious = 7.644 ac 51.18% Impervious = 8.012 ac

3184.01_POST_DEVELOPMENT_A Prepared by {enter your company name h HydroCAD® 10.10-7b s/n 06037 © 2022 Hydrod	Type III 24-hr 50-Year Rainfall=6.82"nere}Printed 1/11/2023CAD Software Solutions LLCPage 10
-100 Time span -100 Runoff by SCS 	20.00 hrs, dt=0.05 hrs, 301 points 20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment S101: TO EXIST. CB	Runoff Area=0.523 ac 26.00% Impervious Runoff Depth>1.74" Tc=6.0 min CN=54 Runoff=1.06 cfs 0.076 af
Subcatchment S201: TO EX. CB	Runoff Area=0.479 ac 19.42% Impervious Runoff Depth>1.41" Tc=6.0 min CN=50 Runoff=0.75 cfs 0.056 af
Subcatchment S301: TO CB 1	Runoff Area=0.348 ac 61.78% Impervious Runoff Depth>3.73" Tc=6.0 min CN=75 Runoff=1.59 cfs 0.108 af
Subcatchment S302: TO CB 2	Runoff Area=0.261 ac 73.56% Impervious Runoff Depth>4.47" Tc=6.0 min CN=82 Runoff=1.40 cfs 0.097 af
Subcatchment S303: TO CB 3	Runoff Area=0.451 ac 69.18% Impervious Runoff Depth>4.25" Tc=6.0 min CN=80 Runoff=2.32 cfs 0.160 af
Subcatchment S304: TO CB 4	Runoff Area=0.253 ac 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=1.65 cfs 0.128 af
Subcatchment S305: TO CB 5	Runoff Area=0.622 ac 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=4.06 cfs 0.315 af
Subcatchment S306: TO CB 6	Runoff Area=0.512 ac 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=3.34 cfs 0.259 af
Subcatchment S307: TO CB 7	Runoff Area=0.052 ac 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=0.34 cfs 0.026 af
SubcatchmentS308: TO CB 8	Runoff Area=0.789 ac 100.00% Impervious Runoff Depth>6.07"
Subcatchment S309: TO CB 9	Runoff Area=1.165 ac 100.00% Impervious Runoff Depth>6.07"
Subcatchment S310: TO CB 10	Runoff Area=0.401 ac 69.58% Impervious Runoff Depth>4.25"
Subcatchment S311: TO CB 11	Runoff Area=1.175 ac 98.72% Impervious Runoff Depth>6.01"
SubcatchmentS312: TO CB 12	Runoff Area=1.153 ac 82.65% Impervious Runoff Depth>5.12
Subcatchment S313: TO IB1	Runoff Area=2.020 ac 56.73% Impervious Runoff Depth>3.42"
Subcatchment S314: TO WETLANDS	Tc=6.0 min CN=72 Runoff=8.54 cfs 0.576 af Runoff Area=5.452 ac 2.44% Impervious Runoff Depth>0.53" low Length=750' Tc=25.6 min CN=38 Runoff=1.28 cfs 0.242 af

3184.01_POST_DEVE	_OPMENT_A	Type III 24-hr	50-Year Rainfall=6.82"
Prepared by {enter your of	company name here}		Printed 1/11/2023
HydroCAD® 10.10-7b s/n 060	037 © 2022 HydroCAD Software So	olutions LLC	Page 11
Pond 1P: CB1		Peak Elev=195 98	Inflow=1.59 cfs_0.108 af
	12.0" Round Culvert n=0.013	L=200.0' S=0.0100 '/'	Outflow=1.59 cfs 0.108 af
Pond 2P: CB2		Peak Elev=195.81	Inflow=3.00 cfs 0.205 af
	12.0" Round Culvert n=0.013	L=140.0' S=0.0029 '/'	Outflow=3.00 cfs 0.205 at
Pond 3P: CB3		Peak Elev=195.05	Inflow=5.32 cfs_0.365 af
	12.0" Round Culvert n=0.013	L=150.0' S=0.0100 '/'	Outflow=5.32 cfs 0.365 af
Pond 4P: CB4	15 OF Deviad Ovhicet == 0.012	Peak Elev=191.87	Inflow=6.97 cfs 0.493 af
	15.0 Round Culvert n=0.013	L=150.0 S=0.0100 /	Outilow=0.97 cls 0.493 al
Pond 5P: CB5		Peak Elev=189.65'	Inflow=11.03 cfs 0.808 af
	18.0" Round Culvert n=0.013 L	=290.0' S=0.0100 '/' C	Outflow=11.03 cfs 0.808 af
Bond 6D: CB6		Dook Flov-195 54	Inflow-14.38 cfc 1.067 of
	24.0" Round Culvert n=0.013	L=20.0' S=0.0100 '/' C)utflow=14.38 cfs 1.067 af
Pond 7P: CB7		Peak Elev=189.48	Inflow=0.34 cfs 0.026 af
	12.0" Round Culvert n=0.013	L=220.0' S=0.0150 '/'	Outflow=0.34 cfs 0.026 at
Pond 8P: CB8		Peak Elev=189.43	Inflow=5.49 cfs 0.426 af
	15.0" Round Culvert n=0.013	L=300.0' S=0.0100 '/'	Outflow=5.49 cfs 0.426 af
Pond 9P: CB9	18.0" Round Culvert n=0.013	Peak Elev=187.34	Inflow=13.10 cfs 1.015 af
		2 20:0 0 0:0100 / 0	
Pond 10P: CB10		Peak Elev=192.47	Inflow=2.07 cfs 0.142 af
	12.0" Round Culvert n=0.013	L=300.0' S=0.0200 '/'	Outflow=2.07 cfs 0.142 af
Pond 11P: CB11		Peak Elev=188.35	Inflow=9.71 cfs_0.730 af
	18.0" Round Culvert n=0.013	L=300.0' S=0.0100 '/'	Outflow=9.71 cfs 0.730 af
Pond 12P: CB12	24.0" Round Culvert n=0.013	Peak Elev=185.51	Inflow=16.57 cfs 1.222 af outflow=16.57 cfs 1.222 af
		L-20.0 0-0.0100 / C	unow-10.07 013 1.222 af
Pond 13P: IB1	Peak Elev=185.	39' Storage=93,072 cf	Inflow=52.57 cfs 3.881 af
	Discarded=2.11 cfs 1.766 af Prim	ary=1.97 cfs 0.607 af	Outflow=4.07 cfs 2.372 af
Link OP1: OFFSITE CLOS	FDDRAINAGE		Inflow=1.81 cfs_0.132 af
			Primary=1.81 cfs 0.132 af
LINK OP2: STREAM			Inflow=2.86 cfs 0.849 af Primary=2.86 cfs 0.849 af
			1 maiy-2.00 013 0.043 di
Total Runoff	Area = 15.656 ac Runoff Volu	ime = 4.256 af Avera	age Runoff Depth = 3.26"
	48.82% Perviou	is = 7.644 ac 51.18	% Impervious = 8.012 ac

Section 2.2

Proposed Conditions 10 Year Storm Full Summary

3184.01 POST DEVELOPMENT A

Type III 24-hr 10-Year Rainfall=4.50" Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Printed 1/11/2023 Page 1

Summary for Subcatchment S101: TO EXIST. CB

Runoff 0.29 cfs @ 12.12 hrs, Volume= 0.026 af, Depth> 0.61" = Routed to Link OP1 : OFFSITE CLOSED DRAINAGE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

CN	Desc	ription			
30	Woo	ds, Good,	HSG A		
76	Grav	el roads, H	ISG A		
98	Pave	d parking,	HSG A		
39	>75%	6 Grass co	over, Good	I, HSG A	
54	Weig	hted Aver	age		
	74.00	0% Pervio	us Area		
	26.00	0% Imperv	vious Area		
gth	Slope	Velocity	Capacity	Description	
eet)	(ft/ft)	(ft/sec)	(cfs)		
				Direct Entry,	
	CN 30 76 98 39 54 set)	CN Desc 30 Wood 76 Grav 98 Pave 39 >75% 54 Weig 74.00 26.00 agth Slope eet) (ft/ft)	CNDescription30Woods, Good,76Gravel roads, H98Paved parking,39>75% Grass co54Weighted Aver74.00% Pervio26.00% Imperv26thSlopeVelocityeet)(ft/ft)(ft/sec)	CNDescription30Woods, Good, HSG A76Gravel roads, HSG A98Paved parking, HSG A39>75% Grass cover, Good54Weighted Average74.00% Pervious Area26.00% Impervious AreaagthSlopeVelocityCapacityeet)(ft/ft)(ft/sec)(cfs)	CN Description 30 Woods, Good, HSG A 76 Gravel roads, HSG A 98 Paved parking, HSG A 39 >75% Grass cover, Good, HSG A 54 Weighted Average 74.00% Pervious Area 26.00% Impervious Area agth Slope Velocity Capacity Description eet) (ft/ft) Direct Entry,

Summary for Subcatchment S201: TO EX. CB

Runoff	=	0.13 cfs @	12.16 hrs,	Volume=	0.017 af,	Depth>	0.43"
Routed	d to Lin	k OP1 : OFFSI	TE CLOSEI	D DRAINAGE		-	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area	(ac)	CN	Desc	cription			
0.	040	30	Woo	ds, Good,	HSG A		
0.	093	98	Pave	ed parking,	HSG A		
0.	346	39	>75%	6 Grass co	over, Good	d, HSG A	
0.	479	50	Weig	hted Aver	age		
0.	386		80.5	8% Pervio	us Area		
0.	093		19.42	2% Imperv	vious Area		
-			~		• ••		
IC	Leng	th	Slope	Velocity	Capacity	Description	
<u>(min)</u>	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
6.0						Direct Entry,	

Summary for Subcatchment S301: TO CB 1

0.82 cfs @ 12.10 hrs, Volume= 0.055 af, Depth> 1.90" Runoff = Routed to Pond 1P : CB1

3184.01_POST_DEVELOPMENT_A Prepared by {enter your company name here}

Type III 24-hr 10-Year Rainfall=4.50" Printed 1/11/2023 HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC Page 2

Area (a	ac) Cl	N Des	cription						
0.0	00 3	0 Woo	Woods, Good, HSG A						
0.1	15 9	8 Roo	fs, HSG A						
0.1	00 9	8 Pav	ed parking	, HSG A					
0.1	33 3	9 >75	% Grass co	over, Good	I, HSG A				
0.3	48 7	5 Wei	Weighted Average						
0.1	33	38.2	2% Pervio	us Area					
0.2	15	61.7	8% Imperv	/ious Area					
Tc I	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					

6.0

Direct Entry,

Summary for Subcatchment S302: TO CB 2

Runoff	=	0.79 cfs @	12.09 hrs,	Volume=	0.054 af,	Depth>	2.46"
Routed	l to Pond	2P : CB2				-	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area (ac)	CN	Description							
0.096	98	Roofs, HSG A							
0.096	98	Paved parking, HSG A							
0.069	39	>75% Grass cover, Good, HSG A							
0.261	82	Weighted Average	_						
0.069		26.44% Pervious Area							
0.192		73.56% Impervious Area							
Tc Leng (min) (fe	gth et)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							

6.0

Direct Entry,

Summary for Subcatchment S303: TO CB 3

0.086 af, Depth> 2.29" 1.28 cfs @ 12.09 hrs, Volume= Runoff = Routed to Pond 3P : CB3

Area (ac)	CN	Description
0.131	98	Roofs, HSG A
0.181	98	Paved parking, HSG A
0.139	39	>75% Grass cover, Good, HSG A
0.451	80	Weighted Average
0.139		30.82% Pervious Area
0.312		69.18% Impervious Area

3184.01_POST_DEVELOPMENT_A Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solu	Type III 24-hr 10-Year Rainfall=4.50" Printed 1/11/2023 tions LLC Page 3
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry	',
Summary for Subcatchment	S304: TO CB 4
Runoff = 1.09 cfs @ 12.09 hrs, Volume= 0 Routed to Pond 4P : CB4	0.084 af, Depth> 3.96"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Type III 24-hr 10-Year Rainfall=4.50"	Span= 5.00-20.00 hrs, dt= 0.05 hrs
Area (ac) CN Description	
0.060 98 Roofs, HSG A	
0.193 98 Paved parking, HSG A	
0.000 39 >75% Grass cover, Good, HSG A	
0.253 98 Weighted Average 0.253 100.00% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry	',
Summary for Subcatchment	S305: TO CB 5
Runoff = 2.67 cfs @ 12.09 hrs, Volume= 0 Routed to Pond 5P : CB5	0.205 af, Depth> 3.96"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Type III 24-hr 10-Year Rainfall=4.50"	Span= 5.00-20.00 hrs, dt= 0.05 hrs
Area (ac) CN Description	
0.072 98 Roofs, HSG A	
0 550 09 Doved parking USC A	

0.	072	98	Roof	s, HSG A		
0.	550	98	Pave	ed parking,	HSG A	
0.	622	98	Weig	ghted Aver	age	
0.	622		100.	00% Impe	rvious Area	I
Tc	Length	า 3	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry,

Summary for Subcatchment S306: TO CB 6

Runoff = 2.20 cfs @ 12.09 hrs, Volume= 0.169 af, Depth> 3.96" Routed to Pond 6P : CB6

Type III 24-hr 10-Year Rainfall=4.50" Printed 1/11/2023 ions LLC Page 4

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Area (a	ac)	CN	Desc	ription		
0.1	12	98	Roof	s, HSG A		
0.4	00	98	Pave	ed parking,	HSG A	
0.5	12	98	Weig	hted Aver	age	
0.5	12		100.0	00% Impe	rvious Area	a
Tc (min)	Length (feet)	n 5)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry,

Summary for Subcatchment S307: TO CB 7

Runoff = 0.22 cfs @ 12.09 hrs, Volume= 0.017 af, Depth> 3.96" Routed to Pond 7P : CB7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area (ac) CN	Desc	cription		
0.026	6 98	Root	fs, HSG A		
0.026	6 98	Pave	ed parking,	, HSG A	
0.052	2 98	Weig	ghted Aver	age	
0.052	2	100.	00% Impe	rvious Area	
Tc Le	ngth	Slope	Velocity	Capacity	Description
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment S308: TO CB 8

Runoff = 3.39 cfs @ 12.09 hrs, Volume= 0.261 af, Depth> 3.96" Routed to Pond 8P : CB8

Area	(ac)	CN	Desc	cription		
0.	150	98	Root	s, HSG A		
0.	639	98	Pave	ed parking,	, HSG A	
0.	789	98	Weig	ghted Aver	age	
0.	789		100.	00% Impe	rvious Area	a
Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry,

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 1/11/2023

 s LLC
 Page 5

Summary for Subcatchment S309: TO CB 9

Runoff = 5.00 cfs @ 12.09 hrs, Volume= 0.385 af, Depth> 3.96" Routed to Pond 9P : CB9

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area	(ac)	CN	Desc	cription		
0.	270	98	Roof	s, HSG A		
0.	895	98	Pave	ed parking	, HSG A	
1.	165	98	Weig	ghted Aver	age	
1.	165		100.	00% Impe	rvious Area	3
Тс	Leng	th	Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry,
			_			

Summary for Subcatchment S310: TO CB 10

Runoff = 1.13 cfs @ 12.09 hrs, Volume= 0.077 af, Depth> 2.29" Routed to Pond 10P : CB10

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area	(ac)	CN	Desc	ription		
0.	122	39	>75%	6 Grass co	over, Good,	I, HSG A
0.	000	98	Roof	s, HSG A		
0.	279	98	Pave	ed parking,	HSG A	
0.	401	80	Weig	hted Aver	age	
0.	122		30.4	2% Pervio	us Area	
0.	279		69.5	8% Imperv	vious Area	
_						
Тс	Leng	th	Slope	Velocity	Capacity	Description
<u>(min)</u>	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry,

Summary for Subcatchment S311: TO CB 11

Runoff = 5.00 cfs @ 12.09 hrs, Volume= 0.380 af, Depth> 3.88" Routed to Pond 11P : CB11

Type III 24-hr 10-Year Rainfall=4.50"

Printed 1/11/2023

Page 6

3184.01_POST_DEVELOPMENT_A

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Description Area (ac) CN >75% Grass cover, Good, HSG A 0.015 39 0.035 98 Roofs, HSG A Paved parking, HSG A 1.125 98 Weighted Average 1.175 97 1.28% Pervious Area 0.015 1.160 98.72% Impervious Area Τс Length Slope Velocity Capacity Description / CLICLY 15.1

(min)	(leet)	(11/11)	(II/sec)	(CIS)	
6.0					Direc

Direct Entry,

Summary for Subcatchment S312: TO CB 12

Runoff = 4.15 cfs @ 12.09 hrs, Volume= 0.289 af, Depth> 3.01" Routed to Pond 12P : CB12

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area (ac) CN	Desc	cription			
0.200) 39	>75%	% Grass co	over, Good	1, HSG A	
0.103	3 98	Root	fs, HSG A			
0.850) 98	Pave	ed parking,	HSG A		
1.153	3 88	Weig	ghted Aver	age		
0.200)	17.35% Pervious Area				
0.953	3	82.6	5% Imperv	vious Area		
<u> </u>		~		•	-	
IC Le	ength	Slope	Velocity	Capacity	Description	
<u>(min)</u> ((feet)	(ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry,	

Summary for Subcatchment S313: TO IB1

Runoff = 4.16 cfs @ 12.10 hrs, Volume= 0.282 af, Depth> 1.68" Routed to Pond 13P : IB1

Area (ac)	CN	Description
0.275	98	Roofs, HSG A
0.871	98	Paved parking, HSG A
0.874	39	>75% Grass cover, Good, HSG A
2.020	72	Weighted Average
0.874		43.27% Pervious Area
1.146		56.73% Impervious Area

3184.01_POST_DEV Prepared by {enter you HydroCAD® 10.10-7b s/n (ELOPMEN company 6037 © 202	NT_A name here 2 HydroCAE	Type III 24-hr 10-Year Rainfall=4.50" e} Printed 1/11/2023) Software Solutions LLC Page 7
Tc Length Slope (min) (feet) (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description
6.0			Direct Entry,
Sı	mmary fo	or Subcat	chment S314: TO WETLANDS
Runoff = 0.06 c Routed to Link OP2 : \$	fs @ 15.2 STREAM	9 hrs, Volu	me= 0.027 af, Depth> 0.06"
Runoff by SCS TR-20 me Type III 24-hr 10-Year R	thod, UH=S ainfall=4.50'	SCS, Weigh	ted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Area (ac) CN De	scription		
1.596 30 Wo	ods, Good,	HSG A	
0.029 76 Gra	avel roads, i ved parking		
3.694 39 >7	5% Grass c	over, Good	, HSG A
5.452 38 We	ighted Aver	age	
5.319 97	56% Pervio	us Area	
0.133 2.4	4% Impervi	ous Area	
Tc Length Slope	e Velocitv	Capacity	Description
(min) (feet) (ft/ft) (ft/sec)	(cfs)	
19.5 85 0.0200	0.07		Sheet Flow, A-B
			Woods: Light underbrush n= 0.400 P2= 3.00"
5.4 390 0.0300) 1.21		Shallow Concentrated Flow, B-C
07 275 0.0500	6 60	13 20	Parabolic Channel C-D
	0.00	10.20	W=4.00' D=0.75' Area=2.0 sf Perim=4.3'
			n= 0.030 Earth, grassed & winding
25.6 750 Total			

Summary for Pond 1P: CB1

 Inflow Area =
 0.348 ac, 61.78% Impervious, Inflow Depth > 1.90" for 10-Year event

 Inflow =
 0.82 cfs @
 12.10 hrs, Volume=
 0.055 af

 Outflow =
 0.82 cfs @
 12.10 hrs, Volume=
 0.055 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.82 cfs @
 12.10 hrs, Volume=
 0.055 af

 Routed to Pond 2P : CB2
 0.055 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 193.43' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	192.90'	12.0" Round Culvert L= 200.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 192.90' / 190.90' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.80 cfs @ 12.10 hrs HW=193.42' TW=190.92' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.80 cfs @ 1.94 fps)

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=4.50" Printed 1/11/2023 s LLC _____ Page 8

Summary for Pond 2P: CB2

 Inflow Area =
 0.609 ac, 66.83% Impervious, Inflow Depth > 2.14" for 10-Year event

 Inflow =
 1.60 cfs @
 12.09 hrs, Volume=
 0.109 af

 Outflow =
 1.60 cfs @
 12.09 hrs, Volume=
 0.109 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.60 cfs @
 12.09 hrs, Volume=
 0.109 af

 Routed to Pond 3P : CB3
 CB3
 0.109 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 191.01' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	189.80'	12.0" Round Culvert L= 140.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 189.80' / 189.40' S= 0.0029 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.13 cfs @ 12.09 hrs HW=190.92' TW=190.70' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.13 cfs @ 1.61 fps)

Summary for Pond 3P: CB3

Inflow Area	=	1.060 ac, 6	7.83% Impe	ervious,	Inflow	Depth >	2.21	" for 10-	-Year event	
Inflow	=	2.88 cfs @	12.09 hrs,	Volume	=	0.195	af			
Outflow	=	2.88 cfs @	12.09 hrs,	Volume	=	0.195	af, A	Atten= 0%,	Lag= 0.0 m	in
Primary	=	2.88 cfs @	12.09 hrs,	Volume	=	0.195	af		-	
Routed	to Pond	4P : CB4								

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 190.73' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	189.30'	12.0" Round Culvert L= 150.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 189.30' / 187.80' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.84 cfs @ 12.09 hrs HW=190.70' TW=189.02' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 2.84 cfs @ 3.61 fps)

Summary for Pond 4P: CB4

Inflow Area	=	1.313 ac, 7	4.03% Impe	ervious,	Inflow	Depth >	2.54	" for 10-	Year event	
Inflow	=	3.97 cfs @	12.09 hrs,	Volume	=	0.278	af			
Outflow	=	3.97 cfs @	12.09 hrs,	Volume	=	0.278	af, A	tten= 0%,	Lag= 0.0 m	nin
Primary	=	3.97 cfs @	12.09 hrs,	Volume	=	0.278	af		•	
Routed	to Pond	5P : CB5								

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Page 9

3184.01 POST DEVELOPMENT A Type III 24-hr 10-Year Rainfall=4.50" Prepared by {enter your company name here} Printed 1/11/2023 HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Peak Elev= 189.04' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	187.70'	15.0" Round Culvert L= 150.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 187.70' / 186.20' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.88 cfs @ 12.09 hrs HW=189.02' TW=187.79' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.88 cfs @ 3.17 fps)

Summary for Pond 5P: CB5

Inflow Area = 1.935 ac, 82.38% Impervious, Inflow Depth > 3.00" for 10-Year event 6.63 cfs @ 12.09 hrs, Volume= 0.484 af Inflow = Outflow = 6.63 cfs @ 12.09 hrs, Volume= 0.484 af, Atten= 0%, Lag= 0.0 min 6.63 cfs @ 12.09 hrs, Volume= 0.484 af Primary = Routed to Pond 6P : CB6

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 187.82' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	186.10'	18.0" Round Culvert
			L = 290.0 CPP, projecting, no neadwail, $Re = 0.900Inlet / Outlet Invert= 186.10' / 183.20' S= 0.0100 '/' Cc= 0.900$
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=6.48 cfs @ 12.09 hrs HW=187.78' TW=184.73' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 6.48 cfs @ 3.67 fps)

Summary for Pond 6P: CB6

Inflow Area = 2.447 ac, 86.06% Impervious, Inflow Depth > 3.20" for 10-Year event Inflow 8.83 cfs @ 12.09 hrs, Volume= 0.653 af = 8.83 cfs @ 12.09 hrs, Volume= Outflow 0.653 af, Atten= 0%, Lag= 0.0 min = 8.83 cfs @ 12.09 hrs, Volume= Primary = 0.653 af Routed to Pond 13P : IB1

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 184.75' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	183.10'	24.0" Round Culvert
	-		L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 183.10' / 182.90' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=8.62 cfs @ 12.09 hrs HW=184.73' TW=182.73' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 8.62 cfs @ 4.30 fps)

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 1/11/2023

 s LLC
 Page 10

Summary for Pond 7P: CB7

 Inflow Area =
 0.052 ac,100.00% Impervious, Inflow Depth > 3.96" for 10-Year event

 Inflow =
 0.22 cfs @
 12.09 hrs, Volume=
 0.017 af

 Outflow =
 0.22 cfs @
 12.09 hrs, Volume=
 0.017 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.22 cfs @
 12.09 hrs, Volume=
 0.017 af

 Routed to Pond 8P : CB8
 CB8
 0.017 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 189.26' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	189.00'	12.0" Round Culvert L= 220.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 189.00' / 185.70' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.22 cfs @ 12.09 hrs HW=189.26' TW=186.78' (Dynamic Tailwater)

Summary for Pond 8P: CB8

Inflow Area	=	0.841 ac,10	0.00% Impe	ervious, Inflo	w Depth >	3.96"	for 10-	Year event
Inflow	=	3.61 cfs @	12.09 hrs,	Volume=	0.278	af		
Outflow	=	3.61 cfs @	12.09 hrs,	Volume=	0.278	af, At	ten= 0%,	Lag= 0.0 min
Primary	=	3.61 cfs @	12.09 hrs,	Volume=	0.278	af		-
Routed	to Pond	9P : CB9						

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.81' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	185.60'	15.0" Round Culvert L= 300.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 185.60' / 182.60' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.52 cfs @ 12.09 hrs HW=186.78' TW=184.81' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 3.52 cfs @ 2.93 fps)

Summary for Pond 9P: CB9

2.006 ac,100.00% Impervious, Inflow Depth > 3.96" for 10-Year event Inflow Area = Inflow 8.61 cfs @ 12.09 hrs, Volume= 0.662 af = 8.61 cfs @ 12.09 hrs, Volume= Outflow = 0.662 af, Atten= 0%, Lag= 0.0 min = 8.61 cfs @ 12.09 hrs, Volume= 0.662 af Primary Routed to Pond 13P : IB1

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

3184.01_POST_DEVELOPMENT_AType III 24-hr10-Year Rainfall=4.50"Prepared by {enter your company name here}Printed 1/11/2023HydroCAD® 10.10-7bs/n 06037© 2022 HydroCAD Software Solutions LLCPage 11

Peak Elev= 184.89' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	182.50'	18.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 182.50' / 182.30' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=8.38 cfs @ 12.09 hrs HW=184.81' TW=182.72' (Dynamic Tailwater) -1=Culvert (Inlet Controls 8.38 cfs @ 4.74 fps)

Summary for Pond 10P: CB10

Inflow Area = 0.401 ac, 69.58% Impervious, Inflow Depth > 2.29" for 10-Year event 1.13 cfs @ 12.09 hrs, Volume= 0.077 af Inflow = Outflow = 1.13 cfs @ 12.09 hrs, Volume= 0.077 af, Atten= 0%, Lag= 0.0 min = 1.13 cfs @ 12.09 hrs, Volume= 0.077 af Primary Routed to Pond 11P : CB11

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 192.14' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	191.50'	12.0" Round Culvert
			L= 300.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 191.50' / 185.50' S= 0.0200 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.11 cfs @ 12.09 hrs HW=192.13' TW=186.95' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.11 cfs @ 2.14 fps)

Summary for Pond 11P: CB11

Inflow Area = 1.576 ac, 91.31% Impervious, Inflow Depth > 3.48" for 10-Year event Inflow 6.14 cfs @ 12.09 hrs, Volume= 0.457 af = 6.14 cfs @ 12.09 hrs, Volume= Outflow 0.457 af, Atten= 0%, Lag= 0.0 min = 6.14 cfs @ 12.09 hrs, Volume= Primary = 0.457 af Routed to Pond 12P : CB12

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.98' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	185.40'	18.0" Round Culvert
			L= 300.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 185.40' / 182.40' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=5.97 cfs @ 12.09 hrs HW=186.94' TW=184.09' (Dynamic Tailwater) -1=Culvert (Inlet Controls 5.97 cfs @ 3.38 fps)

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 1/11/2023

 s LLC
 Page 12

Summary for Pond 12P: CB12

Inflow Area = 2.729 ac, 87.65% Impervious, Inflow Depth > 3.28" for 10-Year event Inflow 10.29 cfs @ 12.09 hrs, Volume= 0.746 af = 10.29 cfs @ 12.09 hrs, Volume= Outflow = 0.746 af, Atten= 0%, Lag= 0.0 min 10.29 cfs @ 12.09 hrs, Volume= Primary = 0.746 af Routed to Pond 13P : IB1

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 184.13' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	182.30'	24.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 182.30' / 182.10' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=10.03 cfs @ 12.09 hrs HW=184.10' TW=182.73' (Dynamic Tailwater) -1=Culvert (Barrel Controls 10.03 cfs @ 4.46 fps)

Summary for Pond 13P: IB1

Inflow Area	a =	9.202 ac, 8	3.13% Imp	ervious,	Inflow De	pth >	3.06'	' for 10-Y	ear event	
Inflow	=	31.87 cfs @	12.09 hrs,	Volume	=	2.344	af			
Outflow	=	1.70 cfs @	14.34 hrs,	Volume	=	1.416	af, A	tten= 95%,	Lag= 135.3	min
Discarded	=	1.68 cfs @	14.34 hrs,	Volume	=	1.412	af		-	
Primary	=	0.03 cfs @	14.34 hrs,	Volume	=	0.004	af			
Routed	to Link	OP2 : STREA	M							

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 184.00' @ 14.34 hrs Surf.Area= 24,138 sf Storage= 55,670 cf

Plug-Flow detention time= 188.9 min calculated for 1.416 af (60% of inflow) Center-of-Mass det. time= 109.1 min (864.9 - 755.8)

Volume	Invert	Invert Avail.Storage Storage Description								
#1	181.00'	112,359 cf	Custo	m Stage Data (Co	nic)Listed below	(Recalc)				
#2	177.00'	179 cf	3.00'W	/ x 40.00'L x 4.00'H	H Prismatoid					
#3	178.00'	480 cf Overall - 31 cf Embedded = 449 cf x 40.0% Voids 31 cf 12.0" Round Pipe Storage Inside #2 L= 40.0'								
		112,570 cf	Total A	Available Storage						
Elevation	Surf.	Area In	c.Store	Cum.Store	Wet.Area					
(feet)	(9	sq-ft) (cub	ic-feet)	(cubic-feet)	(sq-ft)					
181.00	10	,000	0	0	10,000					
182.00	17	,800	13,714	13,714	17,811					
184.00	24	,000	41,646	55,360	24,095					
186.00	33	3,250	56,999	112,359	33,422					

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

 Type III 24-hr
 10-Year Rainfall=4.50"

 Printed
 1/11/2023

 s LLC
 Page 13

Device	Routing	Invert	Outlet Devices
#1	Discarded	177.00'	3.000 in/hr Exfiltration over Surface area
#2	Primary	185.33'	4.0' long x 4.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66
			2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32
#3	Primary	183.00'	12.0" Round Culvert
			L= 80.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 183.00' / 182.20' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#4	Device 3	183.90'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#5	Device 3	184.80'	12.0" W x 6.0" H Vert. Orifice/Grate C= 0.600
			I imited to weir flow at low heads

Discarded OutFlow Max=1.68 cfs @ 14.34 hrs HW=184.00' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.68 cfs)

Primary OutFlow Max=0.03 cfs @ 14.34 hrs HW=184.00' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 3=Culvert (Passes 0.03 cfs of 2.69 cfs potential flow)

4=Orifice/Grate (Orifice Controls 0.03 cfs @ 1.10 fps)

5=Orifice/Grate (Controls 0.00 cfs)

Summary for Link OP1: OFFSITE CLOSED DRAINAGE

Inflow Area	a =	1.002 ac, 2	2.85% Impe	ervious,	Inflow De	epth > ().52"	for 10-	Year event
Inflow	=	0.41 cfs @	12.13 hrs,	Volume	=	0.044 a	f		
Primary	=	0.41 cfs @	12.13 hrs,	Volume	=	0.044 a	f, Atte	en= 0%,	Lag= 0.0 mir

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link OP2: STREAM

Inflow A	Area	=	14.654 ac, 5	53.11% Impe	ervious,	Inflow Depth >	0.0)3" for 10-	-Year event
Inflow	:	=	0.08 cfs @	14.71 hrs,	Volume	= 0.031	af		
Primar	y :	=	0.08 cfs @	14.71 hrs,	Volume	= 0.031	af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Section 3.1

Inspection & Maintenance Manual

84 Lumber Company 3 Sullivan Road, Hudson, New Hampshire Storm Water Management System Inspection and Maintenance Manual

Introduction

The operation and maintenance of a storm water management system and its individual components is as critical to system performance as the design. Without proper maintenance, best management practices (BMPs) are likely to become functionally impaired or to fail, providing reduced or no treatment of storm water. Proper operation and maintenance will ensure that the storm water system and individual BMPs will remain effective at removing pollutants as designed and meeting New Hampshire's water quality objectives. Proper maintenance will:

- Maintain the volume of storm water treated over the long term;
- Sustain the pollutant removal efficiency of the BMP;
- Reduce the risk of re-suspending sediment and other pollutants captured by the BMP;
- Prevent structural deterioration of the BMP and minimize the need for expensive repairs;
- Decrease the potential for failure of the BMP.

The NH Department of Environmental Services Alteration of Terrain (AoT) regulations (Env-Wq 1500) require the long term maintenance of storm water practices, and stipulate the establishment of a mechanism to provide for ongoing inspections and maintenance.

In accordance with Env-Wq 1507.08 <u>Long-Term Maintenance</u> the mechanism for providing long-term maintenance practices for this development are as follows:

Responsible Maintenance Party:

Owner:	84 Lumber Company
	1019 Route 519, Building 4
	Eighty Four, PA 15330

Report Information:

- 84 Lumber Company will be the entity responsible for implementing the required reporting, inspection, and maintenance activities identified in the I & M manual.
- 84 Lumber Company will maintain all record keeping required by the I & M manual. Any transfer of responsibility for I & M activities or transfer in ownership shall be documented to the DES in writing.
- Inspection and maintenance reports shall be completed after each inspection. Copies of the report forms to be completed by the inspector are attached at the end of this manual, including:
 - \circ Inspection checklist to be used during each inspection;
 - o Inspection and maintenance logs to document each inspection and maintenance activity;

August 2, 2022

84 Lumber Company, Hudson NH Storm Water Management System: Inspection and Maintenance Manual

• A plan showing the locations of all the storm water practices described in the I&M manual is attached at the end of this manual.

Maintenance Recommendations for Best Management Practices:

The following recommendations are to be used as a guide for the inspection and maintenance of the permanent erosion and sediment control measures.

In-Ground Infiltration Basin

- Removal of debris from inlet and outlet structures.
- Removal of accumulated sediment.
- Inspection and repair of outlet structures and appurtenances.
- Inspection of infiltration components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Periodic mowing of embankments.
- Removal of woody vegetation form embankments.
- Inspection and repair of embankments and spillways.
- If an infiltration system does not drain within 72-hours following a rainfall event, then a qualified
 professional should assess the condition of the facility to determine measures required to restore
 infiltration function, including but not limited to removal of accumulated sediments or reconstruction of
 the infiltration trench.
- Vegetation should be inspected at least annually, and maintained in healthy condition, including pruning, removal and replacement of dead or diseased vegetation, and removal of invasive species.

Sediment Forebays

- Inspect Forebays monthly for first year to determine sediment load. If sediment load is heavy then maintain monthly inspections. If sediment load is light then reduce inspection accordingly but inspect at least semi-annually.
- Remove trash upon inspection and accumulated sedimentation when sediments have accumulated to within 6 inches of the outlet and/or when there is evidence of excessive sediment being conveyed to downstream BMP.
- Repair any damage in the forebay as a result of erosion immediately after the inspection to minimize sediment transport.
- Dispose of sediments and other wastes in conformance with applicable local, state and federal regulations.

84 Lumber Company, Hudson NH Storm Water Management System: Inspection and Maintenance Manual

August 2, 2022

Drainage Catch Basins

- Inspect basins at least semi-annually.
- Vacuum the sediment basins when the sediment reaches one-half the depth from the bottom of the catch basin to the invert of the outlet pipe.
- Repair damaged basin grates immediately after the inspection.
- Repair pavement damage around the basins immediately after the inspection to prevent further damage to the structure or paved area.
- Dispose of sediments and other wastes in conformance with applicable local, state and federal regulations

Outlet Protection - Riprap Aprons

- Inspect the outlet protection annually for damage and deterioration. Repair damages immediately.
- Remove debris from apron area.

Inspection Checklist /Maintenance Logs

• The inspection checklist and maintenance logs following this report shall be used as a guide for the inspection reporting for this project.

84 Lumber Company, Hudson NH Storm Water Management System: Inspection and Maintenance Manual

August 2, 2022

Inspection Checklist

- □ Infiltration Basins
- □ Sediment Forebays
- Catch Basin
- Headwall Inlets
- □ Headwall Outlets/Aprons

84 Lumber Company, Hudson NH

Storm Water Management System: Inspection and Maintenance Manual

August 2, 2022

Inspection and Maintenance Log						
	ВМР	Inspection Date	Inspected By	Maintenance Required?	Maintenance Performed	
1				□Yes		
				□No		
2				□Yes		
				□No		
3				□Yes		
				□No		
4				□Yes		
				□No		
5				□Yes		
				□No		
6				□Yes		
				□No		
7				□Yes		
				□No		
8				□Yes		
				□No		
9				□Yes		
				□No		

84 Lumber Company, Hudson NH Storm Water Management System: Inspection and Maintenance Manual

Winter Deicing Operations

The use of deicing materials on-site shall be minimized. The use of deicing materials on-site shall be in compliance with the requirements of Town of Merrimack's Aquifer Conservation District and Well Head Protection Area. The individual overseeing the winter maintenance operations shall receive and maintain the New Hampshire Green Snowpro certification as offered by the New Hampshire Technology Center at the University of New Hampshire, Durham, NH.

A log of winter deicing operations, tracking the type and amount of deicing materials applied on site, shall be maintained by the entity responsible for on-site winter maintenance operations. A copy of the completed logs for each season shall be filed with the BMP Inspection and Maintenance Logs.

Winter Maintenance Basics

- Anti-ice before the storm.
- Remove snow from surfaces as quickly as possible to reduce compaction.
 No snow should be plowed over the proposed infiltration basin.
- Plow before applying deicers to avoid dilution of the salt.
- Minimize deicer use during the storm.
- Never plow or blow snow into bodies of water, wetlands, traffic or into streets.
- Minimize back-up maneuvers to reduce chance of accidents.
- Limit use of salt and sand during the storm; use only to reduce bonding.
- Do not use salt to burn off snow.
- Use application rate chart to determine how much salt to use.
- Don't apply dry salt (sodium chloride) below 15° F pavement temperature. It will not melt fast enough to help.
- Below 15° F, use a wetted salt.
- For extreme cold, skip melting and use sand.
- Clean up spills.
- Accurately record the material used at each site.
- Pay attention to its effectiveness and record observations.
- Use only what is needed based on proper application rates for the conditions.
- Put extra back in salt pile or return extra bags.

Deicing Application Rate Guidelines for Parking Lots and Sidewalks

These rates are based on road application guidelines (LRRB 2012). Develop specific application rates by adjusting the current rates incrementally downward toward the guidelines. Where temperature categories overlap, select the rate most applicable to the present situation.

84 Lumber Company, Hudson NH

Storm Water Management System: Inspection and Maintenance Manual

August 2, 2022

			Application Rate in lbs./per 1000 square foot area				
Pavement Temp. (≌F) and Trend (个↓)	Weather Condition	Maintenance Actions	Salt Pre-wetted/ Pretreated With Salt Brine	Salt Pre- wetted/ Pretreated With Other Blends	Dry Salt	Winter Sand (abrasives)	
>30º 个	Snow	Plow, treat intersections only	0.75	0.5	0.75	not recommended	
	Frz. Rain	Apply chemical	1.25	1.0	1.5	not recommended	
30º ↓	Snow	Plow & apply chemical	1.25	1.0	1.5	not recommended	
	Frz. Rain	Apply chemical	1.5	1.25	1.75.	not recommended	
25 - 30º 个	Snow	Plow & apply chemical	1.25	1.0	1.5	not recommended	
	Frz. Rain	Apply chemical	1.5	1.25	1.75	not recommended	
25 - 30º ↓	Snow	Plow & apply chemical	1.25	1.0	1.5	not recommended	
	Frz. Rain	Apply chemical	1.75	1.5	2.25	3.25	
20 - 25º 个	Snow or Frz. Rain	Plow & apply chemical	1.75	1.5	2.25	3.25 for frz. rain	
20 - 25º 🗸	Snow	Plow & apply chemical	2.0	2.0	2.75	not recommended	
	Frz. Rain	Apply chemical	2.5	2.0	3.0	3.25	
15º to 20º ↑	Snow	Plow & apply chemical	2.0	2.0	2.75	not recommended	
	Frz. Rain	Apply chemical	2.5	2.0	3.0	3.25	
15º to 20º ↓	Snow or Frz. Rain	Plow & apply chemical	2.5	2.0	3.0	3.25 for frz. rain	
0 to 15º ↑ ↓	Snow	Plow, treat with blends, sand hazardous areas	not recommended	3.0	not recommended	5.0 spot treat as needed	
< 0º	Snow	Plow, treat with blends, sand hazardous areas	not recommended	4.5	not recommended	5.0 spot treat as needed	

August 2, 2022

84 Lumber Company, Hudson NH

Storm Water Management System: Inspection and Maintenance Manual

Instructions for using application rate table for calibrated spreaders

- 1. Using Deicing Application Rate Guidelines for Parking Lots and Sidewalks. Select the row (\rightarrow) with the appropriate pavement temperature, temperature trend, and weather conditions.
- 2. Select the column (\downarrow) that has the type of material used.
- 3. Find the box where the row (\longrightarrow) and columns (\downarrow) intersect to find the application rate.
- 4. Compare those values to the calibration chart for the spreader.*
- 5. Select the correct spreader setting for the rate calculated.

Example:

- 1. Parking lot is 54,000 sq. ft.
- 2. Temperature: 22^P and falling. It has finished snowing. (\longrightarrow)
- 3. Using salt pretreated with salt brine. (\downarrow)
- Find the 20 25^o ↓ box. Follow it to the right to the column labeled "Salt Pre-wetted/pretreated with salt brine." Read the rate in the box. The box where the column and row intersect shows a rate of 2.0 /1000 square feet. (→↓)
- 5. Refer to the calibration chart in the vehicle and set the spreader to the setting that most closely matches the 2.0 lbs. /1000 square feet.
- 6. The mixture is ready to apply.

Instructions for using application rate table for spreaders that are NOT calibrated

Using the example above:

- Calculate size factor: Divide the parking lot size (54,000 sq. ft.) by 1,000 sq. ft. 54,000/1,000 = 54. The size factor is 54.
- 2. Find application rate (2.0).
- 3. Multiply application rate by size factor $2 \times 54 = 108$.
- 4. The amount needed for the entire lot is 108 lbs. pre-wetted/pretreated salt brine.
- 5. Because the spreader is not calibrated, the setting is unknown.
- 6. Although the calibration setting is not known, this establishes the amount of salt to use and increases efficiency.
- 7. Determine the best method to spread the 108 pounds evenly across the parking lot.

Pavement area of the proposed Commerce Park R&D = 338,000 sq.ft.

84 Lumber Company, Hudson NH Storm Water Management System: Inspection and Maintenance Manual

August 2, 2022

Deicing Log						
Air Temp.	Weather Conditions	Date of Application	Type of Deicer Used	Amount of Deicer Used	Deicer Applied By	
<u> </u>						
Section 3.2

Test Pit Data

Test Pit Data Map 145 Lot 15 3 Sullivan Road Hudson, NH

10/13/22

Test Pit #10-6"- 10YR 3/3 dark brown, loamy sand, granular, friable6-12"- 10YR 5/6 yellowish brown, gravelly medium to coarse sand, single grain, looseESHWT = NoneObserved Water = NoneLedge/Boulders = 12"Roots = None

Test Pit #2

0-7"- 10YR 3/3 dark brown, loamy sand, granular, friable 7-72"- 10YR 5/6 yellowish brown, gravelly medium to coarse sand, single grain, loose ESHWT = None Observed Water = None Ledge/Boulders = None Roots = None

Test Pit #3

0-12"- 10YR 3/3 dark brown, loamy sand, granular, friable 12-24"- 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose 24-76"- 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose ESHWT = None Observed Water = None Ledge/Boulders = 76" Roots = None

Test Pit #4

0-12"- 10YR 3/3 dark brown, loamy sand, granular, friable 12-24"- 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose 24-70"- 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose ESHWT = None Observed Water = None Ledge/Boulders = 70" Roots = None _____

Test Pit #5

0-12"- 10YR 3/3 dar 12-24"- 10YR 4/4 da	k brown, loamy sand, granula ark yellowish brown, loamy me	r, friable edium to coarse sand, single g	grain, loose
24-80″- 2.5Y 6/6 oli ESHWT = None	ve brown, gravelly medium to Observed Water = None	Ledge/Boulders = None	se Roots = 6"
Test Pit #6			
0-15"- 10YR 3/3 dai	rk brown, loamy sand, granula	r. friable	
15-24"- 10YR 4/4 da	ark vellowish brown, loamy m	edium to coarse sand, single g	rain, loose
24-68"- 2.5Y 6/6 oli	ve brown, gravelly medium to	coarse sand, single grain, loo	se
ESHWT = None	Observed Water = None	Ledge/Boulders = 68"	Roots = None
Test Pit #7			
0-9″- 10YR 3/3 dark	brown, loamy fine sand, gran	ular, friable	
9-16"- 10YR 5/6 yel	lowish brown, loamy fine sand	l, massive, friable	
16"- 2.5Υ 6/3 light γ	ellowish brown, loamy fine sa	ind, massive, friable	
ESHWT = 66"	Observed Water = None	Ledge/Boulders = None	Roots = $4^{\prime\prime}$
Test Pit #8			
0-56"- 10YR 3/3 daı	rk brown, gravelly sandy loam,	, massive, friable *fill	
56-78"- 2.5Y 6/3 lig	ht yellowish brown, loamy fin	e sand, massive, friable	
ESHWT = None	Observed Water = None	Ledge/Boulders = None	Roots = None
Test Pit #9			
0-26"- 10YR 3/3 da	rk brown, sandy loam, massive	e, friable *fill	
26-44"- 10YR 4/6 d	ark yellowish brown, stony/gra	avelly sandy loam, massive, fr	iable
44-72" - 2.5Y 5/3 lig	ght olive brown, stony/gravelly	y sandy loam, massive, firm	
ESHWT = None	Observed Water = None	Ledge/Boulders = None	Roots = None
Test Pit #10			
0-6"- 10YR 3/3 dark	c brown, loamy sand, granular	, friable	
6-19"- 10YR 5/6 yel	llowish brown, loamy sand, ma	assive, friable	
19-32"- 2.5Y 6/3 lig	ht olive brown, medium to co	arse sand, single grain, loose	
32-80"- 2.5Y 6/4 lig	ht olive brown, fine to mediur	n sand, single grain, loose	.
ESHWT = 64"	Observed Water = None	Ledge/Boulders = None	Roots = None

Test Pit #11			
0-12"- 10YR 3/3 dai	k brown, loamy sand, granula	r, friable	
12-24"- 10YR 5/6 ye	ellowish brown, loamy sand, m	assive, friable	
24-36"- 2.5Y 6/4 lig	ht yellowish brown, sandy loai	n, massive, friable	
36-76"- 2.5Y 5/4 lig	ht olive brown, silty loam, mas	sive, friable	
ESHWT = 60"	Observed Water = None	Ledge/Boulders = None	Roots = 22"
Test Pit #12			
0-36"- 10YR 3/3 dai	rk brown, stony sandy loam, gi	anular, friable *fill	
ESHWT = None	Observed Water = None	Ledge/Boulders = None	Roots = None
Test Pit #12A			
0-12"- 10YR 3/3 da	rk brown, loamy sand, granula	r, friable	
12-23"- 10YR 5/6 ye	ellowish brown, loamy sand, m	assive, friable	
23-36"- 2.5Y 6/4 lig	ht yellowish brown, sandy loai	n, massive, friable	
36-68"- 2.5Y 5/4 lig	ht olive brown, silty loam, mas	ssive, friable	
ESHWT = 60"	Observed Water = None	Ledge/Boulders = None	Roots = 24"
Test Pit #13			
0-36"- 10YR 3/3 da	rk brown, sandy loam, massive	, friable *fill	
36-48"- 10YR 4/6 d	ark yellowish brown, stony/gra	avelly sandy loam, massive, fri	able
48-80" - 2.5Y 5/3 lig	ght olive brown, stony/gravelly	sandy loam, massive, firm	
ESHWT = None	Observed Water = None	Ledge/Boulders = None	Roots = None
Test Pit #14			
0-12"- 10YR 3/3 da	rk brown, loamy sand, massive	e, friable *fill	
12-48"- 2.5Y 6/3 lig	ht yellowish brown, medium t	o coarse sand, single grain, lo	ose
48-72" - 2.5Y 6/3 lig	ght yellowish brown, fine to m	edium sand, single grain, loos	e
ESHWT = None	Observed Water = None	Ledge/Boulders = None	Roots = None

Logged By: Christopher Guida

Aunlyden Club

Christopher A. Guida, CSS, CWS Certified Soil & Wetland Scientist NH Licensed Designer #1401

Section 3.3

Drainage Plans

SP #09-22 - 84 Lumber Site Plan - Attachment H

SP #09-22 - 84 Lumber Site Plan - Attachment H

