Storm Water Management Report

84 LUMBER COMPANY

(Non-Residential Site Plan)

Project Location:

Tax Map 145, Lot 15 3 Sullivan Road Hudson, NH

Prepared for:

84 Lumber Company 1019 Route 519, Building 4 Eighty-Four, PA 15330

Date:

August 2, 2022

Revised:

March 8, 2023

Surveying ϕ Engineering ϕ Land Planning ϕ Permitting ϕ Septic Designs

206 Elm Street, Milford NH 03055

Phone: (603)-672-5456 Fax: (603)-413-5456

www.FieldstoneLandConsultants.com

<u>Index</u>

Narrative with Summary Tables

Web Soil Survey

USGS Locus Map

Northeast Regional Climate Center Precipitation Data

BMP Worksheet

Groundwater Recharge Volume Calculation

Forebay Storage Table

Infiltration Feasibility Report

Pipe Summary (with Velocity)

Drainage Analysis / Storm Water Management Report:

Section 1.1	Existing Conditions –	2, 25, 50 Year Storm Node List
Section 1.2	Existing Conditions –	10 Year Storm Full Summary
Section 2.1	Proposed Conditions –	2, 25, 50 Year Storm Node List
Section 2.2	Proposed Conditions –	10 Year Storm Full Summary

Supplemental Data & Reports:

Section 3.1 Inspection and Maintenance Manual

Section 3.2 Test Pit Data

Section 3.3 Drainage Area Plan

LAND CONSULTANTS, PLLC

206 Elm Street, Milford, NH 03055 - Phone: 603-672-5456 - Fax: 603-413-5456 www.FieldstoneLandConsultants.com

STORM WATER MANAGEMENT REPORT
84 LUMBER COMPANY
MAP 145, LOT 15 – 3 SULLIVAN ROAD
HUDSON, NEW HAMPSHIRE

<u>Prepared for:</u> 84 Lumber Company

I) INTRODUCTION

The following are storm water drainage calculations for a proposed Site Plan Development for a lumber yard off Sullivan Street in Hudson, NH. The project area is bordered by single family residential to the north, east, and south and a vacant lot to the west. The project involves a single tax parcel (145-3) totaling 30.962 acres. The proposed development will consist of constructing 55,500 square feet, over two phases of construction. The terrain alteration associated with the proposed buildings and infrastructure is 440,000± square feet. The increase in impervious area, including the driveways, sidewalks and roof area is 328,400± square feet.

The purpose of this report is to analyze the qualitative and quantitative impacts of the proposed development. The objective of the proposed storm water management system for this project is to mitigate any increases resulting from the proposed development and to meet the drainage guidelines set forth in the Town of Hudson's storm water regulations.

II) SITE DESCRIPTION

The project consists of an existing 30.962-acre single family residential lot at the corner of Sullivan Road and Central Street with two curb cuts on Sullivan Road. The site is relatively level on the northern section of the lot where the existing house and curb cuts are located. A large wetland crosses the center of the lot, flowing west to east. At the south side of the lot the site is wooded and steeper with 8 to 15% grades. There are a few trails through the wooded area and a 50' gas easement. The area north of the wetlands, where all the proposed improvements are located, consists of Windsor Loamy Sand with a hydrologic soil group (HSG) rating "A".

There are two (2) observation points for the project. A small section of the northwest corner of the site drains into the closed drainage system in the Town right-of-way (OP1). The majority of the site drains south towards the wetlands in the center of the site (OP1).

NRCS soil survey maps indicated that the dominate soils present on the site consist of well-drained Windsor loamy sand. This is a Hydrologic Soil Group (HSG) "A" soil. There are no wetland or wetland buffer impacts proposed on the project. There will an increase of approximately 7.85± acres of impervious area as a result of the proposed development.

84 Lumber Company – Storm Water Management Report

Page 2

III) METHODOLOGY

The quantity of runoff and the conveyance of that flow through the site are determined using the software package HydroCAD r 10.0 by HydroCAD Software Solutions, LLC. HydroCAD is a computer aided design program for modeling storm water hydrology based on the Soil Conservation Service (SCS) TR-20 method combined with standard hydraulics calculations.

Storm water management systems and erosion control outlet protection aprons (riprap aprons) are designed in accordance with the methodology for the "Best Management Practices" (BMP's), as outlined in the New Hampshire Storm Water Manual, Volume 2.

IV) DRAINAGE DESIGN

In accordance with the Town of Hudson Storm water Regulations require that the two (2), ten (10), twenty-five (25) and fifty (50) year frequency storm events also be evaluated. These design storms have therefore been analyzed to compare the pre and post-development peak flow rates for the site (see attached comparison tables).

<u>Pre-Development Drainage Conditions:</u>

As can be seen on the Pre-Development Drainage Plan, approximately 90% of project area drains southerly to wetlands on-site (OP1). The remaining 10% of the site drains northwesterly to one of two catch basins in the Central Street right-of-way.

<u>Post-Development Drainage Conditions:</u>

As can be seen on the Post-Development Drainage Plans, the drainage for the proposed improvements flows to the east end of the site and is collected in a large stormwater basin. Subcatchments S301 to S313 are captures in catch basins, outlet into sediment forebays for pretreatment, and then into the infiltration basin where runoff is treated and recharged to the groundwater. The front of the site subcatchments S101 and S201 remain largely unchanged from predevelopment conditions.

The net result is that all new paved areas will receive qualitative treatment and, due to the detention capability of the stormwater basin, there will be a reduction of peak rates of runoff leaving this site for all storm events.

V) SUMMARY

The intent of the storm water management system for this project is to address the qualitative and quantitative aspects of the storm water runoff so that there are no downstream adverse impacts created by the project. Due to the proposed stormwater management system, there are no increases in storm water runoff resulting from the proposed development.

The storm water management design for this project therefore complies with the stormwater standards set forth in the Town of Hudson and the Alteration of Terrain regulations.

84 Lumber Company – Storm Water Management Report

Page 3

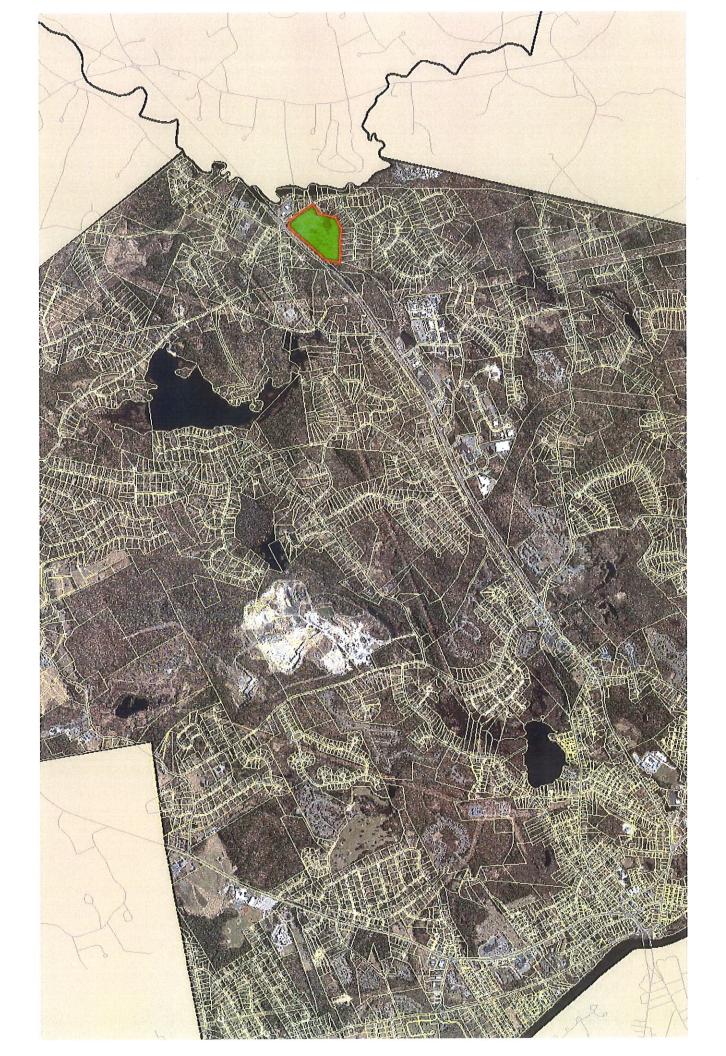
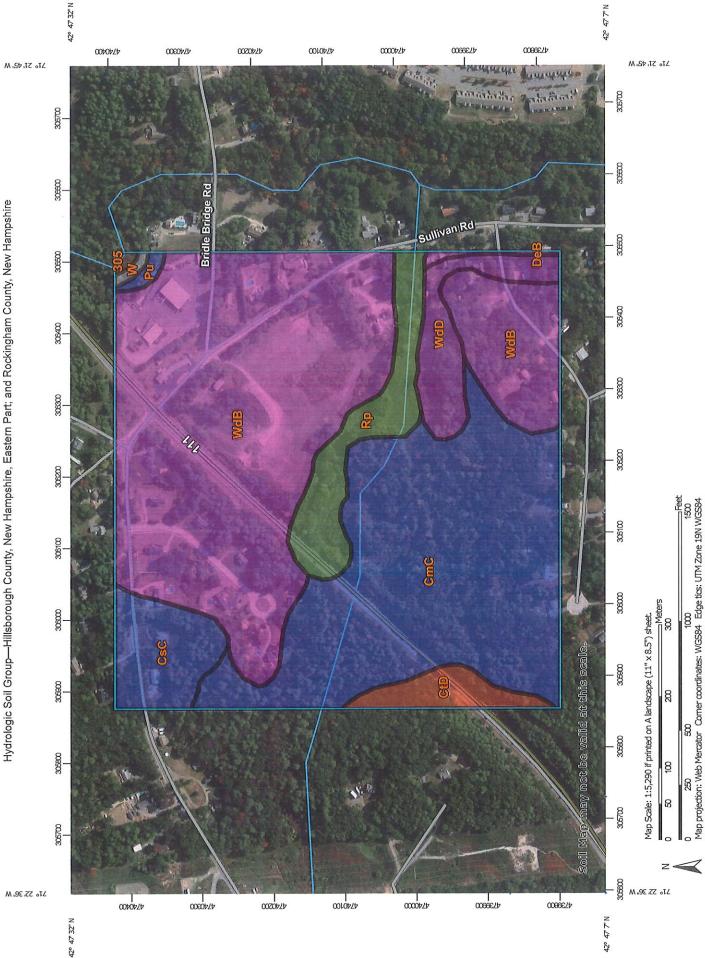

The following tables are a summary of the attached calculations and show a comparison of the peak flow rates at the outlet point for the site. The values presented are based on pre- and post-development conditions.

Table 1: Peak flow rates to OP1

STORM FREQUENCY	PRE-DEVELOPMENT (CFS/AF)	POST-DEVELOPMENT (CFS/AF)	CHANGE (CFS/AF)
2-YEAR	0.03/0.011	0.03/0.008	0.00/-0.003
10-YEAR	0.52/0.056	0.41/0.044	-0.11/-0.012
25-YEAR	1.36/0.108	1.07/0.085	-0.29/-0.023
50-YEAR	2.30/0.168	1.81/0.132	-0.49/-0.036


Table 2: Peak flow rates to OP2

STORM FREQUENCY	PRE-DEVELOPMENT (CFS/AF)	POST-DEVELOPMENT (CFS/AF)	CHANGE (CFS/AF)
2-YEAR	0.00/0.000	0.00/0.000	0.00/0.000
10-YEAR	0.16/0.072	0.12/0.040	-0.04/-0.032
25-YEAR	1.02/0.304	0.74/0.299	-0.28/-0.005
50-YEAR	3.37/0.640	3.24/0.826	-0.13/+0.186

USDA

Conservation Service

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at scales ranging from 1:20,000 to 1:24,000.

Warning: Soil Map may not be valid at this scale.

Not rated or not available

C/D

MAP LEGEND

Streams and Canals

line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed misunderstanding of the detail of mapping and accuracy of soil Enlargement of maps beyond the scale of mapping can cause

Please rely on the bar scale on each map sheet for map measurements Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

Aerial Photography

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Hillsborough County, New Hampshire, Eastern

Survey Area Data: Version 24, Aug 31, 2021

Soil Survey Area: Rockingham County, New Hampshire Survey Area Data: Version 24, Aug 31, 2021

different levels of detail. This may result in map unit symbols, soil scales, with a different land use in mind, at different times, or at Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: May 22, 2020—Sep 25, 2020

C/D

Interstate Highways

Major Roads Local Roads

US Routes

Soil Rating Points

Not rated or not available

B/D

C/D

B/D

MAP LEGEND

MAP INFORMATION

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CmC	Canton fine sandy loam, 8 to 15 percent slopes, very stony	В	32.1	32.5%
CsC	Chatfield-Hollis complex, 8 to 15 percent slopes, rocky	В	5.1	5.1%
CtD	Chatfield-Hollis-Rock outcrop complex, 15 to 35 percent slopes	D	2.5	2.5%
DeB	Deerfield loamy fine sand, 3 to 8 percent slopes	A	0.3	0.3%
Pu	Pootatuck fine sandy loam	В	0.4	0.4%
Rp	Rippowam fine sandy loam	A/D	6.3	6.4%
W	Water (less than 40 acres)		0.2	0.2%
WdB	Windsor loamy sand, 3 to 8 percent slopes	А	47.4	48.0%
WdD	Windsor loamy sand, 15 to 35 percent slopes	А	4.3	4.3%
Subtotals for Soil Surv	vey Area		98.6	99.8%
Totals for Area of Inter	est		98.8	100.0%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
305	Lim-Pootatuck complex	B/D	0.2	0.2%
Subtotals for Soil Surv	vey Area		0.2	0.2%
Totals for Area of Inter	est	98.8	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing Yes

State New Hampshire

Location

Longitude 71.370 degrees West 42.788 degrees North

Elevation 0 feet

Date/Time Tue, 19 Jul 2022 11:15:00 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.42	0.52	0.68	0.85	1.07	1yr	0.73	1.01	1.23	1.55	1.96	2.48	2.71	1yr	2.19	2.60	3.03	3.71	4.33	1yr
2yr	0.33	0.51	0.63	0.84	1.05	1.32	2yr	0.91	1.21	1.53	1.91	2.38	2.97	3.29	2yr	2.63	3.16	3.67	4.39	4.99	2yr
5yr	0.39	0.61	0.76	1.02	1.31	1.66	5yr	1.13	1.51	1.93	2.42	3.02	3.76	4.19	5yr	3.33	4.03	4.66	5.52	6.25	5yr
10yr	0.44	0.69	0.88	1.19	1.55	1.99	10yr	1.34	1.79	2.31	2.90	3.62	4.50	5.04	10yr	3.98	4.85	5.58	6.56	7.41	10yr
25yr	0.52	0.83	1.06	1.46	1.93	2.50	25yr	1.67	2.24	2.92	3.68	4.60	5.70	6.43	25yr	5.04	6.18	7.09	8.26	9.28	25yr
50yr	0.59	0.94	1.21	1.70	2.29	3.00	50yr	1.98	2.66	3.52	4.44	5.53	6.82	7.74	50yr	6.04	7.44	8.50	9.83	11.02	50yr
100yr	0.68	1.09	1.41	1.99	2.72	3.57	100yr	2.35	3.15	4.20	5.31	6.62	8.17	9.31	100yr	7.23	8.96	10.19	11.71	13.08	100yr
200yr	0.77	1.25	1.63	2.33	3.22	4.27	200yr	2.78	3.74	5.04	6.38	7.95	9.79	11.22	200yr	8.67	10.79	12.23	13.95	15.53	200yr
500yr	0.92	1.52	1.98	2.88	4.05	5.40	500yr	3.49	4.70	6.39	8.11	10.11	12.45	14.35	500yr	11.02	13.80	15.56	17.59	19.51	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.35	0.43	0.58	0.71	0.82	1yr	0.61	0.80	1.08	1.31	1.67	2.20	2.54	1yr	1.95	2.44	2.70	3.03	3.87	1yr
2yr	0.31	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.17	1.37	1.79	2.30	2.84	3.17	2yr	2.52	3.05	3.55	4.24	4.82	2yr
5yr	0.36	0.55	0.69	0.94	1.20	1.42	5yr	1.03	1.39	1.62	2.10	2.68	3.52	3.78	5yr	3.11	3.64	4.22	5.06	5.73	5yr
10yr	0.39	0.61	0.75	1.05	1.36	1.61	10yr	1.17	1.58	1.83	2.37	3.02	4.07	4.31	10yr	3.60	4.14	4.83	5.77	6.49	10yr
25yr	0.45	0.68	0.85	1.21	1.60	1.89	25yr	1.38	1.85	2.16	2.79	3.51	4.92	5.12	25yr	4.36	4.93	5.77	6.91	7.58	25yr
50yr	0.49	0.75	0.93	1.33	1.80	2.15	50yr	1.55	2.10	2.46	3.17	3.95	5.70	5.86	50yr	5.04	5.64	6.64	7.92	8.50	50yr
100yr	0.54	0.82	1.02	1.48	2.03	2.43	100yr	1.75	2.38	2.79	3.60	4.44	5.75	6.72	100yr	5.09	6.46	7.66	9.11	9.54	100yr
200yr	0.60	0.90	1.14	1.65	2.30	2.76	200yr	1.98	2.70	3.14	4.10	5.02	6.49	7.71	200yr	5.74	7.41	8.86	10.49	10.68	200yr
500yr	0.68	1.02	1.31	1.90	2.70	3.28	500yr	2.33	3.21	3.72	4.87	5.92	7.59	9.33	500yr	6.72	8.97	10.77	12.69	12.42	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.31	0.47	0.58	0.77	0.95	1.11	1yr	0.82	1.09	1.26	1.64	2.08	2.72	2.87	1yr	2.41	2.76	3.40	4.13	4.83	1yr
2yr	0.35	0.54	0.66	0.90	1.11	1.30	2yr	0.96	1.27	1.48	1.92	2.46	3.12	3.49	2yr	2.76	3.35	3.84	4.58	5.27	2yr
5yr	0.43	0.67	0.83	1.14	1.45	1.66	5yr	1.25	1.62	1.89	2.43	3.05	4.04	4.66	5yr	3.58	4.48	5.10	6.03	6.79	5yr
10yr	0.53	0.81	1.00	1.40	1.81	2.02	10yr	1.56	1.97	2.28	2.91	3.63	5.01	5.84	10yr	4.43	5.62	6.34	7.45	8.35	10yr
25yr	0.68	1.04	1.29	1.84	2.42	2.61	25yr	2.09	2.56	2.94	3.69	4.53	6.65	7.89	25yr	5.89	7.59	8.45	9.82	11.02	25yr
50yr	0.83	1.26	1.57	2.25	3.03	3.19	50yr	2.61	3.12	3.57	4.42	5.36	8.25	9.92	50yr	7.30	9.54	10.48	12.08	13.59	50yr
100yr	1.01	1.53	1.91	2.76	3.79	3.89	100yr	3.27	3.80	4.34	5.30	6.36	11.36	12.46	100yr	10.06	11.98	12.99	14.89	16.79	100yr
200yr	1.23	1.86	2.35	3.40	4.75	4.74	200yr	4.10	4.63	5.26	6.34	7.54	14.33	15.61	200yr	12.68	15.01	16.08	18.34	20.74	200yr
500yr	1.62	2.40	3.09	4.49	6.39	6.15	500yr	5.51	6.01	6.81	8.05	9.45	19.50	21.05	500yr	17.26	20.24	21.33	24.15	27.44	500yr

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: IB1 - NODE 14P

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

		Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	← yes
8.98	ac	A = Area draining to the practice	•
7.46		A _I = Impervious area draining to the practice	
0.83	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.80	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
7.16	ac-in	WQV= 1" x Rv x A	
26,002	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
6,501	cf	25% x WQV (check calc for sediment forebay volume)	
	f	Method of pretreatment? (not required for clean or roof runoff)	
12,000	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	≥ 25%WQV
51,765	cf	V = Volume ¹ (attach a stage-storage table)	> WQV
10,970	sf	A _{SA} = Surface area of the bottom of the pond	_
3.00	iph	Ksat _{DESIGN} = Design infiltration rate ²	
9.5	hours	$I_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	< 72-hrs
181.00	feet	E _{BTM} = Elevation of the bottom of the basin	
178.00	feet	E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p	oit)
178.00	feet	E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
3.00	feet	D _{SHWT} = Separation from SHWT	<u>></u> * ³
3.0	feet	D _{ROCK} = Separation from bedrock	<u>></u> * ³
	ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	_ > 24"
	ft	D _T = Depth of trench, if trench proposed	4 - 10 ft
	Yes/No	If a trench or underground system is proposed, has observation well been provid	ed? ←yes
	•	If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements.	← yes
Υ	Yes/No	If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
3.0	:1	If a basin is proposed, pond side slopes.	<u>></u> 3:1
184.08	ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
185.35	-	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
186.50	ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES		10 peak elevation ≤ Elevation of the top of the trench? ⁵	← yes
YES		If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

- 1. Volume below the lowest invert of the outlet structure and excludes forebay volume
- 2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate
- 3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.
- 4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.
- 5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:	_		

NHDES Alteration of Terrain Last Revised: March 2019

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 2

Stage-Area-Storage for Pond 14P: IB1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
177.00	300	0	182.30	15,694	16,302
177.10	300	12	182.40	16,710	17,892
177.20	300	24	182.50	17,759	19,585
177.30	300	36	182.60	18,840	21,385
177.40	300	48	182.70	19,954	23,295
177.50	300	60	182.80	21,100	25,317
177.60	300	72	182.90	22,279	27,456
177.70	300	84 96	183.00	23,490	29,714
177.80 177.90	300 300	108	183.10 183.20	23,777 24,066	32,047 34,409
177.90	300	120	183.30	24,356	36,800
178.10	300	134	183.40	24,649	39,221
178.20	300	151	183.50	24,943	41,670
178.30	300	168	183.60	25,239	44,149
178.40	300	186	183.70	25,536	46,658
178.50	300	204	183.80	25,836	49,197
178.60	300	222	183.90	26,137	51,765
178.70	300	239	184.00	26,440	54,364
178.80	300	256	184.10	26,730	56,993
178.90	300	273	184.20	27,021	59,650
179.00	300	287	184.30	27,314	62,337
179.10	300	299	184.40	27,609	65,053
179.20	300	311	184.50	27,905	67,799
179.30	300	323	184.60	28,203	70,574
179.40	300	335	184.70	28,502	73,379
179.50	300	347	184.80	28,803	76,215
179.60	300	359	184.90	29,106	79,080
179.70 179.80	300 300	371 383	185.00	29,410	81,976
179.80	300	395	185.10 185.20	29,716 30,023	84,902 87,859
180.00	300	407	185.30	30,332	90,847
180.10	300	419	185.40	30,643	93,866
180.20	300	431	185.50	30,955	96,916
180.30	300	443	185.60	31,269	99,997
180.40	300	455	185.70	31,584	103,109
180.50	300	467	185.80	31,901	106,254
180.60	300	479	185.90	32,220	109,430
180.70	300	491	186.00	32,540	112,638
180.80	300	503	186.10	32,847	115,877
180.90	300	515	186.20	33,156	119,147
181.00	10,970	527	186.30	33,466	122,448
181.10	11,150	1,603	186.40	33,777	125,780
181.20	11,332	2,697	186.50	34,090	129,144
181.30	11,515	3,810			
181.40	11,700	4,940			
181.50	11,886	6,090			
181.60 181.70	12,074 12,263	7,258 8 444			
181.80	12,263	8,444 9,650			
181.90	12,646	10,875			
182.00	12,840	12,120			
182.10	13,759	13,419			
182.20	14,710	14,812			
	,	,			

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

7.50	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.40	inches	Rd = Weighted groundwater recharge depth	
3 ac-in GRV = AI * Rd		GRV = AI * Rd	
10,890	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

The GRV Field is not large enough for the results which in this case = $(3 \text{ ac-in})(43560 \text{ sf/ac})(1 \text{ ft/12}") =$
10,890 cubic feet. The proposed infiltration basin discharges 1.172 ac-ft to groundwater in the the 2
year storm which equals 51,052 cubic feet. This far exceeds the minimum requirement of 10,890 CF.

Type III 24-hr 2-Year Rainfall=2.97"

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Summary for Pond 17P: FOREBAY 1

Volume	Invert	Avail.Storage	Storage l	Description	
#1	181.00'	12,070 cf	Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
Elevation (feet)	Surf.A (so		c.Store ic-feet)	Cum.Store (cubic-feet)	
181.00 183.00	,	240 830	0 12,070	0 12,070	

Surveying • Engineering
Land Planning • Septic Designs

206 Elm Street, Milford, NH 03055 - Phone: 603-672-5456 - Fax: 603-413-5456 www.FieldstoneLandConsultants.com

INFILTRATION FEASIBILITY REPORT 84 LUMBER, SINGLE FAMILY RESIDENTIAL NASHUA, NEW HAMPSHIRE

The project proposes one system that incorporates an infiltration component. This system is identified on the plans as Infiltration Basins 1 (IB1).

I. Location of the practice

Infiltration Basin 1 – this practice is located in southeast end of the lot. This is a basin that receives runoff from the proposed buildings and impervious surfaces. This basin discharges approximately 100 feet from the on-site wetlands in the center of the lot. The discharge from the closed drainage system (CB6, 9, and 12) is being pre-treated with forebays upstream of the practice.

II. Existing topography at the location of the practices

Infiltration Basins 1 (IB1) - This infiltration basin is situated at the lower end of the site in nearly flat area. The site currently slopes gently towards this area at a 3-8% grade. This area is at the low point between the subject parcel and abutting property. The low point also slopes west towards the wetlands on site. The area is mostly cleared with some areas of vegetation.

III. Test pit or boring locations

In accordance with Env-Wq 1504.13(c), several test pits have been performed on-site.

Infiltration Basin 1 (IB1) – this basin has a bottom area of 17,800 square feet in area and therefore a minimum of three test pits are required in the location of the proposed practice. Four (4) test pits were performed in this location and are identified as TP-3, TP-4, TP-5, and TP-6 on the attached plans.

IV. Seasonal high-water table (SHWT) and bedrock elevations

The following test pit data was collected on October 13, 2022.

Infiltration Basin 1 (IB1) – Bottom of Pond Elevation = 181.0'

TP-3: Existing Surface Elevation of TP = 183.2' SHWT => 176.8' BEDROCK=> 176.8' Deepest Elevation of TP = 176.8'

LAND CONSULTANTS, PLLC

84 Lumber, Hudson, Commercial Development Infiltration Feasibility Report

Page 2

Infiltration Basin 2 (IB2) – Bottom of Pond Elevation = 188.0

TP-4: Existing Surface Elevation of TP = 183.8

SHWT => 178.0

BEDROCK=> 178.0

Deepest Elevation of TP = 178.0'

TP-5: Existing Surface Elevation of TP = 183.4

SHWT =>176.7'

BEDROCK=> 176.7'

Deepest Elevation of TP = 176.7

TP-6: Existing Surface Elevation of TP = 182.8

SHWT =>177.1'

BEDROCK=> 177.1'

Deepest Elevation of TP = 177.1'

V. Profile descriptions

Test Pit #3

0-12" - 10YR 3/3 dark brown, loamy sand, granular, friable

12-24" - 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose

24-76" - 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose

ESHWT = None Observed Water = None Ledge/Boulders = 76" Roots = None

Test Pit #4

0-12" - 10YR 3/3 dark brown, loamy sand, granular, friable

12-24" - 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose

24-70" - 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose

ESHWT = None Observed Water = None Ledge/Boulders = 70" Roots = None

Test Pit #5

0-12" - 10YR 3/3 dark brown, loamy sand, granular, friable

12-24" - 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose

24-80" - 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose

ESHWT = None Observed Water = None Ledge/Boulders = None Roots = 6"

84 Lumber, Hudson, Commercial Development Infiltration Feasibility Report

Page 3

Test Pit #6

0-15" - 10YR 3/3 dark brown, loamy sand, granular, friable

15-24" - 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose

24-68" - 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose

ESHWT = None Observed Water = None Ledge/Boulders = 68" Roots = None

VI. Soil plan in the area of the proposed practice(s)

See attached plan sheets.

VII. Summary of Field-Testing data used to determine the infiltration rate

Infiltration Basins 1 – the infiltration rate was determined using the Default Values method described in Env-Wq 1504.14.

The basins are located within native material identified in the Soil Series Survey as Windsor loamy sand.

Using Ksat Values for New Hampshire Soils, Society of Soil Scientist of Northern New England, Special Publication No.5, September 2009, the weighted value under the basin floor elevation is: <u>6 inch per hour</u>.

After applying a factor of safety, the design rate used in the drainage analysis is 3 inches per hour.

3184.01_POST_DEVELOPMENT_B_PIPE_VELOCITY
Prepared by Fieldstone Land Consultants, PLLC
HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 1

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Width	Diam/Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	1R	192.90	190.90	200.0	0.0100	0.013	0.0	12.0	0.0
2	2R	190.80	189.40	140.0	0.0100	0.013	0.0	12.0	0.0
3	3R	189.15	187.80	150.0	0.0090	0.013	0.0	15.0	0.0
4	4R	187.55	186.05	150.0	0.0100	0.013	0.0	15.0	0.0
5	5R	185.80	182.85	286.0	0.0103	0.013	0.0	18.0	0.0
6	6R	182.35	182.00	26.0	0.0135	0.013	0.0	24.0	0.0
7	7R	189.00	185.85	220.0	0.0143	0.013	0.0	12.0	0.0
8	8R	185.60	182.74	286.0	0.0100	0.013	0.0	15.0	0.0
9	9R	182.50	182.00	25.0	0.0200	0.013	0.0	18.0	0.0
10	10R	182.65	182.00	26.0	0.0250	0.013	0.0	18.0	0.0
11	11R	191.50	185.90	300.0	0.0187	0.013	0.0	12.0	0.0
12	12R	185.40	182.68	272.0	0.0100	0.013	0.0	18.0	0.0
13	13R	182.18	182.00	28.0	0.0064	0.013	0.0	24.0	0.0
14	14R	183.00	181.00	25.0	0.0800	0.013	0.0	15.0	0.0

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 2

Summary for Reach 1R: CB1

Inflow Area = 0.348 ac, 61.78% Impervious, Inflow Depth > 2.82" for 25-Year event

1.21 cfs @ 12.09 hrs, Volume= Inflow 0.082 af

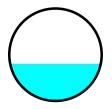
1.21 cfs @ 12.10 hrs, Volume= Outflow 0.082 af, Atten= 0%, Lag= 0.6 min

Routed to Reach 2R: CB2

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.10 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.60 fps, Avg. Travel Time= 2.1 min

Peak Storage= 59 cf @ 12.10 hrs


Average Depth at Peak Storage= 0.40', Surface Width= 0.98' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.56 cfs

12.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior

Length= 200.0' Slope= 0.0100 '/'

Inlet Invert= 192.90', Outlet Invert= 190.90'

Summary for Reach 2R: CB2

Inflow Area = 0.609 ac, 66.83% Impervious, Inflow Depth > 3.10" for 25-Year event

Inflow 2.31 cfs @ 12.10 hrs, Volume= 0.157 af

2.30 cfs @ 12.10 hrs, Volume= 0.157 af, Atten= 0%, Lag= 0.4 min Outflow

Routed to Reach 3R: CB3

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.82 fps, Min. Travel Time= 0.5 min

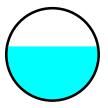
Avg. Velocity = 1.80 fps, Avg. Travel Time= 1.3 min

Peak Storage= 67 cf @ 12.10 hrs

Average Depth at Peak Storage= 0.59', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.56 cfs

12.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior


Length= 140.0' Slope= 0.0100 '/'

Inlet Invert= 190.80', Outlet Invert= 189.40'

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 3

Summary for Reach 3R: CB3

Inflow Area = 1.060 ac, 67.83% Impervious, Inflow Depth > 3.18" for 25-Year event

Inflow = 4.11 cfs @ 12.10 hrs, Volume= 0.281 af

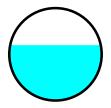
Outflow = 4.10 cfs @ 12.10 hrs, Volume= 0.281 af, Atten= 0%, Lag= 0.4 min

Routed to Reach 4R: CB4

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.35 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.01 fps, Avg. Travel Time= 1.2 min

Peak Storage= 115 cf @ 12.10 hrs


Average Depth at Peak Storage= 0.75', Surface Width= 1.23' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 6.13 cfs

15.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior

Length= 150.0' Slope= 0.0090 '/'

Inlet Invert= 189.15', Outlet Invert= 187.80'

Summary for Reach 4R: CB4

Inflow Area = 1.313 ac, 74.03% Impervious, Inflow Depth > 3.54" for 25-Year event

Inflow = 5.46 cfs @ 12.10 hrs, Volume= 0.387 af

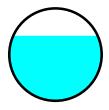
Outflow = 5.45 cfs @ 12.11 hrs, Volume= 0.387 af, Atten= 0%, Lag= 0.3 min

Routed to Reach 5R : CB5

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.90 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.26 fps, Avg. Travel Time= 1.1 min

Peak Storage= 138 cf @ 12.11 hrs


Average Depth at Peak Storage= 0.88', Surface Width= 1.14' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 6.46 cfs

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 4

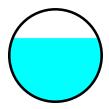
15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 150.0' Slope= 0.0100 '/' Inlet Invert= 187.55', Outlet Invert= 186.05'

Summary for Reach 5R: CB5

Inflow Area = 1.935 ac, 82.38% Impervious, Inflow Depth > 4.03" for 25-Year event

Inflow = 8.79 cfs @ 12.10 hrs, Volume= 0.649 af

Outflow = 8.72 cfs @ 12.11 hrs, Volume= 0.649 af, Atten= 1%, Lag= 0.6 min


Routed to Reach 6R: CB6

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.73 fps, Min. Travel Time= 0.7 min Avg. Velocity = 2.67 fps, Avg. Travel Time= 1.8 min

Peak Storage= 370 cf @ 12.11 hrs Average Depth at Peak Storage= 1.03', Surface Width= 1.39' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 10.67 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 286.0' Slope= 0.0103 '/' Inlet Invert= 185.80', Outlet Invert= 182.85'

Summary for Reach 6R: CB6

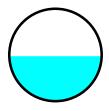
Inflow Area = 2.635 ac, 87.06% Impervious, Inflow Depth > 4.30" for 25-Year event

Inflow = 12.47 cfs @ 12.10 hrs, Volume= 0.944 af

Outflow = 12.47 cfs @ 12.10 hrs, Volume= 0.944 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 14P: IB1

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 8.25 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.20 fps, Avg. Travel Time= 0.1 min


Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 5

Peak Storage= 39 cf @ 12.10 hrs Average Depth at Peak Storage= 0.97', Surface Width= 2.00' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 26.25 cfs

24.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 26.0' Slope= 0.0135 '/' Inlet Invert= 182.35', Outlet Invert= 182.00'

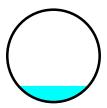
Summary for Reach 7R: CB7

Inflow Area = 0.052 ac,100.00% Impervious, Inflow Depth > 5.06" for 25-Year event

Inflow = 0.28 cfs @ 12.09 hrs, Volume= 0.022 af

Outflow = 0.28 cfs @ 12.10 hrs, Volume= 0.022 af, Atten= 1%, Lag= 0.9 min

Routed to Reach 8R : CB8


Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.07 fps, Min. Travel Time= 1.2 min Avg. Velocity = 1.17 fps, Avg. Travel Time= 3.1 min

Peak Storage= 20 cf @ 12.10 hrs

Average Depth at Peak Storage= 0.17', Surface Width= 0.76' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.26 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 220.0' Slope= 0.0143 '/' Inlet Invert= 189.00', Outlet Invert= 185.85'

Summary for Reach 8R: CB8

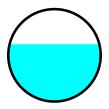
Inflow Area = 0.841 ac,100.00% Impervious, Inflow Depth > 5.06" for 25-Year event

Inflow = 4.58 cfs @ 12.09 hrs, Volume= 0.354 af

Outflow = 4.56 cfs @ 12.10 hrs, Volume= 0.354 af, Atten= 0%, Lag= 0.7 min

Routed to Reach 9R: CB9

Prepared by Fieldstone Land Consultants, PLLC


HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 6

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 5.71 fps, Min. Travel Time= 0.8 min Avg. Velocity = 2.31 fps, Avg. Travel Time= 2.1 min

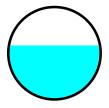
Peak Storage= 229 cf @ 12.10 hrs Average Depth at Peak Storage= 0.78', Surface Width= 1.21' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 6.46 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 286.0' Slope= 0.0100 '/' Inlet Invert= 185.60', Outlet Invert= 182.74'

Summary for Reach 9R: CB9

Inflow Area = 1.761 ac,100.00% Impervious, Inflow Depth > 5.05" for 25-Year event

Inflow = 9.56 cfs @ 12.09 hrs, Volume= 0.742 af


Outflow = 9.56 cfs @ 12.09 hrs, Volume= 0.742 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 14P: IB1

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 8.92 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.59 fps, Avg. Travel Time= 0.1 min

Peak Storage= 27 cf @ 12.09 hrs Average Depth at Peak Storage= 0.88', Surface Width= 1.48' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 14.86 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 25.0' Slope= 0.0200 '/' Inlet Invert= 182.50', Outlet Invert= 182.00'

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 7

Summary for Reach 10R: CB10

Inflow Area = 1.142 ac,100.00% Impervious, Inflow Depth > 5.06" for 25-Year event

Inflow = 6.23 cfs @ 12.09 hrs, Volume= 0.481 af

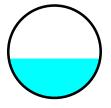
Outflow = $6.23 \text{ cfs } \bar{@}$ 12.09 hrs, Volume= 0.481 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 14P: IB1

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 8.71 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.42 fps, Avg. Travel Time= 0.1 min

Peak Storage= 19 cf @ 12.09 hrs


Average Depth at Peak Storage= 0.64', Surface Width= 1.48' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 16.61 cfs

18.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior

Length= 26.0' Slope= 0.0250 '/'

Inlet Invert= 182.65', Outlet Invert= 182.00'

Summary for Reach 11R: CB11

Inflow Area = 0.401 ac, 69.58% Impervious, Inflow Depth > 3.29" for 25-Year event

Inflow = 1.61 cfs @ 12.09 hrs, Volume= 0.110 af

Outflow = 1.61 cfs @ 12.10 hrs, Volume= 0.110 af, Atten= 0%, Lag= 0.7 min

Routed to Reach 12R: CB12

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

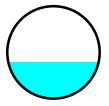
Max. Velocity= 5.56 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.09 fps, Avg. Travel Time= 2.4 min

Peak Storage= 87 cf @ 12.10 hrs

Average Depth at Peak Storage= 0.40', Surface Width= 0.98' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.87 cfs

12.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior


Length= 300.0' Slope= 0.0187 '/'

Inlet Invert= 191.50', Outlet Invert= 185.90'

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 8

Summary for Reach 12R: CB12

Inflow Area = 1.576 ac, 85.28% Impervious, Inflow Depth > 4.20" for 25-Year event

Inflow = 7.63 cfs @ 12.09 hrs, Volume= 0.551 af

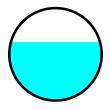
Outflow = 7.62 cfs @ 12.10 hrs, Volume= 0.551 af, Atten= 0%, Lag= 0.6 min

Routed to Reach 13R: CB13

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.48 fps, Min. Travel Time= 0.7 min Avg. Velocity = 2.49 fps, Avg. Travel Time= 1.8 min

Peak Storage= 320 cf @ 12.10 hrs


Average Depth at Peak Storage= 0.95', Surface Width= 1.45' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 10.50 cfs

18.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior

Length= 272.0' Slope= 0.0100 '/'

Inlet Invert= 185.40', Outlet Invert= 182.68'

Summary for Reach 13R: CB13

Inflow Area = 2.530 ac, 89.53% Impervious, Inflow Depth > 4.46" for 25-Year event

Inflow = 12.72 cfs @ 12.10 hrs, Volume= 0.940 af

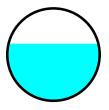
Outflow = 12.72 cfs @ 12.10 hrs, Volume= 0.940 af, Atten= 0%, Lag= 0.1 min

Routed to Pond 14P: IB1

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity = 6.25 fps, Min. Travel Time = 0.1 min Avg. Velocity = 2.44 fps, Avg. Travel Time = 0.2 min

Peak Storage= 57 cf @ 12.10 hrs


Average Depth at Peak Storage= 1.23', Surface Width= 1.94' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 18.14 cfs

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 9

24.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 28.0' Slope= 0.0064 '/' Inlet Invert= 182.18', Outlet Invert= 182.00'

Summary for Reach 14R: OS1

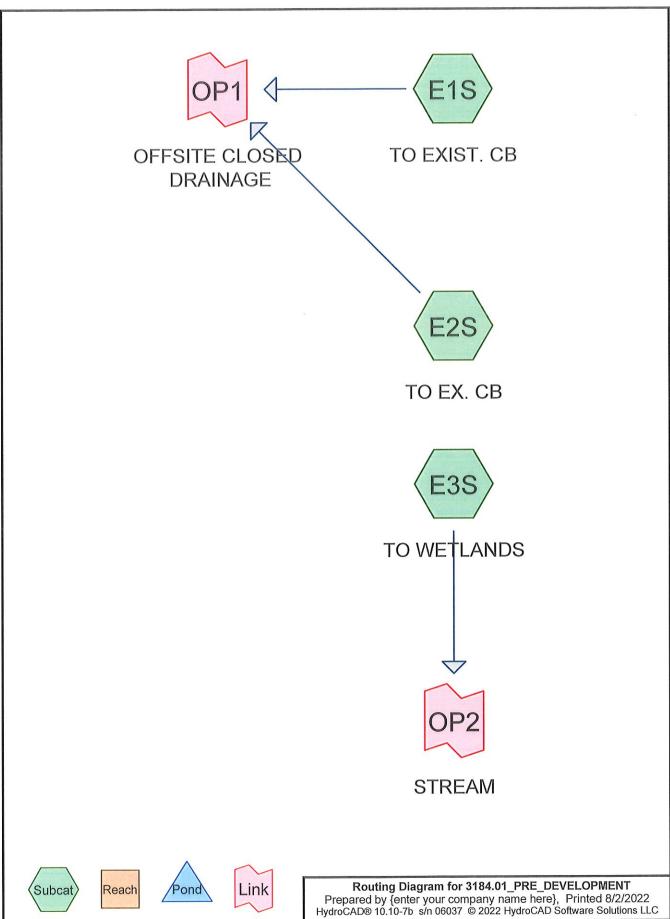
Inflow Area = 8.984 ac, 83.06% Impervious, Inflow Depth > 0.24" for 25-Year event

Inflow = 0.39 cfs @ 13.96 hrs, Volume= 0.179 af


Outflow = 0.39 cfs @ 13.97 hrs, Volume= 0.179 af, Atten= 0%, Lag= 0.3 min

Routed to Link OP2: STREAM

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.01 fps, Min. Travel Time= 0.1 min Avg. Velocity = 5.30 fps, Avg. Travel Time= 0.1 min


Peak Storage= 2 cf @ 13.97 hrs Average Depth at Peak Storage= 0.13', Surface Width= 0.75' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 18.27 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 25.0' Slope= 0.0800 '/' Inlet Invert= 183.00', Outlet Invert= 181.00'

Section 1.1

Existing Conditions 2, 25, 50 Year Storm Node List

3184.01_PRE_DEVELOPMENT

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Printed 8/2/2022 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
10.519	39	>75% Grass cover, Good, HSG A (E1S, E2S, E3S)
0.106	76	Gravel roads, HSG A (E1S, E3S)
0.643	98	Paved parking, HSG A (E1S, E2S, E3S)
4.388	30	Woods, Good, HSG A (E1S, E2S, E3S)
15.656	39	TOTAL AREA

3184.01_PRE_DEVELOPMENT

Prepared by {enter your company name here}
HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Printed 8/2/2022 Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
15.656	HSG A	E1S, E2S, E3S
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
15.656		TOTAL AREA

3184.01_PRE_DEVELOPMENT
Prepared by {enter your company name here}
HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Printed 8/2/2022 Page 4

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
10.519	0.000	0.000	0.000	0.000	10.519	>75% Grass cover, Good	E1S, E2S, E3S
0.106	0.000	0.000	0.000	0.000	0.106	Gravel roads	E1S, E3S
0.643	0.000	0.000	0.000	0.000	0.643	Paved parking	E1S, E2S, E3S
4.388	0.000	0.000	0.000	0.000	4.388	Woods, Good	E1S, E2S, E3S
15.656	0.000	0.000	0.000	0.000	15.656	TOTAL AREA	

3184.01 PRE DEVELOPMENT

Type III 24-hr 2-Year Rainfall=2.97" Printed 8/2/2022

Prepared by {enter your company name here} HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 5

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentE1S: TO EXIST. CB

Runoff Area=0.670 ac 25.97% Impervious Runoff Depth>0.13"

Tc=6.0 min CN=54 Runoff=0.03 cfs 0.007 af

Subcatchment E2S: TO EX. CB

Runoff Area=0.603 ac 19.40% Impervious Runoff Depth>0.07"

Tc=6.0 min CN=50 Runoff=0.01 cfs 0.003 af

Subcatchment E3S: TO WETLANDS

Runoff Area=14.383 ac 2.45% Impervious Runoff Depth=0.00"

Flow Length=750' Tc=25.6 min CN=38 Runoff=0.00 cfs 0.000 af

Link OP1: OFFSITE CLOSED DRAINAGE

Inflow=0.03 cfs 0.011 af

Primary=0.03 cfs 0.011 af

Link OP2: STREAM

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Total Runoff Area = 15.656 ac Runoff Volume = 0.011 af Average Runoff Depth = 0.01" 4.11% Impervious = 0.643 ac 95.89% Pervious = 15.013 ac

3184.01 PRE DEVELOPMENT

Type III 24-hr 25-Year Rainfall=5.70"

Prepared by {enter your company name here}
HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Printed 8/2/2022

Page 6

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment E1S: TO EXIST. CB

Runoff Area=0.670 ac 25.97% Impervious Runoff Depth>1.14"

Tc=6.0 min CN=54 Runoff=0.84 cfs 0.064 af

Subcatchment E2S: TO EX. CB

Runoff Area=0.603 ac 19.40% Impervious Runoff Depth>0.88"

Tc=6.0 min CN=50 Runoff=0.52 cfs 0.044 af

Subcatchment E3S: TO WETLANDS

Runoff Area=14.383 ac 2.45% Impervious Runoff Depth>0.25"

Flow Length=750' Tc=25.6 min CN=38 Runoff=1.02 cfs 0.304 af

Link OP1: OFFSITE CLOSED DRAINAGE

Inflow=1.36 cfs 0.108 af

Primary=1.36 cfs 0.108 af

Link OP2: STREAM

Inflow=1.02 cfs 0.304 af

Primary=1.02 cfs 0.304 af

Total Runoff Area = 15.656 ac Runoff Volume = 0.412 af Average Runoff Depth = 0.32" 95.89% Pervious = 15.013 ac 4.11% Impervious = 0.643 ac

3184.01 PRE DEVELOPMENT

Type III 24-hr 50-Year Rainfall=6.82"

Prepared by {enter your company name here}
HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Printed 8/2/2022

Page 7

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentE1S: TO EXIST. CB

Runoff Area=0.670 ac 25.97% Impervious Runoff Depth>1.74"

Tc=6.0 min CN=54 Runoff=1.36 cfs 0.097 af

Subcatchment E2S: TO EX. CB

Runoff Area=0.603 ac 19.40% Impervious Runoff Depth>1.41"

Tc=6.0 min CN=50 Runoff=0.94 cfs 0.071 af

Subcatchment E3S: TO WETLANDS

Runoff Area=14.383 ac 2.45% Impervious Runoff Depth>0.53"

Flow Length=750' Tc=25.6 min CN=38 Runoff=3.37 cfs 0.640 af

Link OP1: OFFSITE CLOSED DRAINAGE

Inflow=2.30 cfs 0.168 af

Primary=2.30 cfs 0.168 af

Link OP2: STREAM

Inflow=3.37 cfs 0.640 af Primary=3.37 cfs 0.640 af

Total Runoff Area = 15.656 ac Runoff Volume = 0.808 af Average Runoff Depth = 0.62" 95.89% Pervious = 15.013 ac 4.11% Impervious = 0.643 ac

Section 1.2

Existing Conditions
10 Year Storm Full Summary

3184.01 PRE DEVELOPMENT

Prepared by {enter your company name here}

HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Printed 8/2/2022 Page 1

Summary for Subcatchment E1S: TO EXIST. CB

Runoff = 0.37 cfs @ 12.12 hrs, Volume=

0.034 af, Depth> 0.61"

Routed to Link OP1: OFFSITE CLOSED DRAINAGE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

 Area	ea (ac) CN Description						
 0.	131	30	Woo	ds, Good,	HSG A		
0.	029	76	Grav	el roads, l	HSG A		
0.	174	98	Pave	ed parking	HSG A		
 0.336 39 >75% Grass cover, Good, H					over, Good,	HSG A	
0.670 54 Weighted Average				hted Aver	age		
0.496 74.03% Pervious Area				3% Pervio	us Area		
0.	174		25.9	7% Imperv	rious Area		
Тс	Leng	ith	Slope	Velocity	Capacity	Description	
 (min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
6.0						Direct Entry,	

Summary for Subcatchment E2S: TO EX. CB

Runoff = 0.17 cfs @ 12.16 hrs, Volume=

0.022 af, Depth> 0.43"

Routed to Link OP1: OFFSITE CLOSED DRAINAGE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (ac)	CN	Desc	ription			
	0.050	30	Woo	ds, Good,	HSG A		
	0.117 98 Paved parking, HSG A						
	0.436 39 >75% Grass cover, Good,					, HSG A	
_	0.603 50 Weighted Average				age		
	0.486 80.60% Perv				us Area		
	0.117		19.4	0% Imperv	rious Area		
		ngth feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	6.0	<u></u>	(1010)	(14300)	(010)	Direct Entry.	

Summary for Subcatchment E3S: TO WETLANDS

Runoff = 0.16 cfs @ 15.29 hrs, Volume=

0.072 af, Depth> 0.06"

Routed to Link OP2: STREAM

3184.01 PRE DEVELOPMENT

Prepared by {enter your company name here}

HydroCAD® 10.10-7b s/n 06037 © 2022 HydroCAD Software Solutions LLC

Printed 8/2/2022 Page 2

Area	(ac) (CN Des	cription		
4	.207	30 Woo	ds, Good,	HSG A	
0	.077	76 Grav	vel roads, I	HSG A	
0	.352	98 Pav	ed parking	, HSG A	
9	.747	39 >75	% Grass co	over, Good	, HSG A
14	.383	38 Wei	ghted Aver	age	
14	.031		5% Pervio		
0.	.352	2.45	% Impervi	ous Area	
			,		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
19.5	85	0.0200	0.07		Sheet Flow, A-B
					Woods: Light underbrush n= 0.400 P2= 3.00"
5.4	390	0.0300	1.21		Shallow Concentrated Flow, B-C
					Short Grass Pasture Kv= 7.0 fps
0.7	275	0.0500	6.60	13.20	Parabolic Channel, C-D
					W=4.00' D=0.75' Area=2.0 sf Perim=4.3'
					n= 0.030 Earth, grassed & winding
25.6	750	Total			

Summary for Link OP1: OFFSITE CLOSED DRAINAGE

1.273 ac, 22.86% Impervious, Inflow Depth > 0.52" for 10-Year event Inflow Area =

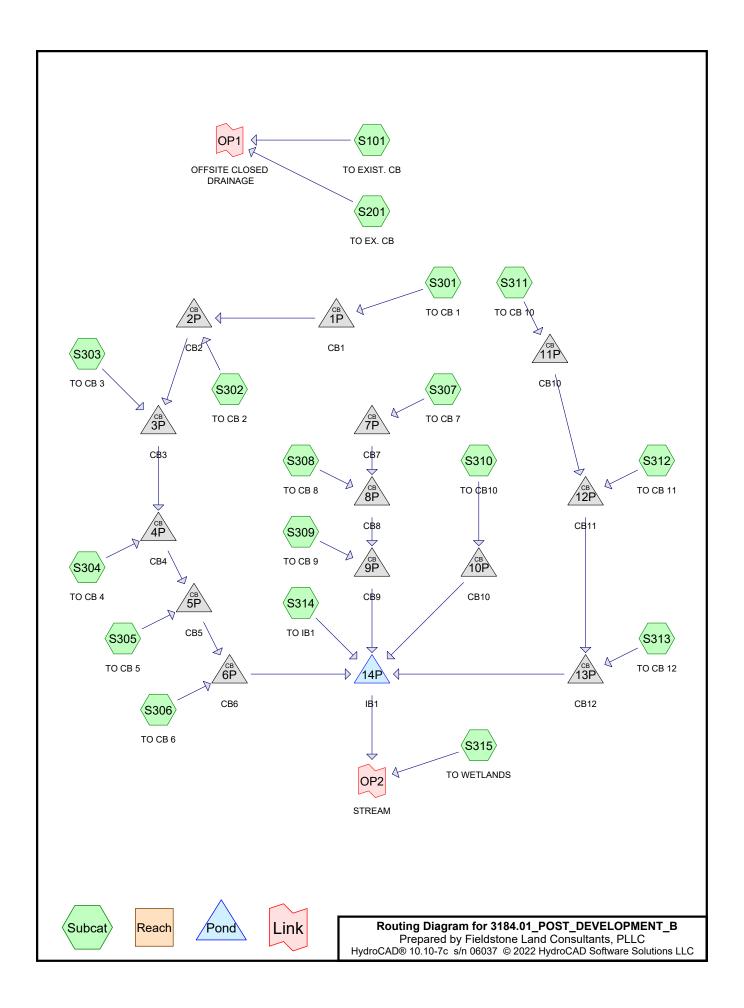
Inflow 0.056 af

0.52 cfs @ 12.13 hrs, Volume= 0.52 cfs @ 12.13 hrs, Volume= 0.056 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link OP2: STREAM

14.383 ac, 2.45% Impervious, Inflow Depth > 0.06" for 10-Year event Inflow Area =


0.16 cfs @ 15.29 hrs, Volume= 0.072 af Inflow

0.16 cfs @ 15.29 hrs, Volume= 0.072 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Section 2.1

Proposed Conditions 2, 25, 50 Year Storm Node List

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC
HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 2

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
6.038	39	>75% Grass cover, Good, HSG A (S101, S201, S301, S302, S303, S311, S312,
		S313, S314, S315)
0.052	76	Gravel roads, HSG A (S101, S315)
6.364	98	Paved parking, HSG A (S101, S201, S301, S302, S303, S304, S305, S306, S307,
		S308, S309, S310, S311, S312, S313, S315)
1.460	98	Roofs, HSG A (S301, S302, S303, S304, S305, S306, S307, S308, S309, S310,
		S312, S313)
1.742	30	Woods, Good, HSG A (S101, S201, S315)
15.656	68	TOTAL AREA

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC
HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 3

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
15.656	HSG A	S101, S201, S301, S302, S303, S304, S305, S306, S307, S308, S309, S310,
		S311, S312, S313, S314, S315
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
15.656		TOTAL AREA

Prepared by Fieldstone Land Consultants, PLLC
HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 4

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment S101: TO EXIST. CB	Runoff Area=0.523 ac 26.00% Impervious Runoff Depth>0.13" Tc=6.0 min CN=54 Runoff=0.03 cfs 0.006 af
Subcatchment S201: TO EX. CB	Runoff Area=0.479 ac 19.42% Impervious Runoff Depth>0.07" Tc=6.0 min CN=50 Runoff=0.01 cfs 0.003 af
Subcatchment S301: TO CB 1	Runoff Area=0.348 ac 61.78% Impervious Runoff Depth>0.86" Tc=6.0 min CN=75 Runoff=0.36 cfs 0.025 af
Subcatchment S302: TO CB 2	Runoff Area=0.261 ac 73.56% Impervious Runoff Depth>1.25" Tc=6.0 min CN=82 Runoff=0.40 cfs 0.027 af
Subcatchment S303: TO CB 3	Runoff Area=0.451 ac 69.18% Impervious Runoff Depth>1.13" Tc=6.0 min CN=80 Runoff=0.63 cfs 0.043 af
Subcatchment S304: TO CB 4	Runoff Area=0.253 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=0.71 cfs 0.054 af
Subcatchment S305: TO CB 5	Runoff Area=0.622 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=1.75 cfs 0.133 af
SubcatchmentS306: TO CB 6	Runoff Area=0.700 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=1.97 cfs 0.149 af
Subcatchment S307: TO CB 7	Runoff Area=0.052 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=0.15 cfs 0.011 af
Subcatchment S308: TO CB 8	Runoff Area=0.789 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=2.22 cfs 0.168 af
SubcatchmentS309: TO CB 9	Runoff Area=0.920 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=2.59 cfs 0.196 af
SubcatchmentS310: TO CB10	Runoff Area=1.142 ac 100.00% Impervious Runoff Depth>2.56" Tc=6.0 min CN=98 Runoff=3.21 cfs 0.244 af
SubcatchmentS311: TO CB 10	Runoff Area=0.401 ac 69.58% Impervious Runoff Depth>1.13" Tc=6.0 min CN=80 Runoff=0.56 cfs 0.038 af
SubcatchmentS312: TO CB 11	Runoff Area=1.175 ac 90.64% Impervious Runoff Depth>2.01" Tc=6.0 min CN=92 Runoff=2.82 cfs 0.197 af
SubcatchmentS313: TO CB 12	Runoff Area=0.954 ac 96.54% Impervious Runoff Depth>2.38" Tc=6.0 min CN=96 Runoff=2.58 cfs 0.189 af
SubcatchmentS314: TO IB1	Runoff Area=0.916 ac 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=39 Runoff=0.00 cfs 0.000 af

Type III 24-hr 2-Year Rainfall=2.97"

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 5

Subcatchment S315: TO W	ETLANDS				vious Runoff De Runoff=0.00 cf	
Pond 1P: CB1	12.0" Round	Culvert n=0	0.013 L		o' Inflow=0.36 cf Outflow=0.36 cf	
Pond 2P: CB2	12.0" Round	Culvert n=0	0.013 L		o' Inflow=0.76 cf Outflow=0.76 cf	
Pond 3P: CB3	15.0" Round	Culvert n=0	0.013 L		o' Inflow=1.39 cf Outflow=1.39 cf	
Pond 4P: CB4	15.0" Round	Culvert n=0	0.013 L		" Inflow=2.10 cf Outflow=2.10 cf	
Pond 5P: CB5	18.0" Round	Culvert n=0	0.013 L		o' Inflow=3.84 cf Outflow=3.84 cf	
Pond 6P: CB6	24.0" Rour	d Culvert n	=0.013		i' Inflow=5.81 cf Outflow=5.81 cf	
Pond 7P: CB7	12.0" Round	Culvert n=0	0.013 L		' Inflow=0.15 cf Outflow=0.15 cf	
Pond 8P: CB8	15.0" Round	Culvert n=0	0.013 L		o' Inflow=2.36 cf Outflow=2.36 cf	
Pond 9P: CB9	18.0" Rour	d Culvert n	=0.013		o' Inflow=4.95 cf Outflow=4.95 cf	
Pond 10P: CB10	18.0" Rour	d Culvert n	=0.013		o' Inflow=3.21 cf Outflow=3.21 cf	
Pond 11P: CB10	12.0" Round	Culvert n=0	0.013 L		s' Inflow=0.56 cf Outflow=0.56 cf	
Pond 12P: CB11	18.0" Round	Culvert n=0	0.013 L		o' Inflow=3.37 cf Outflow=3.37 cf	
Pond 13P: CB12	24.0" Rour	d Culvert n	=0.013		s' Inflow=5.95 cf Outflow=5.95 cf	-
Pond 14P: IB1	Discarded=1.64			-	Inflow=19.91 cf Outflow=1.64 cfs	
Link OP1: OFFSITE CLOSE	ED DRAINAGE				Inflow=0.03 cf Primary=0.03 cf	
Link OP2: STREAM					Inflow=0.00 cf Primary=0.00 cf	

Type III 24-hr 2-Year Rainfall=2.97"

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 6

Total Runoff Area = 15.656 ac Runoff Volume = 1.483 af Average Runoff Depth = 1.14" 50.03% Pervious = 7.832 ac 49.97% Impervious = 7.824 ac

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 7

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment S101: TO EXIST. CB	Runoff Area=0.523 ac 26.00% Impervious Runoff Depth>1.14" Tc=6.0 min CN=54 Runoff=0.66 cfs 0.050 af
Subcatchment S201: TO EX. CB	Runoff Area=0.479 ac 19.42% Impervious Runoff Depth>0.88" Tc=6.0 min CN=50 Runoff=0.42 cfs 0.035 af
Subcatchment S301: TO CB 1	Runoff Area=0.348 ac 61.78% Impervious Runoff Depth>2.82" Tc=6.0 min CN=75 Runoff=1.21 cfs 0.082 af
Subcatchment S302: TO CB 2	Runoff Area=0.261 ac 73.56% Impervious Runoff Depth>3.48" Tc=6.0 min CN=82 Runoff=1.10 cfs 0.076 af
Subcatchment S303: TO CB 3	Runoff Area=0.451 ac 69.18% Impervious Runoff Depth>3.29" Tc=6.0 min CN=80 Runoff=1.81 cfs 0.124 af
Subcatchment S304: TO CB 4	Runoff Area=0.253 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=1.38 cfs 0.107 af
Subcatchment S305: TO CB 5	Runoff Area=0.622 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=3.39 cfs 0.262 af
Subcatchment S306: TO CB 6	Runoff Area=0.700 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=3.82 cfs 0.295 af
Subcatchment S307: TO CB 7	Runoff Area=0.052 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=0.28 cfs 0.022 af
Subcatchment S308: TO CB 8	Runoff Area=0.789 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=4.30 cfs 0.332 af
Subcatchment S309: TO CB 9	Runoff Area=0.920 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=5.02 cfs 0.388 af
Subcatchment S310: TO CB10	Runoff Area=1.142 ac 100.00% Impervious Runoff Depth>5.06" Tc=6.0 min CN=98 Runoff=6.23 cfs 0.481 af
Subcatchment S311: TO CB 10	Runoff Area=0.401 ac 69.58% Impervious Runoff Depth>3.29" Tc=6.0 min CN=80 Runoff=1.61 cfs 0.110 af
Subcatchment S312: TO CB 11	Runoff Area=1.175 ac 90.64% Impervious Runoff Depth>4.51" Tc=6.0 min CN=92 Runoff=6.05 cfs 0.442 af
Subcatchment S313: TO CB 12	Runoff Area=0.954 ac 96.54% Impervious Runoff Depth>4.90" Tc=6.0 min CN=96 Runoff=5.14 cfs 0.389 af
Subcatchment S314: TO IB1	Runoff Area=0.916 ac 0.00% Impervious Runoff Depth>0.30" Tc=6.0 min CN=39 Runoff=0.12 cfs 0.023 af

Type III 24-hr 25-Year Rainfall=5.70"

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 8

Subcatchment S315: TO W	Runoff Area=5.670 ac 2.35% Impervious Runoff Depth>0.25" Flow Length=750' Tc=25.6 min CN=38 Runoff=0.40 cfs 0.120 af
Pond 1P: CB1	Peak Elev=193.56' Inflow=1.21 cfs 0.082 af 12.0" Round Culvert n=0.013 L=200.0' S=0.0100 '/' Outflow=1.21 cfs 0.082 af
Pond 2P: CB2	Peak Elev=191.26' Inflow=2.32 cfs 0.158 af 12.0" Round Culvert n=0.013 L=140.0' S=0.0029 '/' Outflow=2.32 cfs 0.158 af
Pond 3P: CB3	Peak Elev=190.55' Inflow=4.13 cfs 0.281 af 15.0" Round Culvert n=0.013 L=150.0' S=0.0090 '/' Outflow=4.13 cfs 0.281 af
Pond 4P: CB4	Peak Elev=189.69' Inflow=5.51 cfs 0.388 af 15.0" Round Culvert n=0.013 L=150.0' S=0.0100 '/' Outflow=5.51 cfs 0.388 af
Pond 5P: CB5	Peak Elev=188.30' Inflow=8.90 cfs 0.650 af 18.0" Round Culvert n=0.013 L=286.0' S=0.0103 '/' Outflow=8.90 cfs 0.650 af
Pond 6P: CB6	Peak Elev=184.84' Inflow=12.71 cfs 0.945 af 24.0" Round Culvert n=0.013 L=26.0' S=0.0135 '/' Outflow=12.71 cfs 0.945 af
Pond 7P: CB7	Peak Elev=189.30' Inflow=0.28 cfs 0.022 af 12.0" Round Culvert n=0.013 L=220.0' S=0.0143 '/' Outflow=0.28 cfs 0.022 af
Pond 8P: CB8	Peak Elev=187.19' Inflow=4.59 cfs 0.354 af 15.0" Round Culvert n=0.013 L=286.0' S=0.0100 '/' Outflow=4.59 cfs 0.354 af
Pond 9P: CB9	Peak Elev=185.37' Inflow=9.60 cfs 0.742 af 18.0" Round Culvert n=0.013 L=25.0' S=0.0200 '/' Outflow=9.60 cfs 0.742 af
Pond 10P: CB10	Peak Elev=184.84' Inflow=6.23 cfs 0.481 af 18.0" Round Culvert n=0.013 L=26.0' S=0.0250 '/' Outflow=6.23 cfs 0.481 af
Pond 11P: CB10	Peak Elev=192.30' Inflow=1.61 cfs 0.110 af 12.0" Round Culvert n=0.013 L=300.0' S=0.0187 '/' Outflow=1.61 cfs 0.110 af
Pond 12P: CB11	Peak Elev=187.45' Inflow=7.66 cfs 0.552 af 18.0" Round Culvert n=0.013 L=272.0' S=0.0100 '/' Outflow=7.66 cfs 0.552 af
Pond 13P: CB12	Peak Elev=184.84' Inflow=12.79 cfs 0.941 af 24.0" Round Culvert n=0.013 L=28.0' S=0.0100 '/' Outflow=12.79 cfs 0.941 af
Pond 14P: IB1	Peak Elev=184.84' Storage=77,244 cf Inflow=41.33 cfs 3.132 af Discarded=2.01 cfs 1.703 af Primary=0.39 cfs 0.180 af Outflow=2.40 cfs 1.882 af
Link OP1: OFFSITE CLOSI	ED DRAINAGE Inflow=1.07 cfs 0.085 af Primary=1.07 cfs 0.085 af
Link OP2: STREAM	Inflow=0.74 cfs 0.299 af Primary=0.74 cfs 0.299 af

Type III 24-hr 25-Year Rainfall=5.70"

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 9

Total Runoff Area = 15.656 ac Runoff Volume = 3.337 af Average Runoff Depth = 2.56" 50.03% Pervious = 7.832 ac 49.97% Impervious = 7.824 ac

Prepared by Fieldstone Land Consultants, PLLC
HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 10

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method

Subcatchment S101: TO EXIST. CB	Runoff Area=0.523 ac 26.00% Impervious Runoff Depth>1.74" Tc=6.0 min CN=54 Runoff=1.06 cfs 0.076 af
Subcatchment S201: TO EX. CB	Runoff Area=0.479 ac 19.42% Impervious Runoff Depth>1.41" Tc=6.0 min CN=50 Runoff=0.75 cfs 0.056 af
Subcatchment S301: TO CB 1	Runoff Area=0.348 ac 61.78% Impervious Runoff Depth>3.73" Tc=6.0 min CN=75 Runoff=1.59 cfs 0.108 af
Subcatchment S302: TO CB 2	Runoff Area=0.261 ac 73.56% Impervious Runoff Depth>4.47" Tc=6.0 min CN=82 Runoff=1.40 cfs 0.097 af
Subcatchment S303: TO CB 3	Runoff Area=0.451 ac 69.18% Impervious Runoff Depth>4.25" Tc=6.0 min CN=80 Runoff=2.32 cfs 0.160 af
Subcatchment S304: TO CB 4	Runoff Area=0.253 ac 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=1.65 cfs 0.128 af
Subcatchment S305: TO CB 5	Runoff Area=0.622 ac 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=4.06 cfs 0.315 af
SubcatchmentS306: TO CB 6	Runoff Area=0.700 ac 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=4.57 cfs 0.354 af
Subcatchment S307: TO CB 7	Runoff Area=0.052 ac 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=0.34 cfs 0.026 af
Subcatchment S308: TO CB 8	Runoff Area=0.789 ac 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=5.15 cfs 0.399 af
SubcatchmentS309: TO CB 9	Runoff Area=0.920 ac 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=6.01 cfs 0.466 af
SubcatchmentS310: TO CB10	Runoff Area=1.142 ac 100.00% Impervious Runoff Depth>6.07" Tc=6.0 min CN=98 Runoff=7.46 cfs 0.578 af
SubcatchmentS311: TO CB 10	Runoff Area=0.401 ac 69.58% Impervious Runoff Depth>4.25" Tc=6.0 min CN=80 Runoff=2.07 cfs 0.142 af
SubcatchmentS312: TO CB 11	Runoff Area=1.175 ac 90.64% Impervious Runoff Depth>5.54" Tc=6.0 min CN=92 Runoff=7.35 cfs 0.543 af
Subcatchment S313: TO CB 12	Runoff Area=0.954 ac 96.54% Impervious Runoff Depth>5.93" Tc=6.0 min CN=96 Runoff=6.17 cfs 0.471 af
SubcatchmentS314: TO IB1	Runoff Area=0.916 ac 0.00% Impervious Runoff Depth>0.60" Tc=6.0 min CN=39 Runoff=0.33 cfs 0.046 af

Type III 24-hr 50-Year Rainfall=6.82"

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC

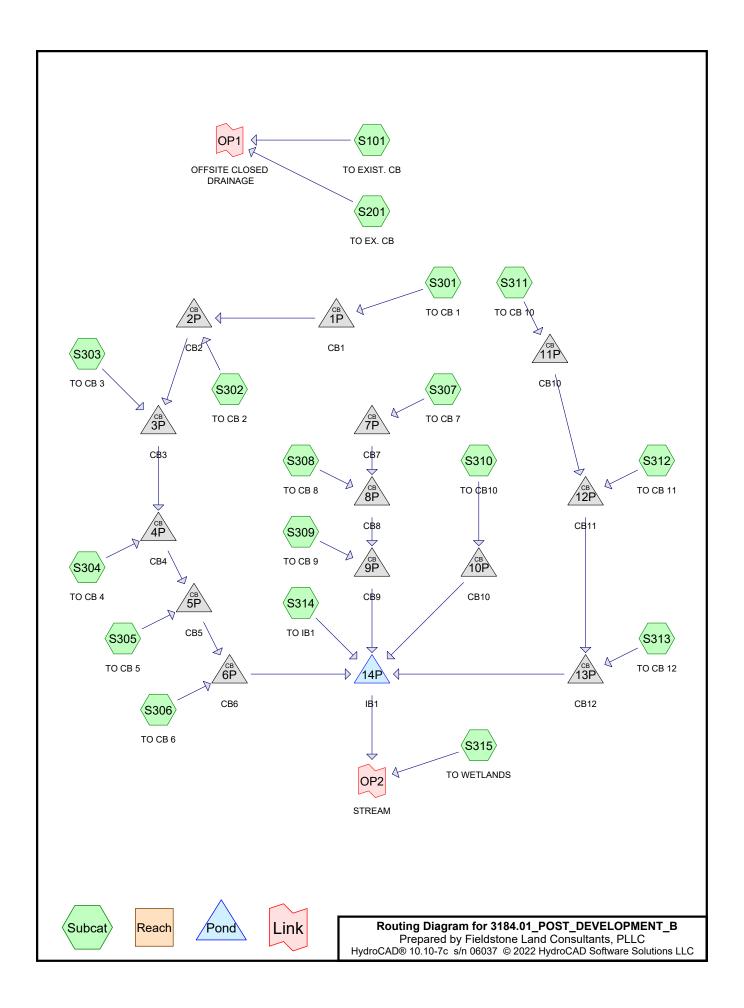
HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 11

Subcatchment S315: TO	NETLANDS Runoff Area=5.670 ac 2.35% Impervious Runoff Depth>0.53" Flow Length=750' Tc=25.6 min CN=38 Runoff=1.33 cfs 0.252 af
Pond 1P: CB1	Peak Elev=193.69' Inflow=1.59 cfs 0.108 af 12.0" Round Culvert n=0.013 L=200.0' S=0.0100 '/' Outflow=1.59 cfs 0.108 af
Pond 2P: CB2	Peak Elev=193.05' Inflow=3.00 cfs 0.205 af 12.0" Round Culvert n=0.013 L=140.0' S=0.0029 '/' Outflow=3.00 cfs 0.205 af
Pond 3P: CB3	Peak Elev=192.50' Inflow=5.32 cfs 0.365 af 15.0" Round Culvert n=0.013 L=150.0' S=0.0090 '/' Outflow=5.32 cfs 0.365 af
Pond 4P: CB4	Peak Elev=191.54' Inflow=6.97 cfs 0.493 af 15.0" Round Culvert n=0.013 L=150.0' S=0.0100 '/' Outflow=6.97 cfs 0.493 af
Pond 5P: CB5	Peak Elev=189.26' Inflow=11.03 cfs 0.808 af 18.0" Round Culvert n=0.013 L=286.0' S=0.0103 '/' Outflow=11.03 cfs 0.808 af
Pond 6P: CB6	Peak Elev=185.49' Inflow=15.60 cfs 1.162 af 24.0" Round Culvert n=0.013 L=26.0' S=0.0135 '/' Outflow=15.60 cfs 1.162 af
Pond 7P: CB7	Peak Elev=189.35' Inflow=0.34 cfs 0.026 af 12.0" Round Culvert n=0.013 L=220.0' S=0.0143 '/' Outflow=0.34 cfs 0.026 af
Pond 8P: CB8	Peak Elev=188.73' Inflow=5.49 cfs 0.426 af 15.0" Round Culvert n=0.013 L=286.0' S=0.0100'/ Outflow=5.49 cfs 0.426 af
Pond 9P: CB9	Peak Elev=186.68' Inflow=11.50 cfs 0.891 af 18.0" Round Culvert n=0.013 L=25.0' S=0.0200 '/' Outflow=11.50 cfs 0.891 af
Pond 10P: CB10	Peak Elev=185.35' Inflow=7.46 cfs 0.578 af 18.0" Round Culvert n=0.013 L=26.0' S=0.0250 '/' Outflow=7.46 cfs 0.578 af
Pond 11P: CB10	Peak Elev=192.47' Inflow=2.07 cfs 0.142 af 12.0" Round Culvert n=0.013 L=300.0' S=0.0187 '/' Outflow=2.07 cfs 0.142 af
Pond 12P: CB11	Peak Elev=188.11' Inflow=9.42 cfs 0.685 af 18.0" Round Culvert n=0.013 L=272.0' S=0.0100 '/' Outflow=9.42 cfs 0.685 af
Pond 13P: CB12	Peak Elev=185.48' Inflow=15.59 cfs 1.156 af 24.0" Round Culvert n=0.013 L=28.0' S=0.0100 '/' Outflow=15.59 cfs 1.156 af
Pond 14P: IB1	Peak Elev=185.35' Storage=92,293 cf Inflow=50.39 cfs 3.834 af Discarded=2.12 cfs 1.808 af Primary=2.39 cfs 0.574 af Outflow=4.50 cfs 2.382 af
Link OP1: OFFSITE CLOS	SED DRAINAGE Inflow=1.81 cfs 0.132 af Primary=1.81 cfs 0.132 af
Link OP2: STREAM	Inflow=3.24 cfs 0.826 af Primary=3.24 cfs 0.826 af

Type III 24-hr 50-Year Rainfall=6.82"

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC


HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 12

Total Runoff Area = 15.656 ac Runoff Volume = 4.218 af Average Runoff Depth = 3.23" 50.03% Pervious = 7.832 ac 49.97% Impervious = 7.824 ac

Section 2.2

Proposed Conditions
10 Year Storm Full Summary

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC
HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 14

Pipe Listing (selected nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
1	1P	192.90	190.90	200.0	0.0100	0.013	0.0	12.0	0.0
2	2P	189.80	189.40	140.0	0.0029	0.013	0.0	12.0	0.0
3	3P	189.15	187.80	150.0	0.0090	0.013	0.0	15.0	0.0
4	4P	187.55	186.05	150.0	0.0100	0.013	0.0	15.0	0.0
5	5P	185.80	182.85	286.0	0.0103	0.013	0.0	18.0	0.0
6	6P	182.35	182.00	26.0	0.0135	0.013	0.0	24.0	0.0
7	7P	189.00	185.85	220.0	0.0143	0.013	0.0	12.0	0.0
8	8P	185.60	182.74	286.0	0.0100	0.013	0.0	15.0	0.0
9	9P	182.50	182.00	25.0	0.0200	0.013	0.0	18.0	0.0
10	10P	182.65	182.00	26.0	0.0250	0.013	0.0	18.0	0.0
11	11P	191.50	185.90	300.0	0.0187	0.013	0.0	12.0	0.0
12	12P	185.40	182.68	272.0	0.0100	0.013	0.0	18.0	0.0
13	13P	182.18	181.90	28.0	0.0100	0.013	0.0	24.0	0.0
14	14P	183.00	181.00	25.0	0.0800	0.013	0.0	15.0	0.0

Prepared by Fieldstone Land Consultants, PLLC
HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 15

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment S101: TO EXIST. CB	Runoff Area=0.523 ac 26.00% Impervious Runoff Depth>0.61" Tc=6.0 min CN=54 Runoff=0.29 cfs 0.026 af
Subcatchment S201: TO EX. CB	Runoff Area=0.479 ac 19.42% Impervious Runoff Depth>0.43" Tc=6.0 min CN=50 Runoff=0.13 cfs 0.017 af
Subcatchment S301: TO CB 1	Runoff Area=0.348 ac 61.78% Impervious Runoff Depth>1.90" Tc=6.0 min CN=75 Runoff=0.82 cfs 0.055 af
Subcatchment S302: TO CB 2	Runoff Area=0.261 ac 73.56% Impervious Runoff Depth>2.46" Tc=6.0 min CN=82 Runoff=0.79 cfs 0.054 af
Subcatchment S303: TO CB 3	Runoff Area=0.451 ac 69.18% Impervious Runoff Depth>2.29" Tc=6.0 min CN=80 Runoff=1.28 cfs 0.086 af
Subcatchment S304: TO CB 4	Runoff Area=0.253 ac 100.00% Impervious Runoff Depth>3.96" Tc=6.0 min CN=98 Runoff=1.09 cfs 0.084 af
Subcatchment S305: TO CB 5	Runoff Area=0.622 ac 100.00% Impervious Runoff Depth>3.96" Tc=6.0 min CN=98 Runoff=2.67 cfs 0.205 af
SubcatchmentS306: TO CB 6	Runoff Area=0.700 ac 100.00% Impervious Runoff Depth>3.96" Tc=6.0 min CN=98 Runoff=3.01 cfs 0.231 af
SubcatchmentS307: TO CB 7	Runoff Area=0.052 ac 100.00% Impervious Runoff Depth>3.96" Tc=6.0 min CN=98 Runoff=0.22 cfs 0.017 af
Subcatchment S308: TO CB 8	Runoff Area=0.789 ac 100.00% Impervious Runoff Depth>3.96" Tc=6.0 min CN=98 Runoff=3.39 cfs 0.261 af
SubcatchmentS309: TO CB 9	Runoff Area=0.920 ac 100.00% Impervious Runoff Depth>3.96" Tc=6.0 min CN=98 Runoff=3.95 cfs 0.304 af
SubcatchmentS310: TO CB10	Runoff Area=1.142 ac 100.00% Impervious Runoff Depth>3.96" Tc=6.0 min CN=98 Runoff=4.90 cfs 0.377 af
SubcatchmentS311: TO CB 10	Runoff Area=0.401 ac 69.58% Impervious Runoff Depth>2.29" Tc=6.0 min CN=80 Runoff=1.13 cfs 0.077 af
Subcatchment S312: TO CB 11	Runoff Area=1.175 ac 90.64% Impervious Runoff Depth>3.40" Tc=6.0 min CN=92 Runoff=4.64 cfs 0.333 af
Subcatchment S313: TO CB 12	Runoff Area=0.954 ac 96.54% Impervious Runoff Depth>3.79" Tc=6.0 min CN=96 Runoff=4.02 cfs 0.302 af
Subcatchment S314: TO IB1	Runoff Area=0.916 ac 0.00% Impervious Runoff Depth>0.08" Tc=6.0 min CN=39 Runoff=0.01 cfs 0.006 af

3184.01_POST_DEVELOPMENT_BType III 24-hr 10-Year Rain.

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 16

Subcatchment S315: TO V	VETLANDS	Runoff Area=5.670 ac 2.35% Impervious Runoff Depth>0.06" Flow Length=750' Tc=25.6 min CN=38 Runoff=0.06 cfs 0.028 af
Pond 1P: CB1	12.0" Rour	Peak Elev=193.43' Inflow=0.82 cfs 0.055 af and Culvert n=0.013 L=200.0' S=0.0100 '/' Outflow=0.82 cfs 0.055 af
Pond 2P: CB2	12.0" Rour	Peak Elev=190.73' Inflow=1.60 cfs 0.109 af and Culvert n=0.013 L=140.0' S=0.0029 '/' Outflow=1.60 cfs 0.109 af
Pond 3P: CB3	15.0" Rour	Peak Elev=190.16' Inflow=2.88 cfs 0.195 af and Culvert n=0.013 L=150.0' S=0.0090 '/' Outflow=2.88 cfs 0.195 af
Pond 4P: CB4	15.0" Rour	Peak Elev=188.90' Inflow=3.97 cfs 0.278 af and Culvert n=0.013 L=150.0' S=0.0100 '/' Outflow=3.97 cfs 0.278 af
Pond 5P: CB5	18.0" Rour	Peak Elev=187.52' Inflow=6.63 cfs 0.484 af and Culvert n=0.013 L=286.0' S=0.0103 '/' Outflow=6.63 cfs 0.484 af
Pond 6P: CB6	24.0" Rou	Peak Elev=184.08' Inflow=9.64 cfs 0.715 afound Culvert n=0.013 L=26.0' S=0.0135 '/' Outflow=9.64 cfs 0.715 af
Pond 7P: CB7	12.0" Rour	Peak Elev=189.26' Inflow=0.22 cfs 0.017 af and Culvert n=0.013 L=220.0' S=0.0143 '/' Outflow=0.22 cfs 0.017 af
Pond 8P: CB8	15.0" Rour	Peak Elev=186.81' Inflow=3.61 cfs 0.278 af and Culvert n=0.013 L=286.0' S=0.0100 '/' Outflow=3.61 cfs 0.278 af
Pond 9P: CB9	18.0" Rou	Peak Elev=184.51' Inflow=7.56 cfs 0.582 afound Culvert n=0.013 L=25.0' S=0.0200 '/' Outflow=7.56 cfs 0.582 af
Pond 10P: CB10	18.0" Rou	Peak Elev=184.08' Inflow=4.90 cfs 0.377 afound Culvert n=0.013 L=26.0' S=0.0250 '/' Outflow=4.90 cfs 0.377 af
Pond 11P: CB10	12.0" Rour	Peak Elev=192.14' Inflow=1.13 cfs 0.077 af and Culvert n=0.013 L=300.0' S=0.0187 '/' Outflow=1.13 cfs 0.077 af
Pond 12P: CB11	18.0" Rour	Peak Elev=186.88' Inflow=5.77 cfs 0.410 af and Culvert n=0.013 L=272.0' S=0.0100 '/' Outflow=5.77 cfs 0.410 af
Pond 13P: CB12	24.0" Roı	Peak Elev=184.08' Inflow=9.79 cfs 0.712 afound Culvert n=0.013 L=28.0' S=0.0100 '/' Outflow=9.79 cfs 0.712 af
Pond 14P: IB1	Discarded=1.8	Peak Elev=184.08' Storage=56,345 cf Inflow=31.88 cfs 2.391 af 35 cfs 1.543 af Primary=0.07 cfs 0.012 af Outflow=1.92 cfs 1.555 af
Link OP1: OFFSITE CLOS	ED DRAINAG	Inflow=0.41 cfs 0.044 af Primary=0.41 cfs 0.044 af
Link OP2: STREAM		Inflow=0.12 cfs 0.040 af Primary=0.12 cfs 0.040 af

3184.01_POST_DEVELOPMENT_BPrepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 17

Total Runoff Area = 15.656 ac Runoff Volume = 2.464 af Average Runoff Depth = 1.89" 50.03% Pervious = 7.832 ac 49.97% Impervious = 7.824 ac

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 18

Summary for Subcatchment S101: TO EXIST. CB

Runoff = 0.29 cfs @ 12.12 hrs, Volume= 0.026 af, Depth> 0.61" Routed to Link OP1 : OFFSITE CLOSED DRAINAGE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area	(ac)	CN	Desc	Description							
0.	102	30	Woo	ds, Good,	HSG A						
0.	023	76	Grav	el roads, l	HSG A						
0.	136	98	Pave	ed parking,	HSG A						
0.	262	39	>75%	√ Grass co	ver, Good	, HSG A					
0.	523	54	Weig	hted Aver	age						
0.	387		74.0	0% Pervio	us Area						
0.	136		26.0	0% Imperv	ious Area						
Тс	Leng	th	Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0						Direct Entry,					

Summary for Subcatchment S201: TO EX. CB

Runoff = 0.13 cfs @ 12.16 hrs, Volume= 0.017 af, Depth> 0.43" Routed to Link OP1 : OFFSITE CLOSED DRAINAGE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area	(ac)	CN	Desc	Description					
0.	.040	30	Woo	ds, Good,	HSG A				
0.	.093	98	Pave	ed parking,	HSG A				
0.	.346	39	>75%	√ Grass co	over, Good,	d, HSG A			
0.	.479	50	Weig	hted Aver	age				
0.	.386		80.5	8% Pervio	us Area				
0.	.093		19.42	2% Imperv	ious Area				
Tc (min)	Lengt (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	•			
6.0						Direct Entry,			

Summary for Subcatchment S301: TO CB 1

Runoff = 0.82 cfs @ 12.10 hrs, Volume= 0.055 af, Depth> 1.90" Routed to Pond 1P : CB1

3184.01_POST_DEVELOPMENT_B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 19

Area (a	ac)	CN	Desc	Description							
0.0	000	30	Woo	ds, Good,	HSG A						
0.1	115	98	Roof	s, HSG A							
0.1	100	98	Pave	d parking,	HSG A						
0.1	33	39	>75%	6 Grass co	ver, Good,	d, HSG A					
0.3	348	75	Weig	hted Aver	age						
0.1	133		38.22	2% Pervio	us Area						
0.2	215		61.78	3% Imperv	ious Area						
Tc (min)	Length (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)						
6.0						Direct Entry,					

Summary for Subcatchment S302: TO CB 2

Runoff = 0.79 cfs @ 12.09 hrs, Volume= 0.054 af, Depth> 2.46"

Routed to Pond 2P: CB2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area	(ac)	CN	Desc	Description					
0.	096	98	Roof	s, HSG A					
0.	096	98	Pave	ed parking,	HSG A				
0.	069	39	>75%	√ Grass co	ver, Good	d, HSG A			
0.	261	82	Weig	hted Aver	age				
0.	069		26.4	4% Pervio	us Area				
0.	192		73.5	6% Imperv	ious Area				
_						-			
Tc	Lengi		Slope	Velocity	Capacity	Description			
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)				
6.0						Direct Entry,			

Summary for Subcatchment S303: TO CB 3

Runoff = 1.28 cfs @ 12.09 hrs, Volume= 0.086 af, Depth> 2.29"

Routed to Pond 3P: CB3

Area (a	ac)	CN	Description
0.1	31	98	Roofs, HSG A
0.1	81	98	Paved parking, HSG A
0.1	39	39	>75% Grass cover, Good, HSG A
0.4	51	80	Weighted Average
0.1	39		30.82% Pervious Area
0.3	12		69.18% Impervious Area

3184.01_POST_DEVELOPMENT_B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 20

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		Description
6.0	, ,	, ,	, ,	` '	Direct Entry,

Summary for Subcatchment S304: TO CB 4

Runoff = 1.09 cfs @ 12.09 hrs, Volume= 0.084 af, Depth> 3.96"

Routed to Pond 4P: CB4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area	(ac)	CN	Desc	Description					
0.	.060	98	Roof	s, HSG A					
0.	.193	98	Pave	ed parking,	HSG A				
0.	.000	39	>75%	√ Grass co	over, Good,	I, HSG A			
0.	.253	98 Weighted Average							
0.	.253		100.0	00% Impei	rvious Area	a			
Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0						Direct Entry,			

Summary for Subcatchment S305: TO CB 5

Runoff = 2.67 cfs @ 12.09 hrs, Volume= 0.205 af, Depth> 3.96"

Routed to Pond 5P: CB5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area	(ac)	CN	Desc	cription		
0.	.072	98	Roof	s, HSG A		
 0.	.550	98	Pave	ed parking,	, HSG A	
0.	.622	98	Weig	hted Aver	age	
0.	.622		100.	00% Impe	rvious Area	a e e e e e e e e e e e e e e e e e e e
т.	1		Ol	\/_l_=!t	Oit.	Description
Tc	Lengt	n.	Slope	Velocity	Capacity	Description
(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
 6.0						Direct Entry,

Summary for Subcatchment S306: TO CB 6

Runoff = 3.01 cfs @ 12.09 hrs, Volume= 0.231 af, Depth> 3.96"

Routed to Pond 6P: CB6

3184.01_POST_DEVELOPMENT_B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 2

Ar	ea (ad	c) CN	Desc	cription		
	0.11	2 98	Roof	s, HSG A		
	0.58	8 98	Pave	ed parking,	HSG A	
	0.70	0 98	Weig	hted Aver	age	
	0.70	0	100.	00% Impe	rvious Area	a e e e e e e e e e e e e e e e e e e e
-	F- 1	41-	Olara a	\/-l:\.	O:h.	Description
		ength	Slope	Velocity	Capacity	Description
(mi	n)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6	.0					Direct Entry,

Summary for Subcatchment S307: TO CB 7

Runoff = 0.22 cfs @ 12.09 hrs, Volume= 0.017 af, Depth> 3.96"

Routed to Pond 7P: CB7

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area	(ac)	CN	Desc	cription		
0.	.026	98	Roof	s, HSG A		
0.	.026	98	Pave	ed parking,	, HSG A	
0.	.052	98	Weig	hted Aver	age	
0.	.052		100.	00% Impe	rvious Area	l .
				•		
Tc	Leng	th	Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0						Direct Entry,

Summary for Subcatchment S308: TO CB 8

Runoff = 3.39 cfs @ 12.09 hrs, Volume= 0.261 af, Depth> 3.96"

Routed to Pond 8P: CB8

Ar	ea (ac) CN	Desc	cription		
	0.150 98 Roofs, HSG A					
	0.639	98	Pave	ed parking,	HSG A	
	0.789 98 Weighted Average					
	0.789	9	100.	00% Impe	rvious Area	a control of the cont
	Ta la	ما المرم مر	Clana	Valaaitu	Canacitu	Description
		ength	Slope	Velocity	Capacity	Description
(mi		(feet)	(ft/ft)	(ft/sec)	(cfs)	
6	0.0					Direct Entry,

3184.01 POST DEVELOPMENT B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 22

Summary for Subcatchment S309: TO CB 9

Runoff = 3.95 cfs @ 12.09 hrs, Volume= 0.304 af, Depth> 3.96"

Routed to Pond 9P: CB9

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

_	Area	(ac)	CN	Desc	cription			
	0.270 98 Roofs, HSG A				s, HSG A			
_	0	.650	98	Pave	ed parking,	HSG A		
	0	.920	98	Weig	hted Aver	age		
	0	.920		100.	00% Impe	rvious Area		
	Tc	Leng	th	Slope	Velocity	Capacity	Description	
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
	6.0						Direct Entry,	

Summary for Subcatchment S310: TO CB10

Runoff = 4.90 cfs @ 12.09 hrs, Volume= 0.377 af, Depth> 3.96"

Routed to Pond 10P: CB10

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area	(ac)	CN	Desc	ription		
0	0.284 98 Roofs, HSG A					
0	.858	98	Pave	ed parking,	HSG A	
1	1.142 98 Weighted Average					
1	.142		100.	00% Impe	rvious Area	A
Tc	Leng	th	Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
6.0				·		Direct Entry,

Summary for Subcatchment S311: TO CB 10

Runoff = 1.13 cfs @ 12.09 hrs, Volume= 0.077 af, Depth> 2.29"

Routed to Pond 11P: CB10

3184.01_POST_DEVELOPMENT_B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 23

Are	rea (ac) CN Description							
	0.122 39 >75% Grass cover, Good,					over, Good	HSG A	
	0.00	0	98	Roof	s, HSG A			
	0.27	'9	98	Pave	ed parking,	HSG A		
	0.401 80 Weighted Average				hted Aver	age		
	0.12	22		30.42	2% Pervio	us Area		
	0.27	'9		69.5	8% Imperv	ious Area		
T (min		ength (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0		(IOCI)	'	(10,11)	(10,000)	(013)	Direct Entry,	

Summary for Subcatchment S312: TO CB 11

Runoff = 4.64 cfs @ 12.09 hrs, Volume= 0.333 af, Depth> 3.40"

Routed to Pond 12P: CB11

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area	(ac)	CN	Desc	ription			
	0.	110	39	>75%	√ Grass co	ver, Good	, HSG A	
	0.	067	98	Roof	s, HSG A			
	0.	998	98	Pave	ed parking,	HSG A		
	1.	1.175 92 Weighted Average						
	0.	110		9.36	% Perviou	s Area		
	1.	065		90.64	4% Imperv	rious Area		
	Тс	Leng	th	Slope	Velocity	Capacity	Description	
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
	6.0						Direct Entry,	

Summary for Subcatchment S313: TO CB 12

Runoff = 4.02 cfs @ 12.09 hrs, Volume= 0.302 af, Depth> 3.79"

Routed to Pond 13P: CB12

	Area (ac)	CN	Description
	0.033	39	>75% Grass cover, Good, HSG A
	0.077	98	Roofs, HSG A
	0.844	98	Paved parking, HSG A
-	0.954	96	Weighted Average
	0.033		3.46% Pervious Area
	0.921		96.54% Impervious Area

3184.01_POST_DEVELOPMENT_B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 24

Тс	_	•	•	Capacity	Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment S314: TO IB1

Runoff = 0.01 cfs @ 14.71 hrs, Volume= 0.006 af, Depth> 0.08"

Routed to Pond 14P: IB1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

_	Area	(ac)	CN	Desc	cription		
	0.	916	39	>75%	% Grass co	over, Good	, HSG A
-	0.	916		100.	00% Pervi	ous Area	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
Ī	6.0						Direct Entry,

Summary for Subcatchment S315: TO WETLANDS

Runoff = 0.06 cfs @ 15.29 hrs, Volume= 0.028 af, Depth> 0.06"

Routed to Link OP2: STREAM

	Area	(ac) C	N Des	cription					
	1.	600 3	30 Woo	Woods, Good, HSG A					
	0.	029	76 Grav	/el roads, l	HSG A				
	0.	133	98 Pave	ed parking	, HSG A				
_	3.	908 3	39 >75°	% Grass co	over, Good,	, HSG A			
	5.	670	38 Weig	ghted Aver	age				
	5.	537	97.6	5% Pervio	us Area				
	0.	133	2.35	% Impervi	ous Area				
	_		01		0 "	B			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	19.5	85	0.0200	0.07		Sheet Flow, A-B			
						Woods: Light underbrush n= 0.400 P2= 3.00"			
	5.4	390	0.0300	1.21		Shallow Concentrated Flow, B-C			
	٥.		0.0500	0.00	40.00	Short Grass Pasture Kv= 7.0 fps			
	0.7	275	0.0500	6.60	13.20				
						W=4.00' D=0.75' Area=2.0 sf Perim=4.3'			
_						n= 0.030 Earth, grassed & winding			
	25.6	750	Total						

3184.01 POST DEVELOPMENT B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 25

Summary for Pond 1P: CB1

Inflow Area = 0.348 ac, 61.78% Impervious, Inflow Depth > 1.90" for 10-Year event

Inflow = 0.82 cfs @ 12.10 hrs, Volume= 0.055 af

Outflow = 0.82 cfs @ 12.10 hrs, Volume= 0.055 af, Atten= 0%, Lag= 0.0 min

Primary = 0.82 cfs @ 12.10 hrs, Volume= 0.055 af

Routed to Pond 2P: CB2

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 193.43' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	192.90'	12.0" Round Culvert
			L= 200.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 192.90' / 190.90' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.80 cfs @ 12.10 hrs HW=193.42' TW=190.72' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.80 cfs @ 1.94 fps)

Summary for Pond 2P: CB2

Inflow Area = 0.609 ac, 66.83% Impervious, Inflow Depth > 2.14" for 10-Year event

Inflow = 1.60 cfs @ 12.09 hrs, Volume= 0.109 af

Outflow = 1.60 cfs @ 12.09 hrs, Volume= 0.109 af, Atten= 0%, Lag= 0.0 min

Primary = 1.60 cfs @ 12.09 hrs, Volume= 0.109 af

Routed to Pond 3P: CB3

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 190.73' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	189.80'	12.0" Round Culvert L= 140.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 189.80' / 189.40' S= 0.0029 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.50 cfs @ 12.09 hrs HW=190.72' TW=190.15' (Dynamic Tailwater) 1=Culvert (Outlet Controls 1.50 cfs @ 2.60 fps)

Summary for Pond 3P: CB3

Inflow Area = 1.060 ac, 67.83% Impervious, Inflow Depth > 2.21" for 10-Year event

Inflow = 2.88 cfs @ 12.09 hrs, Volume= 0.195 af

Outflow = 2.88 cfs @ 12.09 hrs, Volume= 0.195 af, Atten= 0%, Lag= 0.0 min

Primary = 2.88 cfs @ 12.09 hrs, Volume= 0.195 af

Routed to Pond 4P: CB4

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

3184.01 POST DEVELOPMENT B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Peak Elev= 190.16' @ 12.09 hrs

Flood Elev= 195.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	189.15'	15.0" Round Culvert
			L= 150.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 189.15' / 187.80' S= 0.0090 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.83 cfs @ 12.09 hrs HW=190.15' TW=188.87' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.83 cfs @ 2.69 fps)

Summary for Pond 4P: CB4

Inflow Area = 1.313 ac, 74.03% Impervious, Inflow Depth > 2.54" for 10-Year event

Inflow = 3.97 cfs @ 12.09 hrs, Volume= 0.278 af

0.278 af, Atten= 0%, Lag= 0.0 min 0.278 af Outflow 3.97 cfs @ 12.09 hrs, Volume=

Primary = 3.97 cfs @ 12.09 hrs, Volume=

Routed to Pond 5P: CB5

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 188.90' @ 12.09 hrs

Flood Elev= 193.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	187.55'	15.0" Round Culvert
	•		L= 150.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 187.55' / 186.05' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.88 cfs @ 12.09 hrs HW=188.87' TW=187.49' (Dynamic Tailwater) 1=Culvert (Inlet Controls 3.88 cfs @ 3.17 fps)

Summary for Pond 5P: CB5

Inflow Area = 1.935 ac, 82.38% Impervious, Inflow Depth > 3.00" for 10-Year event

Inflow =

6.63 cfs @ 12.09 hrs, Volume= 0.484 af 0.484 af, Atten= 0%, Lag= 0.0 min Outflow

Primary = 6.63 cfs @ 12.09 hrs, Volume= 0.484 af

Routed to Pond 6P: CB6

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 187.52' @ 12.09 hrs

Flood Elev= 190.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	185.80'	18.0" Round Culvert L= 286.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 185.80' / 182.85' S= 0.0103 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 27

Primary OutFlow Max=6.48 cfs @ 12.09 hrs HW=187.48' TW=183.98' (Dynamic Tailwater) 1=Culvert (Inlet Controls 6.48 cfs @ 3.67 fps)

Summary for Pond 6P: CB6

Inflow Area = 2.635 ac, 87.06% Impervious, Inflow Depth > 3.26" for 10-Year event

Inflow = 9.64 cfs @ 12.09 hrs, Volume= 0.715 af

Outflow = 9.64 cfs @ 12.09 hrs, Volume= 0.715 af, Atten= 0%, Lag= 0.0 min

Primary = 9.64 cfs @ 12.09 hrs, Volume= 0.715 af

Routed to Pond 14P: IB1

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 184.08' @ 13.89 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	182.35'	24.0" Round Culvert	
			L= 26.0' CPP, projecting, no headwall, Ke= 0.900	
			Inlet / Outlet Invert= 182.35' / 182.00' S= 0.0135 '/' Cc= 0.900	
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf	

Primary OutFlow Max=9.40 cfs @ 12.09 hrs HW=183.98' TW=183.05' (Dynamic Tailwater) 1=Culvert (Inlet Controls 9.40 cfs @ 3.43 fps)

Summary for Pond 7P: CB7

Inflow Area = 0.052 ac,100.00% Impervious, Inflow Depth > 3.96" for 10-Year event

Inflow = 0.22 cfs @ 12.09 hrs, Volume= 0.017 af

Outflow = 0.22 cfs @ 12.09 hrs, Volume= 0.017 af, Atten= 0%, Lag= 0.0 min

Primary = 0.22 cfs @ 12.09 hrs, Volume= 0.017 af

Routed to Pond 8P: CB8

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 189.26' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	189.00'	12.0" Round Culvert
	-		L= 220.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 189.00' / 185.85' S= 0.0143 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.22 cfs @ 12.09 hrs HW=189.26' TW=186.78' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.22 cfs @ 1.36 fps)

3184.01 POST DEVELOPMENT B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 28

Summary for Pond 8P: CB8

Inflow Area = 0.841 ac,100.00% Impervious, Inflow Depth > 3.96" for 10-Year event

3.61 cfs @ 12.09 hrs, Volume= Inflow 0.278 af

3.61 cfs @ 12.09 hrs, Volume= 0.278 af, Atten= 0%, Lag= 0.0 min Outflow

Primary 3.61 cfs @ 12.09 hrs, Volume= 0.278 af

Routed to Pond 9P: CB9

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.81' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	185.60'	15.0" Round Culvert
			L= 286.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 185.60' / 182.74' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.52 cfs @ 12.09 hrs HW=186.78' TW=184.45' (Dynamic Tailwater) 1=Culvert (Inlet Controls 3.52 cfs @ 2.93 fps)

Summary for Pond 9P: CB9

1.761 ac,100.00% Impervious, Inflow Depth > 3.96" for 10-Year event Inflow Area =

7.56 cfs @ 12.09 hrs, Volume= 0.582 af Inflow

7.56 cfs @ 12.09 hrs, Volume= Outflow 0.582 af, Atten= 0%, Lag= 0.0 min

Primary = 7.56 cfs @ 12.09 hrs, Volume= 0.582 af

Routed to Pond 14P: IB1

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 184.51' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	182.50'	18.0" Round Culvert L= 25.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 182.50' / 182.00' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=7.36 cfs @ 12.09 hrs HW=184.45' TW=183.05' (Dynamic Tailwater) 1=Culvert (Inlet Controls 7.36 cfs @ 4.16 fps)

Summary for Pond 10P: CB10

Inflow Area = 1.142 ac,100.00% Impervious, Inflow Depth > 3.96" for 10-Year event

4.90 cfs @ 12.09 hrs, Volume= 0.377 af Inflow

4.90 cfs @ 12.09 hrs, Volume= Outflow 0.377 af, Atten= 0%, Lag= 0.0 min

4.90 cfs @ 12.09 hrs, Volume= Primary 0.377 af

Routed to Pond 14P: IB1

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

3184.01 POST DEVELOPMENT B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 29

Peak Elev= 184.08' @ 13.90 hrs

Flood Elev= 186.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	182.65'	18.0" Round Culvert
			L= 26.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 182.65' / 182.00' S= 0.0250 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=4.57 cfs @ 12.09 hrs HW=183.72' TW=183.05' (Dynamic Tailwater) 1=Culvert (Outlet Controls 4.57 cfs @ 4.73 fps)

Summary for Pond 11P: CB10

Inflow Area = 0.401 ac, 69.58% Impervious, Inflow Depth > 2.29" for 10-Year event Inflow = 1.13 cfs @ 12.09 hrs, Volume= 0.077 af Outflow = 1.13 cfs @ 12.09 hrs, Volume= 0.077 af, Atten= 0%, Lag= 0.0 min

Primary = 1.13 cfs @ 12.09 hrs, Volume= 0.077 af

Routed to Pond 12P: CB11

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 192.14' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	191.50'	12.0" Round Culvert
	•		L= 300.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 191.50' / 185.90' S= 0.0187 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.11 cfs @ 12.09 hrs HW=192.13' TW=186.85' (Dynamic Tailwater) 1=Culvert (Inlet Controls 1.11 cfs @ 2.14 fps)

Summary for Pond 12P: CB11

Inflow Area = 1.576 ac, 85.28% Impervious, Inflow Depth > 3.12" for 10-Year event

Inflow = 5.77 cfs @ 12.09 hrs, Volume= 0.410 af

Outflow = 5.77 cfs @ 12.09 hrs, Volume= 0.410 af, Atten= 0%, Lag= 0.0 min

Primary = 5.77 cfs @ 12.09 hrs, Volume= 0.410 af

Routed to Pond 13P: CB12

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.88' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	185.40'	18.0" Round Culvert
			L= 272.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 185.40' / 182.68' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 30

Primary OutFlow Max=5.64 cfs @ 12.09 hrs HW=186.85' TW=183.87' (Dynamic Tailwater) 1=Culvert (Inlet Controls 5.64 cfs @ 3.23 fps)

Summary for Pond 13P: CB12

Inflow Area = 2.530 ac, 89.53% Impervious, Inflow Depth > 3.38" for 10-Year event

Inflow = 9.79 cfs @ 12.09 hrs, Volume= 0.712 af

Outflow = 9.79 cfs @ 12.09 hrs, Volume= 0.712 af, Atten= 0%, Lag= 0.0 min

Primary = 9.79 cfs @ 12.09 hrs, Volume= 0.712 af

Routed to Pond 14P: IB1

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 184.08' @ 13.89 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	182.18'	24.0" Round Culvert	
			L= 28.0' CPP, projecting, no headwall, Ke= 0.900	
			Inlet / Outlet Invert= 182.18' / 181.90' S= 0.0100 '/' Cc= 0.900	
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf	

Primary OutFlow Max=9.54 cfs @ 12.09 hrs HW=183.87' TW=183.05' (Dynamic Tailwater) 1=Culvert (Barrel Controls 9.54 cfs @ 4.54 fps)

Summary for Pond 14P: IB1

Inflow Area =	8.984 ac, 83.06% Impervious, Inflow	Depth > 3.19" for 10-Year event		
Inflow =	31.88 cfs @ 12.09 hrs, Volume=	2.391 af		
Outflow =	1.92 cfs @ 13.86 hrs, Volume=	1.555 af, Atten= 94%, Lag= 106.2 min		
Discarded =	1.85 cfs @ 13.86 hrs, Volume=	1.543 af		
Primary =	0.07 cfs @ 13.86 hrs, Volume=	0.012 af		
Routed to Link OP2 : STREAM				

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 184.08' @ 13.86 hrs Surf.Area= 26,659 sf Storage= 56,345 cf

Plug-Flow detention time= 193.9 min calculated for 1.554 af (65% of inflow) Center-of-Mass det. time= 119.4 min (866.1 - 746.6)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1	181.00'	128,616 cf	Custom Stage Data (Conic)Listed below (Recalc)
#2	177.00'	449 cf	3.00'W x 100.00'L x 4.00'H Prismatoid
			1,200 cf Overall - 79 cf Embedded = 1,121 cf x 40.0% Voids
#3	178.00'	79 cf	12.0" Round Pipe Storage Inside #2
			L= 100.0'

129,144 cf Total Available Storage

3184.01 POST DEVELOPMENT B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 31

		Inc.Store	Cum.Store	Wet.Area	
· · · · · · · · · · · · · · · · · · ·				•	
	•	~		•	
	•		,	•	
184.00 26,140		24,650	53,837	26,241	
186.00 32,240		58,273	112,111	32,460	
186.50 33,790		16,506	128,616	34,043	
Routing	Invert	Outlet Devices	3		
Discarded					
Primary	185.50'	4.0' long x 4.0' breadth Broad-Crested Rectangular Weir			
		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66			
				88 3.07 3.32	
Primary	183.00'				
Inlet / Outlet Invert= 183.00' / 181.00' S= 0.0800 '/' (
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf			
		4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads			
Device 3	184.80'	12.0" W x 6.0" H Vert. Orifice/Grate C= 0.600			
Device 3	185.30'				
					en area)
		Limited to weir	r flow at low head	ds	
	et) 00 00 00 00 00 00 50 Routing	et) (sq-ft) 00 10,670 00 12,540 00 23,190 00 26,140 00 32,240 50 33,790 Routing Invert Discarded 177.00' Primary 185.50' Primary 183.00' Device 3 183.90' Device 3 184.80'	et) (sq-ft) (cubic-feet) 00 10,670 0 10,670 0 11,592 00 23,190 17,594 00 26,140 24,650 00 32,240 58,273 50 33,790 16,506 Routing Invert Outlet Devices Primary 185.50' 4.0' long x 4. Head (feet) 0 2.50 3.00 3.5 Coef. (English 2.68 2.72 2.7 Primary 183.00' 15.0" Round L= 25.0' CPF Inlet / Outlet Ir n= 0.013 Corn Device 3 183.90' 4.0" Vert. Orif Device 3 184.80' 12.0" W x 6.0' Limited to wein Device 3 185.30' 4.0" x 4.0" Ho X 10 rows C=	et) (sq-ft) (cubic-feet) (cubic-feet) 10 10,670 0 0 12,540 11,592 11,592 13,190 17,594 29,187 10 26,140 24,650 53,837 10 32,240 58,273 112,111 10 33,790 16,506 128,616 Routing Invert Outlet Devices Discarded Primary 185.50' 4.0' long x 4.0' breadth Broad (feet) 0.20 0.40 0.60 0 2.50 3.00 3.50 4.00 4.50 5.0 Coef. (English) 2.38 2.54 2.60 2.68 2.72 2.73 2.76 2.79 2.10 Primary 183.00' 15.0" Round Culvert L= 25.0' CPP, square edge hinlet / Outlet Invert= 183.00' / 1 n= 0.013 Corrugated PE, smodulet - 1 n= 0.013 Corrugat	Set (sq-ft) (cubic-feet) (cubic-feet) (sq-ft)

Discarded OutFlow Max=1.85 cfs @ 13.86 hrs HW=184.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 1.85 cfs)

Primary OutFlow Max=0.07 cfs @ 13.86 hrs HW=184.08' TW=0.00' (Dynamic Tailwater)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

-3=Culvert (Passes 0.07 cfs of 3.97 cfs potential flow)

-4=Orifice/Grate (Orifice Controls 0.07 cfs @ 1.43 fps)

-5=Orifice/Grate (Controls 0.00 cfs)

-6=Orifice/Grate (Controls 0.00 cfs)

Summary for Link OP1: OFFSITE CLOSED DRAINAGE

Inflow Area = 1.002 ac, 22.85% Impervious, Inflow Depth > 0.52" for 10-Year event

Inflow = 0.41 cfs @ 12.13 hrs, Volume= 0.044 af

Primary = 0.41 cfs @ 12.13 hrs, Volume= 0.044 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Type III 24-hr 10-Year Rainfall=4.50"

3184.01_POST_DEVELOPMENT_B

Prepared by Fieldstone Land Consultants, PLLC

HydroCAD® 10.10-7c s/n 06037 © 2022 HydroCAD Software Solutions LLC

Page 32

Summary for Link OP2: STREAM

Inflow Area = 14.654 ac, 51.83% Impervious, Inflow Depth > 0.03" for 10-Year event

0.12 cfs @ 14.13 hrs, Volume= 0.12 cfs @ 14.13 hrs, Volume= 0.040 af Inflow

Primary 0.040 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Section 3.1 Inspection & Maintenance Manual

84 Lumber Company 3 Sullivan Road, Hudson, New Hampshire Storm Water Management System Inspection and Maintenance Manual

Introduction

The operation and maintenance of a storm water management system and its individual components is as critical to system performance as the design. Without proper maintenance, best management practices (BMPs) are likely to become functionally impaired or to fail, providing reduced or no treatment of storm water. Proper operation and maintenance will ensure that the storm water system and individual BMPs will remain effective at removing pollutants as designed and meeting New Hampshire's water quality objectives. Proper maintenance will:

- Maintain the volume of storm water treated over the long term;
- Sustain the pollutant removal efficiency of the BMP;
- Reduce the risk of re-suspending sediment and other pollutants captured by the BMP;
- Prevent structural deterioration of the BMP and minimize the need for expensive repairs;
- Decrease the potential for failure of the BMP.

The NH Department of Environmental Services Alteration of Terrain (AoT) regulations (Env-Wq 1500) require the long term maintenance of storm water practices, and stipulate the establishment of a mechanism to provide for ongoing inspections and maintenance.

In accordance with Env-Wq 1507.08 <u>Long-Term Maintenance</u> the mechanism for providing long-term maintenance practices for this development are as follows:

Responsible Maintenance Party:

Owner: 84 Lumber Company

1019 Route 519, Building 4 Eighty Four, PA 15330

Report Information:

- 84 Lumber Company will be the entity responsible for implementing the required reporting, inspection, and maintenance activities identified in the I & M manual.
- 84 Lumber Company will maintain all record keeping required by the I & M manual. Any transfer of
 responsibility for I & M activities or transfer in ownership shall be documented to the DES in writing.
- Inspection and maintenance reports shall be completed after each inspection. Copies of the report forms to be completed by the inspector are attached at the end of this manual, including:
 - Inspection checklist to be used during each inspection;
 - Inspection and maintenance logs to document each inspection and maintenance activity;

• A plan showing the locations of all the storm water practices described in the I&M manual is attached at the end of this manual.

Maintenance Recommendations for Best Management Practices:

The following recommendations are to be used as a guide for the inspection and maintenance of the permanent erosion and sediment control measures.

In-Ground Infiltration Basin

- Removal of debris from inlet and outlet structures.
- Removal of accumulated sediment.
- Inspection and repair of outlet structures and appurtenances.
- Inspection of infiltration components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Periodic mowing of embankments.
- Removal of woody vegetation form embankments.
- Inspection and repair of embankments and spillways.
- If an infiltration system does not drain within 72-hours following a rainfall event, then a qualified
 professional should assess the condition of the facility to determine measures required to restore
 infiltration function, including but not limited to removal of accumulated sediments or reconstruction of
 the infiltration trench.
- Vegetation should be inspected at least annually, and maintained in healthy condition, including pruning, removal and replacement of dead or diseased vegetation, and removal of invasive species.

Sediment Forebays

- Inspect Forebays monthly for first year to determine sediment load. If sediment load is heavy then maintain monthly inspections. If sediment load is light then reduce inspection accordingly but inspect at least semi-annually.
- Remove trash upon inspection and accumulated sedimentation when sediments have accumulated to
 within 6 inches of the outlet and/or when there is evidence of excessive sediment being conveyed to
 downstream BMP.
- Repair any damage in the forebay as a result of erosion immediately after the inspection to minimize sediment transport.
- Dispose of sediments and other wastes in conformance with applicable local, state and federal regulations.

Drainage Catch Basins

- Inspect basins at least semi-annually.
- Vacuum the sediment basins when the sediment reaches one-half the depth from the bottom of the catch basin to the invert of the outlet pipe.
- Repair damaged basin grates immediately after the inspection.
- Repair pavement damage around the basins immediately after the inspection to prevent further damage to the structure or paved area.
- Dispose of sediments and other wastes in conformance with applicable local, state and federal regulations

Outlet Protection - Riprap Aprons

- Inspect the outlet protection annually for damage and deterioration. Repair damages immediately.
- Remove debris from apron area.

Inspection Checklist / Maintenance Logs

• The inspection checklist and maintenance logs following this report shall be used as a guide for the inspection reporting for this project.

Inspection Checklist

Infiltration Basins
Sediment Forebays
Catch Basin
Headwall Inlets
Headwall Outlets/Aprons

Inspection and Maintenance Log					
	ВМР	Inspection Date	Inspected By	Maintenance Required?	Maintenance Performed
1				□Yes	
				□No	
2				□Yes	
				□No	
3				□Yes	
				□No	
4				□Yes	
				□No	
5				□Yes	
				□No	
6				□Yes	
				□No	
7				□Yes	
				□No	
8				□Yes	
				□No	
9				□Yes	
				□No	

Winter Deicing Operations

The use of deicing materials on-site shall be minimized. The use of deicing materials on-site shall be in compliance with the requirements of Town of Merrimack's Aquifer Conservation District and Well Head Protection Area. The individual overseeing the winter maintenance operations shall receive and maintain the New Hampshire Green Snowpro certification as offered by the New Hampshire Technology Center at the University of New Hampshire, Durham, NH.

A log of winter deicing operations, tracking the type and amount of deicing materials applied on site, shall be maintained by the entity responsible for on-site winter maintenance operations. A copy of the completed logs for each season shall be filed with the BMP Inspection and Maintenance Logs.

Winter Maintenance Basics

- Anti-ice before the storm.
- Remove snow from surfaces as quickly as possible to reduce compaction.
 - **No snow should be plowed over the proposed infiltration basin.**
- Plow before applying deicers to avoid dilution of the salt.
- Minimize deicer use during the storm.
- Never plow or blow snow into bodies of water, wetlands, traffic or into streets.
- Minimize back-up maneuvers to reduce chance of accidents.
- Limit use of salt and sand during the storm; use only to reduce bonding.
- Do not use salt to burn off snow.
- Use application rate chart to determine how much salt to use.
- Don't apply dry salt (sodium chloride) below 15° F pavement temperature. It will not melt fast enough to help.
- Below 15° F, use a wetted salt.
- For extreme cold, skip melting and use sand.
- Clean up spills.
- Accurately record the material used at each site.
- Pay attention to its effectiveness and record observations.
- Use only what is needed based on proper application rates for the conditions.
- Put extra back in salt pile or return extra bags.

Deicing Application Rate Guidelines for Parking Lots and Sidewalks

These rates are based on road application guidelines (LRRB 2012). Develop specific application rates by adjusting the current rates incrementally downward toward the guidelines. Where temperature categories overlap, select the rate most applicable to the present situation.

			Application Rate in lbs./per 1000 square foot area			
Pavement Temp. (ºF) and Trend (↑↓)	Weather Condition	Maintenance Actions	Salt Pre-wetted/ Pretreated With Salt Brine	Salt Pre- wetted/ Pretreated With Other Blends	Dry Salt	Winter Sand (abrasives)
>30º ↑	Snow	Plow, treat intersections only	0.75	0.5	0.75	not recommended
	Frz. Rain	Apply chemical	1.25	1.0	1.5	not recommended
30º ↓	Snow	Plow & apply chemical	1.25	1.0	1.5	not recommended
	Frz. Rain	Apply chemical	1.5	1.25	1.75.	not recommended
25 - 30º ↑	Snow	Plow & apply chemical	1.25	1.0	1.5	not recommended
	Frz. Rain	Apply chemical	1.5	1.25	1.75	not recommended
25 - 30º ↓	Snow	Plow & apply chemical	1.25	1.0	1.5	not recommended
	Frz. Rain	Apply chemical	1.75	1.5	2.25	3.25
20 - 25º 个	Snow or Frz. Rain	Plow & apply chemical	1.75	1.5	2.25	3.25 for frz. rain
20 - 25º \downarrow	Snow	Plow & apply chemical	2.0	2.0	2.75	not recommended
	Frz. Rain	Apply chemical	2.5	2.0	3.0	3.25
15º to 20º ↑	Snow	Plow & apply chemical	2.0	2.0	2.75	not recommended
	Frz. Rain	Apply chemical	2.5	2.0	3.0	3.25
15º to 20º ↓	Snow or Frz. Rain	Plow & apply chemical	2.5	2.0	3.0	3.25 for frz. rain
0 to 15º ↑	Snow	Plow, treat with blends, sand hazardous areas	not recommended	3.0	not recommended	5.0 spot treat as needed
< 05	Snow	Plow, treat with blends, sand hazardous areas	not recommended	4.5	not recommended	5.0 spot treat as needed

<u>Instructions for using application rate table for calibrated spreaders</u>

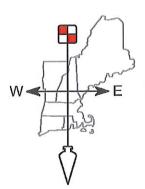
- 1. Using Deicing Application Rate Guidelines for Parking Lots and Sidewalks. Select the row (→→) with the appropriate pavement temperature, temperature trend, and weather conditions.
- 2. Select the column (\downarrow) that has the type of material used.
- 3. Find the box where the row (\longrightarrow) and columns (\downarrow) intersect to find the application rate.
- 4. Compare those values to the calibration chart for the spreader.*
- 5. Select the correct spreader setting for the rate calculated.

Example:

- 1. Parking lot is 54,000 sq. ft.
- 2. Temperature: $22^{\circ}F$ and falling. It has finished snowing. (\longrightarrow)
- 3. Using salt pretreated with salt brine. (\downarrow)
- 4. Find the 20 25º ↓ box. Follow it to the right to the column labeled "Salt Pre-wetted/pretreated with salt brine." Read the rate in the box. The box where the column and row intersect shows a rate of 2.0 /1000 square feet. (→>↓)
- 5. Refer to the calibration chart in the vehicle and set the spreader to the setting that most closely matches the 2.0 lbs. /1000 square feet.
- 6. The mixture is ready to apply.

Instructions for using application rate table for spreaders that are NOT calibrated

Using the example above:


- 1. Calculate size factor: Divide the parking lot size (54,000 sq. ft.) by 1,000 sq. ft. 54,000/1,000 = 54. The size factor is 54.
- 2. Find application rate (2.0).
- 3. Multiply application rate by size factor $2 \times 54 = 108$.
- 4. The amount needed for the entire lot is 108 lbs. pre-wetted/pretreated salt brine.
- 5. Because the spreader is not calibrated, the setting is unknown.
- 6. Although the calibration setting is not known, this establishes the amount of salt to use and increases efficiency.
- 7. Determine the best method to spread the 108 pounds evenly across the parking lot.

Pavement area of the proposed Commerce Park R&D = 338,000 sq.ft.

Deicing Log					
Air Temp.	Weather Conditions	Date of Application	Type of Deicer Used	Amount of Deicer Used	Deicer Applied By

Section 3.2

Test Pit Data

FIELDSTONE

Surveying • Engineering
Land Planning • Septic Designs

AND CONSULTANTS, PLLC

206 Elm Street, Milford, NH 03055 - Phone: 603-672-5456 - Fax: 603-413-5456 www.FieldstoneLandConsultants.com

Test Pit Data Map 145 Lot 15 3 Sullivan Road Hudson, NH

10/13/22

Test Pit #1

0-6"- 10YR 3/3 dark brown, loamy sand, granular, friable

6-12"- 10YR 5/6 yellowish brown, gravelly medium to coarse sand, single grain, loose

ESHWT = None

Observed Water = None

Ledge/Boulders = 12"

Roots = None

Test Pit #2

0-7"- 10YR 3/3 dark brown, loamy sand, granular, friable

7-72" - 10YR 5/6 yellowish brown, gravelly medium to coarse sand, single grain, loose

ESHWT = None

Observed Water = None

Ledge/Boulders = None

Roots = None

Test Pit #3

0-12"- 10YR 3/3 dark brown, loamy sand, granular, friable

12-24"- 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose

24-76" - 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose

ESHWT = None

Observed Water = None

Ledge/Boulders = 76"

Roots = None

Test Pit #4

0-12"- 10YR 3/3 dark brown, loamy sand, granular, friable

12-24"- 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose

24-70" - 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose

ESHWT = None

Observed Water = None

Ledge/Boulders = 70"

Roots = None

LAND CONSULTANTS, PLLC

Test Pit #5

0-12" - 10YR 3/3 dark brown, loamy sand, granular, friable

12-24"- 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose

24-80"- 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose

ESHWT = None

Observed Water = None

Ledge/Boulders = None

Roots = 6"

Test Pit #6

0-15"- 10YR 3/3 dark brown, loamy sand, granular, friable

15-24"- 10YR 4/4 dark yellowish brown, loamy medium to coarse sand, single grain, loose

24-68"- 2.5Y 6/6 olive brown, gravelly medium to coarse sand, single grain, loose

ESHWT = None

Observed Water = None

Ledge/Boulders = 68"

Roots = None

Test Pit #7

0-9"- 10YR 3/3 dark brown, loamy fine sand, granular, friable

9-16"- 10YR 5/6 yellowish brown, loamy fine sand, massive, friable

16" - 2.5Y 6/3 light yellowish brown, loamy fine sand, massive, friable

ESHWT = 66"

Observed Water = None

Ledge/Boulders = None

Roots = 4"

Test Pit #8

0-56" - 10YR 3/3 dark brown, gravelly sandy loam, massive, friable *fill

56-78" - 2.5Y 6/3 light yellowish brown, loamy fine sand, massive, friable

ESHWT = None

Observed Water = None

Ledge/Boulders = None

Roots = None

Test Pit #9

0-26" - 10YR 3/3 dark brown, sandy loam, massive, friable *fill

26-44"- 10YR 4/6 dark yellowish brown, stony/gravelly sandy loam, massive, friable

44-72" - 2.5Y 5/3 light olive brown, stony/gravelly sandy loam, massive, firm

ESHWT = None

Observed Water = None

Ledge/Boulders = None

Roots = None

Test Pit #10

0-6"- 10YR 3/3 dark brown, loamy sand, granular, friable

6-19"- 10YR 5/6 yellowish brown, loamy sand, massive, friable

19-32" - 2.5Y 6/3 light olive brown, medium to coarse sand, single grain, loose

32-80"- 2.5Y 6/4 light olive brown, fine to medium sand, single grain, loose

ESHWT = 64"

Observed Water = None

Ledge/Boulders = None

Roots = None

Test Pit #11

0-12" - 10YR 3/3 dark brown, loamy sand, granular, friable

12-24"- 10YR 5/6 yellowish brown, loamy sand, massive, friable

24-36" - 2.5Y 6/4 light yellowish brown, sandy loam, massive, friable

36-76" - 2.5Y 5/4 light olive brown, silty loam, massive, friable

ESHWT = 60" Observed Water = None

Ledge/Boulders = None

Roots = 22"

Test Pit #12

0-36" - 10YR 3/3 dark brown, stony sandy loam, granular, friable *fill

ESHWT = None Observed Water = None

Ledge/Boulders = None

Roots = None

Test Pit #12A

0-12" - 10YR 3/3 dark brown, loamy sand, granular, friable

12-23" - 10YR 5/6 yellowish brown, loamy sand, massive, friable

23-36"- 2.5Y 6/4 light yellowish brown, sandy loam, massive, friable

36-68" - 2.5Y 5/4 light olive brown, silty loam, massive, friable

ESHWT = 60"

Observed Water = None

Ledge/Boulders = None

Roots = 24"

Test Pit #13

0-36"- 10YR 3/3 dark brown, sandy loam, massive, friable *fill

36-48"- 10YR 4/6 dark yellowish brown, stony/gravelly sandy loam, massive, friable

48-80" - 2.5Y 5/3 light olive brown, stony/gravelly sandy loam, massive, firm

ESHWT = None

Observed Water = None

Ledge/Boulders = None

Roots = None

Test Pit #14

0-12"- 10YR 3/3 dark brown, loamy sand, massive, friable *fill

12-48" - 2.5Y 6/3 light yellowish brown, medium to coarse sand, single grain, loose

48-72" - 2.5Y 6/3 light yellowish brown, fine to medium sand, single grain, loose

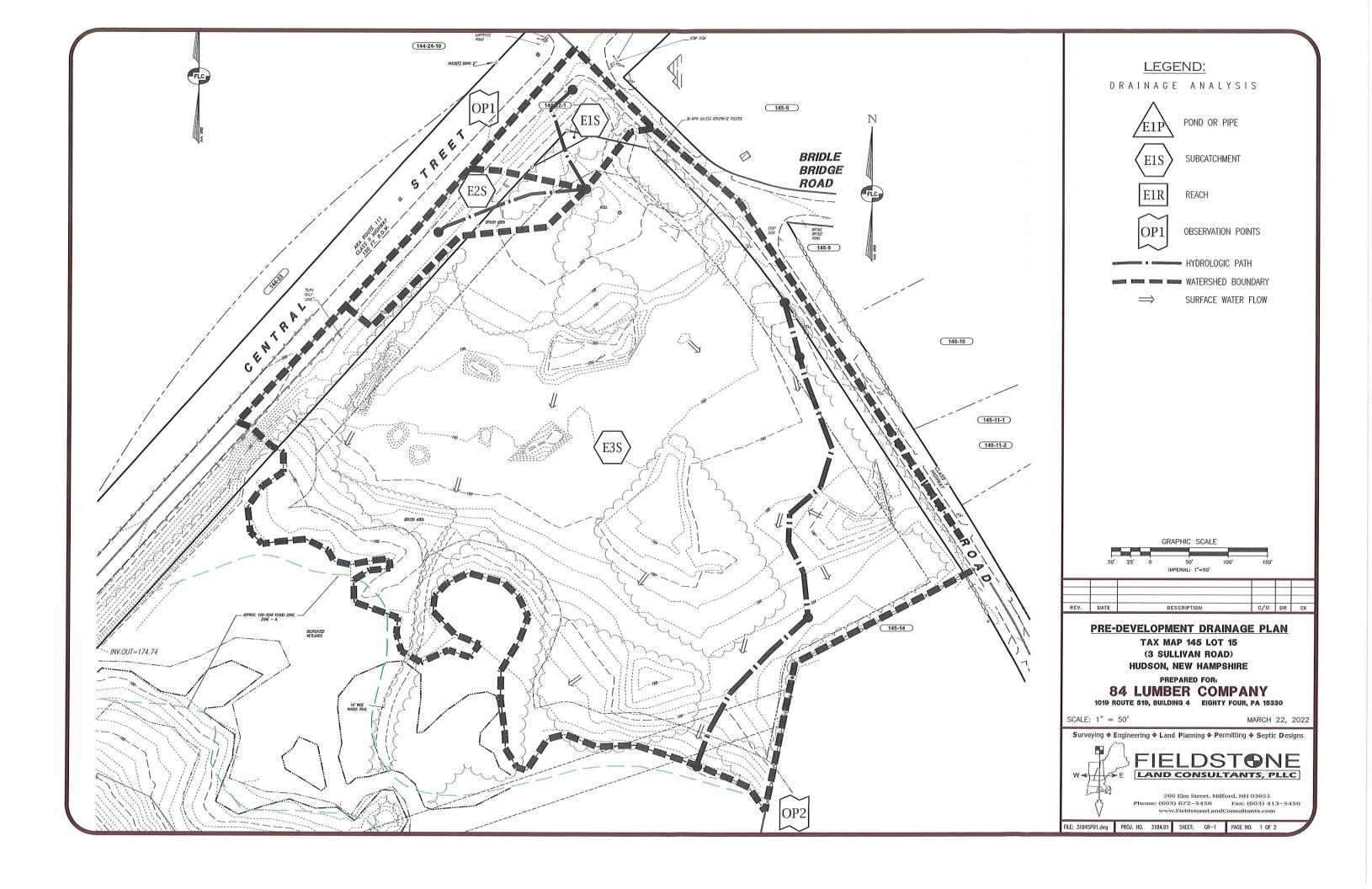
ESHWT = None

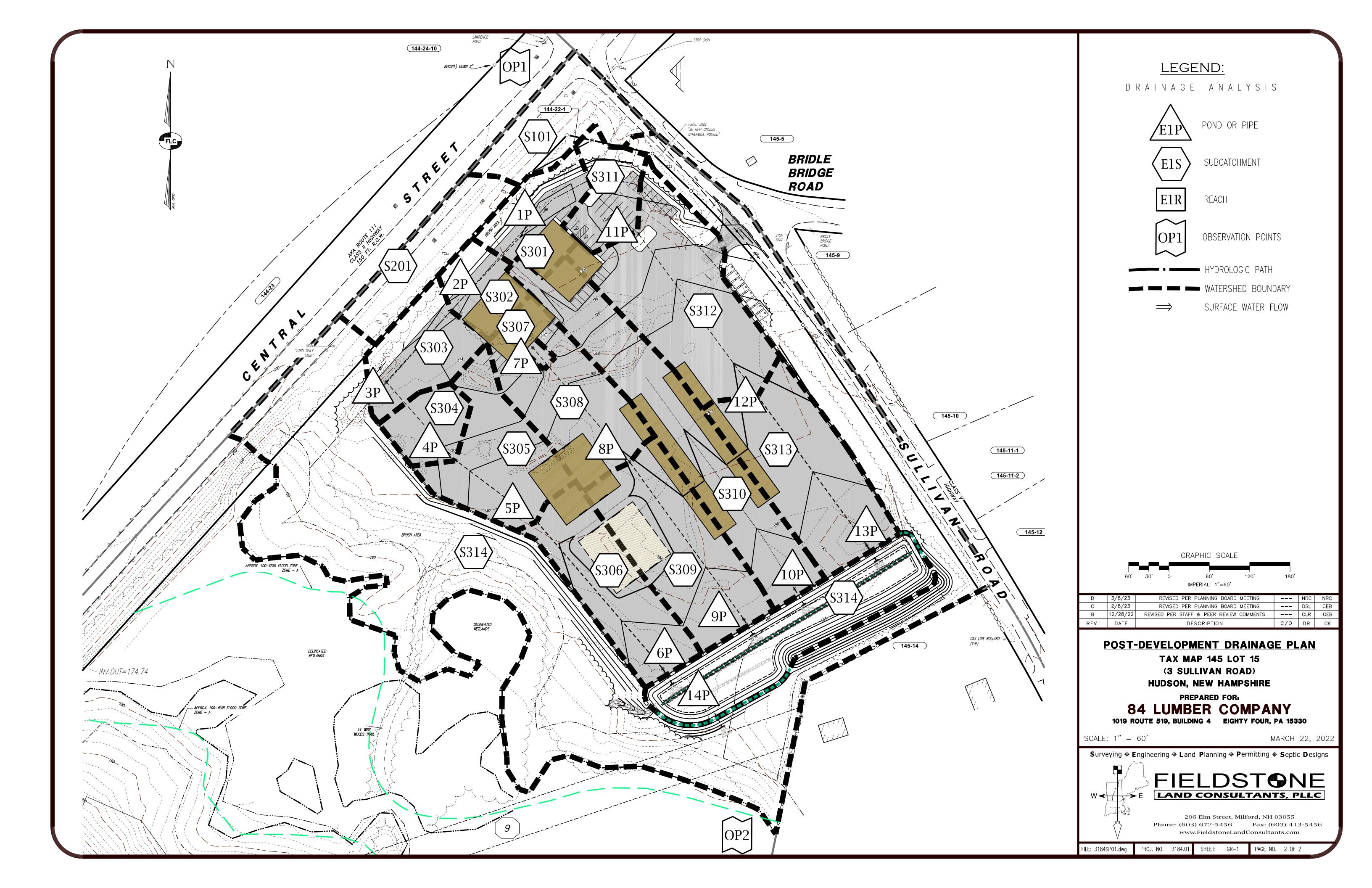
Observed Water = None

Ledge/Boulders = None

Roots = None

Logged By: Christopher Guida


Christopher A. Guida, CSS, CWS Certified Soil & Wetland Scientist


Auslydin Olik

NH Licensed Designer #1401

Section 3.3

Drainage Plans

